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Abstract
Clinical Decision Support Systems (CDSS) play
an increasingly important role in medical diagnos-
tics. We present AI Diagnostic Assistant (AIDA),
a real-time predictive model designed to assist doc-
tors in interpreting patient conditions while work-
ing in a CDSS. AIDA analyzes electronic health
records (EHR), including medical history, labora-
tory results, and complaints, to suggest potential
diagnoses from 95 common conditions before doc-
tor makes final decision. The model acts as a ver-
ification and backup tool, ensuring that no critical
details are overlooked. Trained on 1.5 million pa-
tient records and validated on a dataset curated by
a panel of experts, AIDA proves trustworthy as a
diagnosis-making assistant (87.7% accuracy com-
pared to 91.7% accuracy among doctors).
Integrated into a megapolis-wide CDSS, AIDA has
assisted doctors in making over 3 million real-
world diagnoses to date.

1 Introduction
Information technologies are transforming healthcare, with
Clinical Decision Support Systems (CDSS) playing a key
role in improving diagnostic accuracy and reducing errors.
Despite their importance, real-world adoption faces chal-
lenges such as model interpretability, integration with diverse
data sources, and even sheer trust to physicians [Ledley and
Lusted, 1991; Kline et al., 2022].

One of the key decisions doctors make is determining the
correct diagnosis for a patient’s condition. However, this is a
complex task, with misdiagnosis rates estimated to be as high
as 30% [Liberman and Newman-Toker, 2018]. The challenge
arises from the vast amount of patient data available, includ-
ing unstructured clinical notes, structured laboratory results,
imaging reports, and prior medical history. Integrating and in-
terpreting this information efficiently remains a bottleneck in
clinical practice. To assist with this challenge, we developed

AI Diagnostic Assistant (AIDA), a machine learning model
designed to predict ICD-10 diagnoses based on the full medi-
cal history of a patient. We employed ICD-10 [Organization,
1992] as a list of possible diagnoses, consistent with the Elec-
tronic Health Record (EHR) system used as the data source
and as the integration endpoint.

We trained AIDA on 1.5 million patient records to predict
ICD-10 codes of diagnoses, confirmed by laboratory or in-
strumental results and flagged as “final”. AIDA achieved tar-
get 75% accuracy for the 95 most frequent diagnoses. For
these codes, we created a testing dataset from real cases im-
ported from the EHR data. This dataset was annotated by a
panel of three experienced doctors, allowing us to compare
the panel results with both the model’s predictions and the
original doctor assessments imported from the EHR. Unlike
previous studies that focus on retrospective evaluation, AIDA
has been integrated into a real-world CDSS, where it actively
assists doctors in diagnostic decision-making.

In the first year of deployment in Moscow City’s CDSS,
AIDA has processed over 5 million diagnostic queries and
provided over 3 million diagnostic recommendations, achiev-
ing a doctor agreement rate of 84.3%. A crucial aspect of
AIDA’s integration into clinical workflows is its acceptance
by medical professionals. Throughout development, we gath-
ered qualitative feedback from doctors to assess both the
model’s practical utility and its usability in a real-world set-
ting. While we could not interfere with real-time patient-
doctor interactions, post-factum surveys indicate that AIDA
was particularly beneficial for young specialists, helping
them feel more confident in their diagnostic decisions. This
aligns with our broader goal of using AI to enhance medi-
cal decision-making and reduce diagnostic uncertainty, con-
tributing to improved patient outcomes.

Below, we describe two approaches to this multilabel tar-
get task in detail. The first one is a fully multimodal system
that uses specialized encoders for each data type to generate
embeddings that are then processed by a recurrent neural net-
work. The second one is a text-only model where all modal-
ities are represented as texts and used as inputs to a trans-
former model with a long-range attention. We provide results
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on the validation sets for both approaches, including the stud-
ies of the data impact and the effects of different preprocess-
ing methods. We also tested these approaches on a specially
curated testing dataset, which enabled us to compare doctors’
accuracy with the model’s across different subsets of cases.
Finally, we discuss the practical challenges of integrating our
model into a large-scale CDSS.

2 Related Work
Over the last decade, the field of machine learning in
medicine has significantly expanded, shifting its focus from
model development to model deployment using real-world
data. For a comprehensive review, refer to Zhang et al.
[Zhang et al., 2022], which covers recent advances in AI-
driven clinical decision support and diagnostic prediction.

The widespread adoption of electronic health records
(EHRs) has enabled machine learning models to leverage
large-scale multimodal patient data for various healthcare
applications, including diagnosis prediction. Since Choi’s
pioneering work, which applied recurrent neural networks
(RNNs) to process sequential EHR data for diagnosis pre-
diction [Choi et al., 2016], the field has evolved significantly.
More recent approaches, such as BEHRT [Li et al., 2020], in-
troduced transformer architectures for this task, demonstrat-
ing improved performance over traditional sequence models.
Additionally, SCOPE [Mukherjee et al., 2023] challenged the
assumption that deep learning always outperforms simpler
models, demonstrating that logistic regression and random
forests can achieve competitive results for diagnosis predic-
tion.

A major challenge in leveraging EHRs for ML-based di-
agnosis is the large volume of unstructured clinical text.
Extracting meaningful insights from such data requires ad-
vanced natural language processing (NLP) techniques. EHRs
contain a substantial amount of unstructured clinical text,
making natural language processing (NLP) a crucial compo-
nent of AI-driven CDSS. Devlin et al. [Devlin et al., 2018]
demonstrated the power of transformer networks in NLP, par-
ticularly after masked language modeling (MLM) pretraining
on large text corpora. However, the computational cost of
transformers scales quadratically with sequence length, mak-
ing them impractical for processing long-term patient histo-
ries in their original form. To mitigate this, Beltagy et al.
[Beltagy et al., 2020] introduced Longformer, a transformer
variant that incorporates global attention and windowed local-
context self-attention, significantly reducing computational
complexity while maintaining long-range dependencies.

To leverage these advances, we explored two distinct mod-
eling approaches:

1. Longformer as a feature extractor: We used Long-
former embeddings for unstructured texts, which were
then processed by an LSTM [Hochreiter and Schmidhu-
ber, 1997] to sequentially model patient history.

2. Longformer as an end-to-end model: In this approach,
the entire patient history was concatenated into a sin-
gle text sequence and fed directly into the Longformer
model.

Our work extends prior research by integrating AIDA into
a real-world CDSS, differentiating it from retrospective stud-
ies. AIDA builds upon prior work, such as the TOP3 prelim-
inary diagnosis prediction model [Blinov et al., 2020], which
provided top-3 probable diagnoses based on visit-time com-
plaints. Unlike TOP3, which predicts only preliminary diag-
noses, AIDA processes full patient history to determine the
final confirmed diagnosis, making it clinically relevant.

3 Data
We used three datasets: pretraining, finetuning, and testing.
The pretraining data were used to train a specialized Long-
former model on a masked language modeling task. The
finetuning dataset was used to train and validate the model
for ICD-10 code prediction. The testing dataset, indepen-
dently gathered from the same EHR system, was used to as-
sess AIDA’s performance against that of the medical experts.

3.1 Pretraining Dataset
The pretraining dataset was assembled using EHRs
from several large medical clinics and one regional
health records system. The dataset was used to
compile a corpus that included patient visit informa-
tion in the format <visit text>:<ICD code and
description, where available>. Each patient’s
visits were concatenated in chronological order. Additional
data, such as laboratory results or instrumental examination
outcomes, were not included in the pretraining dataset.

3.2 Finetuning Dataset
The diagnostic model was trained on a finetuning dataset con-
taining anonymized health records from 1.5 million patients
in the Central Medical Information and Analysis System of
Moscow City. Each record included demographics, doctor
visits, laboratory results, various instrumental measurements.
Patient visit records contained complaints, medical history,
examination data, ICD-coded diagnoses, and recommenda-
tions. Laboratory results detailed test names, individual val-
ues, and reference ranges, while instrumental measurements
included protocols and conclusions.

The dataset was split into 1.35 million patient histories for
training and 133 thousands for validation. Multiple training
records were extracted per patient for each final diagnosis,
while validation patients had only one record based on their
last diagnosis.

Historically, the target set of ICD diagnoses has evolved in
the following three stages:

1. Initially, 256 most common diagnoses were selected.
2. Enlarged to 571 diagnoses, covering 95% of incoming

cases, but excluding obstetrics, oncology, and checkups.
3. Filtered down to 363 diagnoses, removing those diag-

noses not assigned by therapists, absent in clinical guide-
lines, or unsuitable as final diagnoses.

At each stage, the cases that did not belong to the selected
subset of ICD-10 codes were removed from training and val-
idation sets. To ensure comparability, we report performance
separately for each target subset rather than across all stages.
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Table 1 presents the distribution of final diagnoses in the fine-
tuning dataset.

3.3 Testing Dataset
To evaluate AIDA, we constructed a specialized test dataset
of 3,500 anonymized cases, independently exported from the
same EHR system as the finetuning dataset. To prevent data
leakage, cases were selected only after finalizing the training
dataset. The test set maintained a natural distribution while
ensuring that no cases overlapped with the training data, all
diagnoses belonged to the predefined target set, and diagnoses
were recorded after the training period. Medical experts fur-
ther curated the set to reflect the real-world distribution.

Each test case was independently reviewed by three expe-
rienced medical experts, who provided final diagnoses based
on full patient histories. Ground truth was established when
at least two experts agreed. Their agreement could be sum-
marized as follows:

• Complete agreement (3 experts): 67% (2,367 cases).
• Partial agreement (2/3 experts): 28% (965 cases).
• No agreement (all experts disagreed): 5% (168 cases).

Cases with partial agreement were considered more challeng-
ing than those with complete agreement. Below, we will show
that both doctors and the model perform significantly worse
in these cases.

4 Models
4.1 Longformer Models
Our first approach used a transformer-based method, leverag-
ing pretrained large language models (LLMs) for EHR analy-
sis. To ensure compatibility with the model, patient data was
structured into text and processed using a Longformer model.
Initially, we trained a BERT model on masked language mod-
eling using unstructured clinical notes, a process taking two
weeks on a Tesla K40 GPU. This model was then converted
into a Longformer architecture with sliding window atten-
tion for efficient processing of sequences up to 8192 tokens.
We further pretrained the Longformer on structured medical
texts for three days on an NVIDIA V100 GPU before fine-
tuning it on ICD-10 code prediction using patient histories.
To construct patient histories, we manually selected relevant
text fields from EHR forms for each patient visit in the train-
ing and validation sets. Instrumental reports were included in
both short and long formats, while lab test results were added
only if abnormal, as full lab data degraded performance. To
improve representation, demographic data (age, gender) was
appended at the beginning of each sequence and historical
records were then concatenated chronologically (most recent
first).

The maximum sequence length was an important hyperpa-
rameter, as it dictated how much historical patient data the
model could process at once. We carefully tuned the token
limit to retain the most relevant medical history while avoid-
ing excessive truncation. Interestingly, including full labo-
ratory results in textual form degraded model performance,
as older medical history was truncated, reducing the model’s
ability to capture long-term patient trends.

AIDA was finetuned as a multi-class classifier, with a linear
layer placed over the first token representation to produce the
final diagnosis prediction. We also explored additional op-
timizations: adding time interval embeddings to account for
gaps between visits, though this did not lead to measurable
improvements. Additionally, physical observations such as
height and weight were included only if explicitly recorded
in text fields, as their overall impact on model accuracy re-
mained negligible.

4.2 Multimodal Model
Besides the text-based approach, we developed a composite
architecture that we refer to as Multimodal model that sepa-
rately encodes medical events within a patient’s history to ad-
dress the challenge of representing diverse and complex EHR
data. This model separately processes textual, laboratory, and
categorical information before combining them into a unified
patient history representation.

The textual modality includes patient complaints, medical
history, clinical diagnoses, instrumental examination reports,
and textual laboratory results. Because free-text fields con-
tain rich clinical insights, each textual element is treated as
an independent medical event, tokenized, and encoded using
a pretrained medical transformer (as described in the Long-
former model section). This approach ensures that semantic
relationships in medical text are captured well, contributing
to a more interpretable and structured input representation.

For laboratory data, we initially considered encoding test
values as normalized real numbers and feeding them into an
MLP encoder, but this approach failed to capture critical out-
liers, which often play a decisive role in clinical diagnos-
tics. To address this, we applied structured discretization: a
Histogram-based Outlier Score model [Goldstein and Dengel,
2012] identified anomalies, and a Birch clustering algorithm
[Zhang et al., 1997] segmented values into 3 to 30 sub-ranges,
mapping results to discrete tokens that were combined into
a one-hot vector for MLP processing. Categorical data, in-
cluding demographics (age, gender), physician specialty, and
ICD codes, were similarly encoded as one-hot vectors and
processed via separate MLP encoders.

All encoded clinical events were then chronologically as-
sembled into a structured sequence, with explicit positional
encodings added to capture event timing and category type.
The final sequence representation, containing up to 256 med-
ical events per patient, was processed by a Bidirectional Long
Short-Term Memory (BiLSTM) network for multi-class diag-
nosis classification.

As an additional improvement for the Multimodal model,
we used a special asymmetric loss function [Ridnik et al.,
2021] designed to mitigate class imbalance in the training
data (instead of binary cross-entropy). This function adjusts
the weighting of positive and negative samples dynamically,
reducing the impact of frequent diagnoses while ensuring bet-
ter learning for rare cases.

L+ = (1− p)γ log(p)

L− = (pm)γ log(1− pm), pm = max(p−m, 0),

L = −yL+ − (1− y)L−
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ICD-10 Name Total visits Percentage Cumulative

I11.9 Hypertensive heart disease without (congestive) heart failure 465,308 18.8% 18.8%
U07.1 COVID-19, virus identified 329,144 13.3% 32.1%
J06.9 Acute upper respiratory infection, unspecified 215,392 8.7% 40.8%
M42.1 Adult osteochondrosis of spine 183,511 7.41% 48.22%
I67.8 Other specified cerebrovascular diseases 83,534 3.38% 51.59%
I25.1 Atherosclerotic heart disease 55,703 2.25% 53.84%
E11.7 Non-insulin-dependent diabetes mellitus: With multiple complications 45,886 1.85% 55.7%
J45.8 Mixed asthma 43,162 1.74% 57.44%
J12.8 Other viral pneumonia 41,665 1.68% 59.13%
U07.2 COVID-19, virus not identified 36,171 1.46% 60.59%
I25.2 Old myocardial infarction 34,934 1.41% 62.0%
J04.1 Acute tracheitis 34,343 1.39% 63.39%
K29.3 Chronic superficial gastritis 29,472 1.19% 64.58%
I20.8 Other forms of angina pectoris 28,852 1.17% 65.74%
- Other 348 847,839 34.26% 100.0%

Total 2,474,916 100.0% 100.0%

Table 1: Distribution of diagnoses in the finetuning dataset.

excludedData type Results ONLY on this data type Results with this data type excluded
top 1 top 3 top 1 top 3

Anamnesis 40.99% 60.88% 6.60% 5.50%
ICD code history 31.30% 49.41% 17.60% 12.30%
Complaints 26.80% 42.95% 4.75% 4.44%
Physical examination categorical data 23.56% 41.83% 2.27% 1.50%
Age and gender 22.22% 36.36% 2.89% 1.66%
”Full diagnosis” text field history 22.16% 37.69% 0.95% 0.58%
Physical examination numeric data 20.98% 31.99% 1.32% 0.81%
Doctor specialization 19.99% 34.34% 2.27% 1.21%
Laboratory results 19.23% 35.56% 1.96% 1.08%
gistology 14.75% 34.35% 0.71% 0.44%
Instrumental conclusions 12.58% 28.01% 0.75% 0.56%

Table 2: Multimodal model top 1 and top 3 accuracy results on different data types and on all the data except the select data types.

where γ and m are hyperparameters fine-tuned for optimal
performance, and y represents the true class label, determin-
ing which component of the loss contributes to the final opti-
mization objective. Additionally, at later experimental stages,
we switched from Batch Normalization [Ioffe and Szegedy,
2015] to Layer Normalization [Ba et al., 2016] to stabilize
multimodal model training, leading to improved convergence
and generalization across diverse patient records.

The Multimodal AIDA architecture integrates sequential
and multimodal data, capturing a broader temporal context
than traditional text-based methods. Time encoding further
enhances learning of temporal relationships between medical
events. Figure 1 shows the diagram of the multimodal model.
Next, we primarily focus on the text-based version of AIDA,
with comparisons to the multimodal approach to assess the
impact of temporal modeling.

Figure 1: AIDA: Multimodal Model Architecture
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5 Results
5.1 Feature Importance on Validation Set
During model development, we faced the challenge of pro-
cessing redundant information in patient EHRs. Many criti-
cal details are manually entered by physicians into anamnesis
and complaint fields, potentially making some structured data
redundant. To assess the relative importance of different EHR
modalities, we conducted ablation studies on the multimodal
model, training it on specific data subsets and measuring per-
formance changes when excluding different features.

Table 2 presents the results, showing that patient com-
plaints, anamnesis, ICD code history, and demographics con-
tribute most significantly to diagnostic accuracy. Surpris-
ingly, laboratory results and instrumental conclusions had
minimal impact, contradicting initial expectations that ex-
plicit diagnostic confirmations (e.g., abnormal lab tests or
imaging results) would strongly influence predictions. A pos-
sible explanation for this counterintuitive result is that physi-
cians tend to manually summarize critical lab and imaging
findings within the anamnesis fields. As a result, explicitly in-
cluding this data as separate features provides little additional
value to the model. This insight aligns with findings from the
Longformer model experiments reported in Table 3, reinforc-
ing the observation that structured lab and instrumental data
may not significantly improve model performance when tex-
tual descriptions are already available.

5.2 AIDA Results on Validation Split of
Finetuning Dataset

We conducted multiple experiments, summarized in Table 3,
evaluating models on their ability to predict the correct diag-
nosis (hit@1) and whether it appeared in the top three pre-
dictions (hit@3). Experiments were performed on 265, 571,
and 363 target classes, as detailed in the Data section. We
performed three series of experiments with 265, 571 and 363
target classes as discussed in the Data section. The differ-
ing number of classes makes direct comparisons between se-
ries invalid, but comparisons within each series provide valu-
able insights. We established a logistic regression baseline,
transforming textual data into numerical form using TF-IDF,
which assigns importance-based weights to words for classi-
fication.

Our experiments indicate that both extending the maxi-
mum sequence length to provide additional context and in-
corporating additional data lead to improvements in metrics.
However, it is important to note that the benefits from in-
creased context diminish over time, and the gains from in-
cluding explicit information about lab results outside refer-
ence values were minimal. These findings align closely with
the results of additional data and lab results in SCOPE study
[Mukherjee et al., 2023] using logistic regression. This sug-
gests that the findings are consistent with the task and the
data rather than the specific model used for disease predic-
tion. We experimented with two methods of fusing visit data
in the multimodal model: transformers and recurrent neu-
ral networks. Early in the experiments, we decided to focus
on bidirectional LSTMs. A general finding from our experi-
ments is that both models perform equally well on validation

data, with the multimodal model being marginally better but
requiring much more complex data processing. Most impor-
tantly, the multimodal model requires retraining the embed-
ding submodules. These considerations, along with poten-
tial implementation hurdles described further, led us to con-
tinue experiments on the testing dataset focusing on the Long-
former model for CDSS integration.

For further testing and comparison with doctors, 95 ICD-
10 codes where selected where the model accuracy was
greater than 75%.

5.3 Results on Testing Dataset
To evaluate AIDA’s performance, we compared its diagnostic
accuracy with that of doctors on 3,332 clinical cases where
the ground truth was established (95% of the dataset). Ta-
ble 5 summarizes the results, with all accuracy differences
statistically significant (p < 0.05, chi-square test). We also
accounted for ICD-10 synonyms, where assigning a synony-
mous code was not considered an error (e.g., I48.1 ”Persistent
atrial fibrillation” and I48.2 ”Chronic atrial fibrillation” were
treated as correct).

Overall, doctors achieved 90% accuracy (91.7% with syn-
onyms), while AIDA reached 86.1% (87.7% with synonyms).
In cases with complete expert agreement, accuracy was
higher (doctors: 96.3%, AIDA: 93.5%, increasing to 97.1%
and 94.1% with synonyms), indicating these were likely eas-
ier diagnoses. Conversely, in cases with partial expert agree-
ment, accuracy dropped significantly (doctors: 78.6%, AIDA:
68.1%; with synonyms: 78.2% and 72%), reflecting higher
diagnostic complexity.

When doctor and model diagnoses matched, accuracy was
98.5% (99% with synonyms), evidently suggesting straight-
forward cases. However, when they differed, doctor accu-
racy fell to 57.8% (64% with synonyms), while AIDA’s was
39.3% (45.1% with synonyms), indicating these were some
challenging clinical scenarios where model suggestions could
warn for a more cautious decision-making.

Distribution of correct answers by doctors and AIDA:

• Both doctor and AIDA are correct: 77.9%

• Only doctor is correct: 12.1%

• Only AIDA is correct: 8.2%

• Both are incorrect: 1.8%

The accuracy lag between AIDA and doctors ranged from
2.8% to 18.9%, but the inclusion of synonyms notably im-
proved the results, particularly in complex cases. The align-
ment between doctors and AIDA highlights its ability to iden-
tify cases with high diagnostic uncertainty. Despite slightly
lower accuracy, AIDA adds clinical value by flagging diffi-
cult cases where human accuracy also drops (57.8% when
disagreeing with AIDA). When AIDA suggests an alternative
diagnosis, it is correct 39.3% of the time, meaning its input
could boost overall diagnostic accuracy to 98.2%, if taken
into account.

Rather than replacing doctors, AIDA serves as a “sec-
ond opinion” system, helping to prevent errors in ambiguous
cases. Its ability to highlight complex diagnoses further po-
sitions it as a decision-supporting tool. Despite its slightly
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Model type Input length epochs lr BS Data hit@1 hit@3
256 classes

Logistic regression - - - - Visit, Report 53.92% 69.36%
Logistic regression - - - - Visit, Report, Lab 55.28% 70.16%

Longformer 128 4 3e-5 96 Visit, Report 64.75% 82.73%
Longformer 256 4 3e-5 64 Visit, Report 67.72% 84.79%
Longformer 384 3 3e-5 48 Visit, Report 68.64% 85.52%
Longformer 512 3 3e-5 32 Visit, Report 68.90% 85.79%
Longformer 512 3 3e-5 32 Visit, Report, Lab 69.04% 85.93%
Longformer 512 3 3e-5 32 Visit, Report, Lab 69.03% 85.92%
Longformer 1024 3 3e-5 32 Visit, Report, Lab 69.27% 86.27%

Multimodal (Transformer) - 5 5e-5 20 Visit, Report, Lab 70.36% 86.09%
Multimodal (BiLSTM) - 7 5e-5 20 Visit, Report, Lab 72.92% 87.77%
Multimodal (BiLSTM) - 9 3e-5 20 Visit, Report, Lab 73.56% 87.95%

571 classes
Longformer 256 3 3e-5 64 Visit, Report, Lab 67.60% 84.24%
Longformer 256 3 3e-5 64 Visit, Report, Lab, Doctor 69.21% 86.14%
Longformer 256 3 3e-5 64 All data 69.45% 86.51%

Multimodal (BiLSTM) - 2 3e-5 16 All data 68.50% 84.64%
Multimodal (BiLSTM), ASL - 2 3e-5 16 All data 71.02% 86.77%

363 classes
Longformer 512 3 3e-5 32 All data 72.45% 88.10%
Longformer 1024 3 3e-5 16 All data 73.70% 88.90%

Multimodal (BiLSTM), ASL - 8 1e-5 36 All data 73.89% 88.88%

Table 3: AIDA results on the validation set, shown separately across three stages of ICD targets.

lower accuracy, AIDA met the CDSS integration threshold
and has been widely in use since its deployment.

6 Deployment Challenges
The deployment of AIDA into the Clinical Decision Support
System (CDSS) presented several challenges, primarily re-
lated to target class selection, data structure differences, sys-
tem latency constraints, and model stability monitoring.

Changes in target diagnoses over time. The final diagno-
sis set was refined throughout the project. Initially based on
prior research, it was later finalized by medical experts. Each
update required retraining the model and revalidating results,
adding complexity.

Differences in data storage structures. During training,
AIDA used data from an analytical subsystem, but real-time
querying was impractical. Instead, direct EHR retrieval was
required, introducing challenges in aligning data formats to
maintain consistency.

Infrastructure for timely processing. AIDA requires ac-
cess to up to two years of patient history, making real-time
retrieval from the EHR infeasible. To address this, we im-
plemented a preloaded database storing patient records in a
model-ready format. This significantly improved response
times, though the initial data preparation process took several
months due to EHR complexity.

Continuous monitoring. To maintain accuracy, we track
two key metrics: (1) the proportion of diagnoses with high
uncertainty and (2) the doctor agreement rate. A decline in ei-
ther signals potential data drift or systemic changes, prompt-
ing retraining. This ensures AIDA remains reliable in evolv-
ing clinical environments.

7 Implementation Details
Figure 2 illustrates AIDA’s conceptual role within the Clini-
cal Decision Support System (CDSS), where it processes pa-
tient data from the last 1.5 years alongside real-time examina-
tion data. Within a second, the model generates a diagnosis,
incorporating a confidence estimation module that indicates
alignment with the doctor’s assessment or highlights insuffi-
cient EHR data. This design keeps doctors in control while
leveraging AI-driven insights.

Interaction with doctors. During a patient’s visit, the
doctor fills out an EHR form, documenting medical history,
symptoms, and observations. When reaching the diagnosis
field, a textual prediction from the model is displayed if the
model’s confidence is high enough, occurring in about 90%
of relevant visits 2. Both the model’s and the doctor’s results
are logged into the EHR’s analytics module to analyze their
agreement (currently 84.3%).

Preloading data. At launch, the system preloaded two
years of electronic health records for all patients. Data was
reformatted for model compatibility and stored in a special-
ized database to ensure rapid access during inference.

Continuous background data loading. To maintain up-
to-date patient records, the system continuously ingests new
medical documents as they are created. These include patient
complaints, history, and other relevant information. Incoming
data undergoes the same preprocessing steps as during the
initial preloading phase, ensuring consistency in storage and
retrieval.

Model prediction retrieval. During appointment, as the
examination protocol is completed and the diagnosis field
is reached, the CDSS queries the AIDA service. The re-
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ICD-10 ICD Name Count Complexity (%) Accuracy F1

Simple Complex Extra complex

I11.9 Hypertensive heart disease 1445 78.34 19.65 2.01 0.936 0.931
E11.7 Type 2 diabetes mellitus w/ complications 277 57.76 34.66 7.58 0.832 0.845
E11.9 Type 2 diabetes mellitus w/o complications 167 47.90 36.53 15.57 0.823 0.806
I25.2 Old myocardial infarction 164 76.83 21.34 1.83 0.814 0.841
I48.0 Atrial fibrillation and flutter 163 69.94 25.77 4.29 0.891 0.861
I20.8 Other forms of angina pectoris 109 54.13 41.28 4.59 0.712 0.725
J45.8 Asthma 107 79.44 18.69 1.87 0.904 0.876
E11.6 Type 2 diabetes mellitus w/ manifestations 101 51.49 41.58 6.93 0.734 0.740
E89.0 Postprocedural endocrine disorders 74 91.89 8.11 0.00 0.973 0.973
I48.1 Persistent atrial fibrillation 70 65.71 31.43 2.86 0.824 0.828
Other Various 823 50.91 42.40 6.69 0.774 0.88
Total 3500 55.20 40.80 5.00 0.861 0.859

Table 4: AIDA results on the test set for individual ICD codes, with proposed division of cases according to their complexity.

No Synonym Accuracy Synonym Accuracy Cases

Doctor AIDA Doctor AIDA Number % Total

Established Ground Truth 90 86.1 91.7 87.7 3332 95.2%
Full Expert Agreement 96.3 93.5 97.1 94.1 2367 67.6%
Partial Expert Agreement 74.6 68.1 78.2 72 965 27.6%
Doctor/AIDA Agree 98.5 99 2635 75.3%
Doctor/AIDA Do Not Agree 57.8 39.3 64 45.1 697 19.9%

Table 5: Comparison of doctor and AIDA accuracy across different conditions and the effect of employing synonymous terminology.

quest contains technical metadata alongside the patient’s
complaints and medical notes provided by the doctor. This
information is supplemented with preloaded medical records
from the database, forming a complete input sequence.

AIDA generates a predicted diagnosis with an uncertainty
score. Initially measured by the highest softmax logit, un-
certainty estimation was later refined using the HUQ-RDE
model [Vazhentsev et al., 2023] for greater reliability. If un-
certainty is below a set threshold, AIDA provides a diagnosis;
otherwise, no prediction is made. This filtering improves ac-
curacy and naturally fosters trust to the tool among doctors.

8 Conclusion
This study highlights the potential of AI-driven models, such
as AIDA, in enhancing clinical decision-making. Trained on
1.5 million patient records, our model reached 87.7% accu-
racy, supporting over 3 million diagnostic decisions in the
real-world clinical setting.

Our experiments comparing Longformer-based and mul-
timodal models showed that while the multimodal approach
had a slight performance advantage, the Longformer-based
model was more practical for large-scale deployment due to
its lower computational complexity. Feature importance anal-
ysis revealed that patient complaints and medical history con-
tributed the most to diagnostic accuracy, while laboratory and
instrumental results added value but were less impactful.

AIDA has been well received by healthcare professionals,
particularly for supporting less experienced doctors. How-

ever, some concerns about workflow integration remain. To
address this, AIDA’s recommendations are optional, ensuring
that AI enhances decision-making without overriding clinical
judgment. It is important to note that AIDA does not attempt
to replace doctors but rather serves as an AI-powered assistant
aimed at enhancing the accuracy and efficiency of medical di-
agnoses while ensuring that no critical details are overlooked.

Future work will focus on expanding diagnostic coverage,
improving interpretability to increase clinician trust, and op-
timizing integration into diverse healthcare systems. By ad-
dressing these areas, we aim to further bridge AI-driven diag-
nostics with real-world clinical practice.

9 Limitations
While this study contributes to the integration of AI-driven
clinical decision support systems, several limitations merit
discussion. Specifically, the model’s performance is currently
tied to the specific regional system where it was trained and
deployed. Generalization to diverse healthcare environments,
with varying patient populations and data structures, requires
further investigation and validation.

Additionally, the model’s reliance on Longformer and BiL-
STM architectures, while effective, represents a relatively es-
tablished approach within the field of diagnostic prediction.
While we explored multimodal models, the focus remained
on the Longformer-based model due to its practicality for
large-scale deployment.

Finally, though EHR data cannot be shared publicly due to
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Diagnostic status

EHR Data

EHR for 1.5 years

➔ Examination (complaints, history, diagnoses)

➔ Laboratory tests

➔ Results of instrumental studies

➔ Complaints and anamnesis

➔ Gender, age

<1 sec - model answer

Current examination

Final AI diagnosis 

Main diagnosis

ICD-10 Code

М06.9 – Rheumatoid arthritis, unspecified.
Indicate as primary

The diagnosis you provide is the same as the diagnosis of AI as 
determined by EHR data
Indicate as primary

The data in the EHR is not enough to establish a diagnosis of AI

A01.0 - Typhoid fever

^

Confirmed

Figure 2: Schematic diagram of AIDA deployed into a CDSS with its ‘Final AI diagnosis’ recommendation appearing right on top of the user
interface (translated to English for demonstration). The system retrieves past and current patient data to generate a real-time second opinion
on probable diagnosis, incorporating confidence estimation and accepting immediate feedback from the doctor. If the model’s confidence
is high, an ICD-10 code is suggested. Otherwise, a notification appears indicating that the available EHR data is insufficient to establish a
diagnosis. A warning about ‘extra complex case’ is issued when appropriate.

privacy regulations, we provide detailed preprocessing steps,
and evaluation protocols to enable replication in comparable
environments.

These limitations reflect trade-offs inherent to applied AI
research but do not diminish AIDA’s demonstrated success
in enhancing diagnostic accuracy while preserving clinician
autonomy through optional recommendations.

Appendices

A Processing an Incoming Patient Request
1. A patient or a medical professional initiates a request.

2. The Diagnostic Assistant service tokenizes the incom-
ing request.

3. It then queries the patient’s medical history from the
Data Process service, which retrieves data from the
Historic Document Database.

4. After obtaining the history, the Diagnostic Assistant
service formats the data and forwards it to the AIDA
for analysis and diagnosis prediction.

5. The predicted results are stored in the Prediction
Database.

B Updating the Medical History
1. When a patient undergoes an examination or any medi-

cal event occurs, the data is recorded in the MIS (Medi-
cal Information System).

2. MIS sends specific documents to Kafka based on its in-
ternal logic.

3. Converter SEMD reads the data from Kafka and trans-
forms it into a standardized format.

4. The processed data is then re-queued in Kafka.

5. Data Process Service Adapter extracts the data from
Kafka and forwards it to the Data Process service for
storage in the Historic Document Database.

In this system, the Diagnostic Assistant service acts as
the orchestrator, ensuring patient data analysis and interaction
with artificial intelligence, while MIS, Kafka, Converter
SEMD, and Data Process Service Adapter handle updating
and structuring the patient’s medical history.

The system is designed as a structured pipeline that en-
sures efficient handling of patient data. The Diagnostic As-
sistant service manages patient data flow, coordinating data
retrieval from the Historic Document Database via the Data
Process service and leveraging artificial intelligence for pre-
dictive analysis. Simultaneously, patient examination records
and related medical events are processed by MIS and for-
warded to Kafka for structured transformation by the Con-
verter SEMD. Once standardized, the data is reintroduced
into Kafka and subsequently processed by the Data Pro-
cess Service Adapter, which updates the Historic Docu-
ment Database. This end-to-end pipeline ensures seamless
integration of historical data retrieval, AI-driven diagnosis
prediction, and medical history updates.

C Data example
Complaints: persistent moderate pain in the area of the left
elbow joint. Diagnosis confirmed: M19.8 — Other speci-
fied osteoarthritis. History: According to the patient, they
have been experiencing discomfort for about 1.5 months. Re-
ports worsening. Self-treated with NSAIDs, no improvement
noted. Visited for a nerve block procedure. Complaints:
pain in the left heel with minimal load. Diagnosis confirmed:
M77.3 — Heel spur. No other complaints; denies medication
withdrawal symptoms. Diagnosis confirmed: E11.7 — Type
2 diabetes mellitus with multiple complications. History: X-
ray of the right elbow joint (21.02.22) revealed radiological
signs of stage 1-2 osteoarthritis.
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