
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

LogiDebrief: A Signal-Temporal Logic Based Automated Debriefing Approach
with Large Language Models Integration

Zirong Chen1 , Ziyan An1 , Jennifer Reynolds2 , Kristin Mullen2 , Stephen Martini2 , Meiyi Ma1

1Department of Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA
2Metro Nashville Department of Emergency Communications, Nashville, Tennessee 37211, USA

{zirong.chen, ziyan.an, meiyi.ma}@vanderbilt.edu
{jennifer.reynolds, kristin.mullen, stephen.martini}@nashville.gov

Abstract
Emergency response services are critical to pub-
lic safety, with 9-1-1 call-takers playing a key role
in ensuring timely and effective emergency oper-
ations. To ensure call-taking performance consis-
tency, quality assurance is implemented to evalu-
ate and refine call-takers’ skillsets. However, tra-
ditional human-led evaluations struggle with high
call volumes, leading to low coverage and delayed
assessments. We introduce LogiDebrief 1, an AI-
driven framework that automates traditional 9-1-
1 call debriefing by integrating Signal-Temporal
Logic (STL) with Large Language Models (LLMs)
for fully-covered rigorous performance evaluation.
LogiDebrief formalizes call-taking requirements as
logical specifications, enabling systematic assess-
ment of 9-1-1 calls against procedural guidelines. It
employs a three-step verification process: (1) con-
textual understanding to identify responder types,
incident classifications, and critical conditions; (2)
STL-based runtime checking with LLM integration
to ensure compliance; and (3) automated aggrega-
tion of results into quality assurance reports. Be-
yond its technical contributions, LogiDebrief has
demonstrated real-world impact. Successfully de-
ployed at Metro Nashville Department of Emer-
gency Communications, it has assisted in debrief-
ing 1,701 real-world calls, saving 311.85 hours of
active engagement. Empirical evaluation with real-
world data confirms its accuracy, while a case study
and extensive user study highlight its effectiveness
in enhancing call-taking performance.

1 Introduction
Emergency response services are vital to public safety, with
9-1-1 call-takers as the first point of contact in crises, directly
influencing response times and life-saving outcomes. Given
their critical role, maintaining high performance is essen-
tial. To ensure consistency, emergency communication cen-
ters implement quality assurance programs that evaluate call-
taker performance, enforce protocols, and provide actionable

1More details: https://meiyima.github.io/angie.html

feedback. These programs use call reviews, guidecard cross-
referencing, and protocol verification to enhance efficiency
and emergency response effectiveness.

Despite their critical role, quality assurance programs
across the U.S. face challenges in providing timely feed-
back due to high call volumes and limited resources [Ma
et al., 2018]. For example, during peak periods in 2024,
the NYC Fire Department handled up to 6,500 emergency
calls daily [NY, 2025], straining quality assurance person-
nel. As urban populations grow and emergency call vol-
umes rise, these challenges intensify [Ma et al., 2019; Ma
et al., 2020a]. Funding shortages and staffing constraints fur-
ther hinder timely quality reviews [Afonso, 2021]. Timely
feedback is essential for effective quality assurance [Adark-
wah, 2021]. Delays reduce relevance, making it harder for
call-takers to recall key details, address performance gaps,
and reinforce best practices. Without prompt debriefing,
quality assurance programs risk becoming bottlenecks, de-
laying critical insights needed to improve call-taker training
and emergency response. If unaddressed, these challenges
may compromise 9-1-1 call centers’ ability to maintain high-
performance standards, ultimately affecting response times
and life-saving interventions.

Given these demands, an automated system is urgently
needed for effective emergency call debriefing. While LLMs
have advanced natural language processing [Rouzegar and
Makrehchi, 2024], their application in this domain presents
significant challenges. Our preliminary trials identify three
key challenges: (1) Step-by-step reasoning is crucial for
evaluating call-taker performance, as emergency calls require
strict procedural adherence. LLMs must not only understand
context but also apply structured reasoning. While In-Context
Learning (ICL) techniques, such as Chain-of-Thought (CoT)
prompting [Wei et al., 2022], improve reasoning, studies
show that LLMs still struggle with complex, high-stakes
decision-making [Miao et al., 2023; Huang et al., 2023;
Kambhampati, 2024]. Even advanced automatic reasoning
methods [Zelikman et al., 2022] exhibit weaknesses in sce-
narios requiring rigorous procedural verification [Wu et al.,
2024; McCoy et al., 2024]. (2) Cross-document retrieval
and reference remains another challenge. Call-takers rely on
many complicated procedural documents, including guide-
cards, policies, and emergency protocols. While Retrieval-
Augmented Generation (RAG) [Lewis et al., 2020] assists

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

by fetching external documents, its accuracy is inconsis-
tent, often retrieving outdated or irrelevant information and
struggling with multi-document synthesis [Shi et al., 2023;
Shuster et al., 2022]. Retrieval failures can result in miss-
ing critical protocols, significantly impacting evaluation. (3)
The complex nature of emergency calls further complicates
debriefing, as a single call may span multiple protocols (e.g.,
a motor vehicle accident may begin under police protocols
but escalate to medical and fire due to injuries or hazards).
Some calls exceed 20 minutes, making evaluation even more
challenging. Combining ICL and RAG often results in ex-
cessively long prompts that exceed optimal context windows.
Empirical studies [Weng et al., 2024; Dong et al., 2024;
An et al., 2024; Kuratov et al., 2024] show that longer
prompts degrade performance, leading to incomplete reason-
ing, ignored context, and lower factual consistency, as illus-
trated in Figure 1.

In this paper, we introduce LogiDebrief, the first frame-
work, to our knowledge, designed to automatically and effec-
tively assist in 9-1-1 call-taking debriefing. LogiDebrief in-
tegrates logic-enhanced reasoning with LLMs’ language un-
derstanding, providing an effective approach to evaluating
call-taker performance. Unlike traditional ICL methods that
rely on lengthy prompts, LogiDebrief first collaborates with
domain experts to decompose call-taking requirements into
signal-temporal logic (STL) specifications [Maler and Nick-
ovic, 2004]. During runtime checking, LLMs function as in-
dependent evaluators within STL to verify compliance. Once
verification is complete, LogiDebrief aggregates results, gen-
erates quality assurance forms, and delivers actionable feed-
back with tailored explanations. This automated, just-in-time
debriefing process enhances call-taker training and improves
emergency response effectiveness.

Our technical innovations and contributions are: (1) We
introduce LogiDebrief, a novel framework that automates 9-
1-1 call-taking debriefing by integrating rigorous logic-based
verification with LLM-powered analysis. (2) We decompose
and formalize call-taking manuals into logic specifications
through expert collaboration, ensuring standardized proce-
dural verification, and improving consistency and reliability
in 9-1-1 call debriefing. (3) We design an STL-integrated
framework that seamlessly integrates LLMs as modular func-
tions, enhancing procedural compliance while reducing the
reliance on complex and lengthy prompts. (4) We empirically
evaluate LogiDebrief’s performance through extensive exper-
iments with real-world data, demonstrating its effectiveness
in delivering accurate and reliable debriefing assessments. (5)
We conduct a real-world case study and a user study under
practical deployment. The findings confirm that LogiDebrief
is an effective tool for improving call-taking performance and
training in emergency response settings.

Beyond its technical advancements, LogiDebrief delivers
significant social impact: (1) Developed in collaboration
with researchers and governmental agencies, LogiDebrief has
been successfully deployed at Metro Nashville Department of
Emergency Communications (MNDEC). It is now integrated
into training programs for both active call-takers and trainees.
(2) To date, it has assisted in debriefing 1,701 real-world calls,
saving an estimated 311.85 working hours. (3) It facilitates

debriefing for more than 200 call scenarios, covering various
responder departments, call types, and life-threatening situa-
tions. (4) LogiDebrief has the potential to scale nationwide,
offering automated debriefing solutions to emergency com-
munication centers, particularly those operating in resource-
constrained environments.

2 Motivating Study
Through discussions with MNDEC and a manual review of
1,244 past calls and debriefing results, we identified critical
limitations in current 9-1-1 call center practices.
Insufficient Call Review Coverage and Delayed Feedback
Emergency dispatch centers manage overwhelming call vol-
umes daily, making comprehensive quality reviews increas-
ingly difficult. At the local level, only 3.32% of calls undergo
manual review, covering approximately 2,000 to 2,300 calls
per month. Nationwide, review rates often remain below 10%
due to resource constraints [Ma et al., 2019]. Debriefing a
single call takes an average of 11.5 minutes, leading to back-
logs that delay actionable insights and further strain quality
assurance personnel.

Figure 1: Message Length vs. One-shot Solve Rate with Llama 3.2.
This figure shows the relationship between prompt length (in tokens)
and solve rate, segmented by primary call categories (Medical, Fire,
and Police). Shaded regions indicate standard deviations.

Challenges in LLM-Based Debriefing Workflows We eval-
uated debriefing workflows using real-world samples with re-
cent LLMs, including Llama 3.2 [Meta, 2024], integrating
ICL and RAG. Forwarded messages included step-by-step in-
structions, learning examples, and vectorized call-taking re-
quirements. Our analysis compared LLM-generated debrief-
ing results to ground truth while assessing performance rela-
tive to message length. As shown in Figure 1, calls typically
generate 1,800 to 3,000 tokens, where performance drops ap-
proximately from 78% to 42%, with long-tail cases falling
to 10%. These results underscore the challenge of maintain-
ing accuracy as call scenarios grow more intricate and in-
volve broader procedural references and checks, as they are
also consistent with [Weng et al., 2024; Dong et al., 2024;
An et al., 2024; Kuratov et al., 2024].

3 Problem Formulation and System Overview
Call debriefing evaluates emergency call-handling perfor-
mance by reviewing past calls for protocol adherence, en-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

suring compliance, identifying improvements, and enhanc-
ing emergency response. A robust framework must account
for conversational dynamics, filter relevant requirements, and
assess procedural adherence objectively. LogiDebrief au-
tomates this by interpreting call context, filtering irrelevant
requirements, verifying compliance, and aggregating results
into a quality assurance form with clear, standardized feed-
back. Following this, we formulate the 9-1-1 call debrief-
ing problem. A 9-1-1 call is a structured dialogue be-
tween call-taker (a) and caller (b), represented as: ω(ab) :=
⟨a1, b1, a2, b2, . . . , at, bt⟩. Where t is the number of the con-
versational turns, the call-taker’s utterances and caller’s ut-
terances are defined correspondingly as, ω(a) := ⟨a1, . . . , at⟩
and ω(b) := ⟨b1, . . . , bt⟩. 9-1-1 call-taking documents contain
requirements R = {r1, r2, . . . , rp}. that call-takers must
meet while handling an emergency call. Any ri ∈ {⊤,⊥}
is a predicate. ri is associated with a set of preconditions
{Pi | ri}. Only when the entire Pi holds given a con-
versational signal ω, formally, I(Pi | ri), will the corre-
sponding ri be applied for checks. The quality assurance
forms Ψ is based on the responder departments required for
an emergency call, including fire, police, and medical. Each
Ψ consists of multiple checks Ψ = {φ1, φ2, . . . , φk}. And
∀φ ∈ Ψ, φ ∈ {Yes,No, (Caller) Refused,NA}. Any φ is
aggregated from multiple associated requirements, formally
written as φ = F(R), where F is the aggregation function,
and R = {r1, r2, . . . } with each ri inferred from its precon-
dition Pi.

4 Methodology
This section outlines LogiDebrief’s workflow for 9-1-1 call
debriefing. It systematically analyzes past calls against pro-
cedural guidelines, integrating formalized call-taking require-
ments (Section 4.1) with runtime monitoring (Section 4.2) to
ensure compliance and identify gaps. LogiDebrief follows
a 3-step runtime checking process: (1) Establishing context
by identifying responders, call types, and critical situations
while filtering inapplicable checks (Section 4.2.1). (2) Con-
ducting runtime verification through logic-based rules to as-
sess procedural adherence (Section 4.2.2). (3) Aggregating
results into a quality assurance form, highlighting compli-
ance, deviations, and actionable feedback for training (Sec-
tion 4.2.3).

4.1 Formalizing Call-taking Requirements
Through discussions with the quality assurance team at MN-
DEC, we systematically reviewed and reconstructed exist-
ing call-taking requirements with domain expertise. By
analyzing each requirement, we identified and formalized
2,215 distinct requirements, each specifying its precondi-
tions. These span 57 general 9-1-1 call types, including
heart problems, drowning, structure fires, and burglary, as
well as six critical life-threatening protocols: airway con-
trol, Automated External Defibrillator (AED) usage, bleed-
ing control, Cardiopulmonary Resuscitation (CPR), child-
birth, and obstructed airways. Requirements were decom-
posed into STL specifications with preconditions using exist-
ing translation tools [Chen et al., 2022a; Chen et al., 2023;

Chen et al., 2022b]. For instance, in an animal bite case, if
and only if the patient was bitten by a snake, the call-taker
should instruct the caller not to elevate the extremity; oth-
erwise, elevation is advised. This is formally expressed as
✸[0,T ] “call-taker should warn caller not to elevate the ex-
tremity,” with precondition p1 ∧ p2, where p1 represents “the
caller reporting an animal bite,” and p2 denotes “the patient
was bitten by a snake.”

4.2 STL-Based Runtime Monitoring with LLMs
We disentangle lengthy procedural explanations and retrieval
augmentations in prompts by embedding independent mod-
ularized LLM calls as functions into STL. This approach ex-
tends STL’s rigor, interpretability, and effectiveness [An et
al., 2025; Ma et al., 2020a; Ma et al., 2020b; Ma et al., 2021]
while reducing prompt complexity. Runtime examples are in
Table 1. These functions operate over the conversational sig-
nal ω, enabling dynamic reasoning for assessing call-taking
compliance. The debriefing process follows three key steps:
(1) understanding the context, (2) runtime checking, and (3)
aggregating results.

Step 1: Understanding the Context
Understanding the context of a 9-1-1 call is crucial for pro-
cedural adherence. Each emergency requires a structured as-
sessment, including identifying responder departments, clas-
sifying the incident type, and recognizing life-threatening
situations requiring immediate intervention. These factors
shape the call-taker’s approach, determining the sequence of
questions, instructions, and protocols.
Determining the Responders The first step in contextualizing
a call is identifying the required responders, denoted as R̂.
Emergency services, fire, police, and medical, are analyzed
independently for relevant indicators. We define the SCENE
function, which returns ⊤ if a relevant scene description is
detected and ⊥ otherwise:

SCENE(ω, responders) := ✸[0,T ]

(
ω(t) |= responders

)︸ ︷︷ ︸
LLM Prompts

(1)

Iterating through the three categories, the system obtains all
applicable responders:

∀r ∈ {fire, police,medical}, SCENE(ω, r)→ R̂ ∪ {r}
(2)

The final set R̂ includes all departments where the function
evaluates to ⊤, ensuring accurate identification of required
emergency services.
Identifying the Call Types After determining the required re-
sponders, the next step is to classify the call type, such as
structure fires or heart problems, denoted as T̂. Instead of
evaluating all incident types indiscriminately, classification is
conditioned on the identified responders. We define the TYPE
function, which classifies the call by analyzing its semantic
context. It returns ⊤ if sufficient evidence supports the spec-
ified call type and ⊥ otherwise:

TYPE(ω, type) := ✸[0,T ]

(
ω(t) |= type

)︸ ︷︷ ︸
LLM Prompts

(3)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Overview of the LogiDebrief Workflow. It evaluates call-taker performance by analyzing past calls against formalized requirements.
It extracts conversational signals ω(a) and ω(b) from past calls, then applies quality assurance evaluation (QAE) checks. During runtime
monitoring with LLMs, it finalizes applicable checks based on call context, checks the compliance of each check, and aggregates results into
a quality assurance form with actionable template-based feedback.

The system iterates over call types relevant to the confirmed
responders:

∀t ∈ Call Types | R̂, TYPE(ω, t)→ T̂ ∪ {t}. (4)

Thus, only incident types relevant to the identified responder
departments are considered. E.g., if only police response is
required, fire- or medical-related incidents such as structure
fires or diabetic emergencies are excluded. The final result
includes all incident types where the function evaluates to ⊤,
ensuring accurate classification.
Alerting Critical Situations Following up, LogiDebrief iden-
tifies predefined life-threatening situations requiring imme-
diate intervention. Each of the 6 critical conditions, airway
control, AED, bleeding control, CPR, childbirth, and ob-
structed airways, is analyzed independently. We define the
CRITICAL function to check if any of these conditions ap-
ply to a given call ω:

CRITICAL(ω, flag) := ✸[0,T ]

(
ω(t) |= flag

)︸ ︷︷ ︸
LLM Prompts

(5)

This process is formally expressed as:

∀c ∈ Criticals×6, CRITICAL(ω, c)→ Ĉ ∪ {c} (6)

where Ĉ represents the set of flagged critical situations.
LogiDebrief iterates through all six conditions, ensuring that
any applicable life-threatening scenario is detected and ap-
propriate emergency protocols are triggered without delay.
Finalizing Checks After determining R̂, T̂, and Ĉ, LogiDe-
brief finalizes checks. These checks dynamically adjust based
on scene information denoted as Γ(.); e.g., medical-related

forms verify patient assessment, while police-related forms
ensure scene safety.

Ψ = Γ(R̂), Ψ = {φ1, φ2, . . . , φk} (7)

While scene information defines the form’s structure, refine-
ments based on T̂ and Ĉ update specific requirements with-
out introducing new structural checks. Each check φ in Ψ
is linked to a set of requirements {r1, r2, . . . }, which adapt
based on the emergency scenario:

∀φ ∈ Ψ, φ← φ⊕∆(T̂, Ĉ) (8)

where ⊕ updates requirements using relevant call-taking
manuals while preserving form structure. ∆(T̂, Ĉ) applies
context-specific refinements; e.g., a cardiac arrest call up-
dates breathing assessments to explicitly verify chest com-
pressions. After applying ⊕∆(T̂, Ĉ) to each φ ∈ Ψ, the final
quality assurance form Ψ is obtained.

After obtaining Ψ, we iterate through each φ ∈ Ψ to
check compliance. For each φ, we retrieve its associated re-
quirements {r1, r2, . . . , ri} and corresponding preconditions
{P1,P2, . . . ,Pi}. To facilitate this process, we define the
SCAN function, which verifies whether a precondition holds
in ω. It returns ⊤ if the condition is met at any time t within
the observation window, and ⊥ otherwise:

SCAN(ω, precondition) := ✸[0,T ]

(
ω(t) |= precondition

)︸ ︷︷ ︸
LLM Prompts

(9)
The overall precondition evaluation is represented as:

∀p ∈ {P | r, ∀r ∈ φ}, SCAN(ω, p) (10)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

φaddress: Address Check
r1: call-taker asked for address in first τ1 turns. ✸≤[0,τ1]DETECT(ωa, ‘ask address’)

r2: caller provided a valid address. ✸[0,T ]

(
DETECT(ωb, ‘provide address’)∧

veri add(answer(ωb, ‘what’s the address?’))
)

r3: call-taker verified the obtained address with nearby geo-info.
✷[0,T ]

(
DETECT(ωb, ‘provide address’) ∧ veri add(answer(ωb, ‘what’s the address?’))→

✸≤τ

(
DETECT(ωa, ‘double checks address’)∧

veri add(answer(ωa, ‘what’s address?’),answer(ωb, ‘what’s address?’))
))

r4: call-taker verified the address again before getting disconnected. ✸[T−τ2,T ]

(
DETECT(ωa, ‘double checks address’)∧

veri add(answer(ωa, ‘what’s address?’))
φname: Caller Name Check & φphone: Caller Phone Check
r1: call-taker asked for both first and last name / phone number. ✸[0,T ]

(
DETECT(ωa, ‘ask for full name / phone number’)

r2: caller provided both first and last name / phone number. ✸[0,T ]

(
DETECT(ωb, ‘provide full name / phone number’)

r3: call-taker followed up with caller’s name / phone number. ✷[0,T ]

(
DETECT(ωb, ‘provides name / phone’)→

✸≤τ1DETECT(ωa, ‘follows up on name / phone’)
)

φi ∈ Ψ: Conditional Checks
r1: if the scene is potentially not safe for police officers,
call-taker obtained scene safety info. ✸≤[0,τ3]DETECT(ωab, ‘scene safety info obtained’)

r2: if the patient is an infant and not breathing,
call-taker should do [infant CPR: step 1, step 2, ...]. ✸≤[0,τ4]DETECT(ωa, ‘call-taker instructs [infant CPR: step 1, step 2, ...]’)

r3: if the call involves medical emergency,
call-taker should check if patient is breathing normally. ✸≤[0,τ5]DETECT(ωa, ‘checked patient breathing’)

r4: if there is any suspicious vehicle spotted on the scene,
call-taker should ask for detailed vehicle descriptions. ✸≤[0,τ6]DETECT(ωa, ‘asked for vehicle description’)

r5: if the roadway hazard is blocking the traffic, call-taker
should warn caller not to move the hazard by themselves. (✸≤[0,τ7]DETECT(ωa, ‘warn caller not to move the hazard’))

r6: if the caller reports an odor, call-taker should warn caller
to avoid using energized equipment that could cause a spark. ✸≤[0,τ8]DETECT(ωa, ‘warn caller not to use energized equipment’)

Table 1: A runtime example of both conditional and unconditional checks in natural languages and STL specifications. Each of
the conditional checks φ satisfies Equation 12. All τ are adaptable hyper-parameters for different call-taking requirements.

I(P | r) =
∧

p∈{P|r}

SCAN(ω, p) (11)

If the preconditions do not hold, requirement Ri is skipped
and excluded from runtime monitoring. Ultimately, a quality
assurance form Ψ should satisfy:

∀φ ∈ Ψ, ∀r ∈ φ I(P | r) = ⊤ (12)

Step 2: Checking the Runtime
We define functions to verify requirements. The DETECT
function checks whether a specific action occurs within the
conversation signal ω, returning ⊤ if detected at any time t
within the observation window and ⊥ otherwise:

DETECT(ω, action) := ✸[0,T ]

(
ω(t) |= action

)︸ ︷︷ ︸
LLM Prompts

(13)

Additional non-STL functions further analyze ω:

answer(ω, query)→ a. (14)

The answer function integrates LLMs for question-
answering, retrieving the most relevant response a from ω.
If no answer is found, it returns an empty string.

veri add(addresses)→ {⊤,⊥} (15)

The veri add function utilizes Google Geocoding and
Places API to validate addresses. If given an empty string,
it returns ⊤ by default. For a single address, it returns ⊤ if
successfully located on a map; otherwise, ⊥. For two ad-
dresses, it returns ⊤ if geographically close; otherwise, ⊥.
These functions are embedded in STL specifications for just-
in-time runtime verification after each call. Examples of their
integration are shown under each φ in Table 1.

Step 3: Aggregating the Results
After having satisfaction for each ri ∈ R, we aggregate the
result to populate:

φ← F(R), φ ∈ {Yes,No,Refused,NA} (16)

This aggregation step is instructed back to trainees with
template-based natural language generation as explanations
for the populated results, e.g., “Your overall evaluation at this
check is NO, because you missed r.”
Unconditional Checks According to the call-taking manual,
three checks, φ1, φ2, φ3 in Table 1, are always examined re-
gardless of call context: address, caller name, and phone
number, each with distinct aggregation rules.

The address check categorizes verification performance
into three outcomes: (1) Yes: The call-taker successfully re-
quests (r1), verifies (r3), and reconfirms (r4) the address, and
the caller provides a valid one (r2). For example, if a geocod-
able location is confirmed before call termination, the out-
come is Yes. (2) No: The call-taker fails to ask for (r1), verify
(r3), or reconfirm (r4) the address, regardless of caller re-
sponse. If geographical verification is neglected, the call is
classified as No. (3) Refused: If the caller explicitly refuses
to provide an address (r2), the outcome is Refused, as the fail-
ure is beyond the call-taker’s control, e.g., a distressed caller
declining to disclose their location. Formally:

φaddress =


Yes, if r1 ∧ r2 ∧ r3 ∧ r4
No, if ¬r1 ∨ ¬r3 ∨ ¬r4
Refused, if ¬r2

(17)

The outcomes of caller name and phone checks classify the
call-taker’s performance in collecting caller identity into three
categories: (1) Yes: The call-taker correctly requests (r1),
receives (r2), and follows up on (r3) the caller’s name and
phone number, ensuring full compliance. For example, if all
details are requested, provided, and confirmed, the outcome

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

is Yes. (2) No: The call-taker fails to request (r1) or follow
up (r3) on the information, regardless of whether the caller
provides it. If verification is omitted, the call is classified as
No. (3) Refused: The caller explicitly refuses to provide their
name or phone number (r2), making the failure beyond the
call-taker’s control, e.g., a caller declining to disclose their
identity despite multiple requests. Formally:

φname, φphone =


Yes, if r1 ∧ r2 ∧ r3
No, if ¬r1 ∨ ¬r3
Refused, if ¬r2

(18)

Conditional Checks The outcome of any conditional checks
φi depends on the satisfaction of all monitored requirements
ri: (1) Yes: All applicable conditional checks are met, mean-
ing every monitored ri returns ⊤. For example, if the scene
was unsafe (r1) and the call-taker obtained scene safety infor-
mation, the outcome is Yes. (2) No: At least one monitored
requirement fails (ri = ⊥). For instance, if a medical emer-
gency is detected (r3), but the call-taker fails to check the
patient’s breathing, the outcome is No. (3) NA: No require-
ments were monitored due to unsatisfied preconditions.

φi =


Yes, if ∀r ∈ φi, r = ⊤
No, if ∃r ∈ φi, r = ⊥
NA, if φi = ∅

(19)

5 Evaluation
LogiDebrief is a pioneering AI-driven system designed to au-
tomate 9-1-1 call debriefing. Given its novelty, limited litera-
ture exists to guide its evaluation. To ensure a comprehensive
assessment, we evaluate its effectiveness through both quanti-
tative benchmarking and real-world case studies. In addition,
we conducted a user study to further assess its impact on en-
hancing call-taking performance.

Quantitatively, we investigate how effectively LogiDebrief
debriefs 9-1-1 calls. We first evaluate LogiDebrief on 1,244
real-world calls with debriefing results provided by quality
assurance experts at MNDEC. However, since professional
9-1-1 operators handle these calls, errors are rare, potentially
leading to an inflated false positive rate. Additionally, this
dataset lacks coverage of rare but critical incidents (e.g., air-
craft crashes, nuclear leaks). To address these limitations,
we construct a diverse dataset encompassing various call
types and call-taker proficiency levels: (1) Defining all re-
quirements with their preconditions (e.g., snake vs. non-
snake bites); (2) Using LLMs to generate simulated 9-1-1
reports under role-play [Chen et al., 2025]; and (3) Interact-
ing with controlled actions [Chen et al., 2024b] where call-
takers access only a percentage (α) of requirements. Those
scripted actions also generate the ground truth. Here, α rep-
resents familiarity level; higher α values indicate greater ad-
herence to required actions. For instance, in an animal bite
emergency, a scripted call-taker may fail to ask about the
animal type if “What type of animal caused the bite?” is
masked. We set α = 25, 50, 75 to simulate varying profi-
ciency levels, totaling 13,200 calls with corresponding qual-
ity assurance forms. Performance is reported with F-1 scores

for {Yes,No,Refused,NA} after multi-fold validation. Pro-
prietary LLMs (GPT-4o, DeepSeek-v3-671B) and reasoning
models (OpenAI-o1) are tested via API, while open-source
and smaller LLMs run with 128 GB RAM, AMD Ryzen
Threadripper Pro 7975WX, and NVIDIA RTX 6000 Ada.

Qualitatively, we focus on how effectively LogiDebrief en-
hances call-taking performance in real-world settings. To
assess this, we conduct a case study at MNDEC. Additionally,
we conducted a user study to further validate LogiDebrief’s
effectiveness in enhancing call-taker training. See complete
user study result in the Appendix [Chen and Ma, 2025].

5.1 Effectiveness in Call Debriefing
We evaluate LogiDebrief’s performance following baseline
setups: (1) Vanilla LLMs, where the full quality assurance
form Ψ (Eq. 8) is provided as input, and responses are
generated directly. (2) LLMs with RAG, utilizing vector-
ized call-taking manuals as knowledge bases without logi-
cal structuring. (3) LLMs with RAG+ICL, combining RAG
with Chain-of-Thought reasoning and Few-Shot examples
for procedural explanations. (4) Reasoning frameworks
tested with necessary step-by-step instructions. We evalu-
ate these setups using available LLM backends (Llama3.2-
3B [Meta, 2024], Gemma2-9B [Google, 2024], DeepSeek-
v3-671B [DeepSeek, 2024], and GPT-4o [OpenAI, 2024a])
and Reasoners (OpenAI-o1-2024-12-17 [OpenAI, 2024b]
and DeepSeek-r1 [DeepSeek, 2025]).

Tab. 2 presents key insights across real-world and emu-
lation scenarios: (1) Vanilla LLMs underperform, with F1
scores below 40% (e.g., Llama 3.2 Vanilla: 37.11±16.93
in unconditional checks). This confirms that call debriefing
requires multi-step validation and logical reasoning, which
standard LLMs struggle with. Even RAG, which incorpo-
rates call-taking manuals, provides minimal improvement
(e.g., Llama 3.2 RAG: 40.99±13.72), as manuals contain
static rules without reasoning mechanisms, limiting general-
ization beyond simple lookups. (2) ICL+RAG improves step-
by-step reasoning and serves as the strongest LLM-based
alternative for procedural verification. Thus, we consider
it an approximation of LogiDebrief without STL. However,
lacking explicit logical constraints, it remains prone to rea-
soning errors, particularly in strict procedural checks (e.g.,
GPT-4o ICL+RAG: 87.78±10.79). (3) Reasoning models
provide only marginal improvements, with DeepSeek-r1 and
OpenAI-o1 achieving 88.21±9.79 and 86.84±10.18, respec-
tively. While they exhibit better problem comprehension,
they lack procedural enforcement. LogiDebrief surpasses
all baselines by integrating STL, ensuring rigorous protocol
adherence beyond what LLMs alone can achieve. Overall,
LogiDebrief outperforms all baselines across real-world and
emulation datasets, demonstrating that integrating formal-
ized logic with LLM reasoning yields the most effective call
debriefing performance.

5.2 Case Study: LogiDebrief in the Field
We conducted a case study of LogiDebrief under its 4-week
active engagement at MNDEC (Nov 2024 – Jan 2025) un-
der daily use and 2 training sessions. In the study, LogiDe-
brief cross-reviewed 1,244 calls alongside human debriefing

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

REAL-WORLD
EMULATION

α =25 α =50 α =75
∀φ ∈ Ψ

Ψ
∀φ ∈ Ψ

Ψ
∀φ ∈ Ψ

Ψ
∀φ ∈ Ψ

Ψ
Unconditional Conditional Unconditional Conditional Unconditional Conditional Unconditional Conditional

T y
pi

ca
lL

L
M

s

Llama 3.2
Vanilla 37.11±16.93 36.24±16.10 7.12±5.03 29.51±8.01 31.69±4.36 8.97±7.57 25.12±9.23 32.23±10.72 7.90±6.47 35.62±17.17 32.50±9.82 8.85±7.03
RAG 40.99±13.72 36.04±17.09 10.85±7.17 34.04±9.49 31.51±8.37 8.66±3.27 30.29±12.39 28.22±9.43 9.56±5.79 34.19±13.27 29.88±10.61 7.71±6.70

ICL+RAG 75.39±14.33 78.24±13.33 26.85±15.89 71.73±8.94 74.12±7.53 20.60±14.14 81.17±9.15 77.61±11.11 22.06±14.14 73.13±18.29 78.09±11.64 24.11±12.87

Gemma 2
Vanilla 37.81±17.15 27.56±12.45 11.62±7.49 36.94±9.20 31.10±11.05 9.44±3.00 34.89±13.94 39.38±9.76 11.08±10.82 41.43±15.11 45.61±11.78 11.18±6.55
RAG 38.16±15.90 29.52±11.06 11.50±10.64 39.93±11.75 33.38±12.73 8.73±7.73 32.37±11.66 34.14±15.15 14.19±8.32 42.89±17.86 44.75±12.58 10.53±7.22

ICL+RAG 71.88±15.94 73.91±14.55 30.97±11.22 72.05±9.95 73.91±13.81 25.18±14.14 72.61±15.03 73.69±10.12 25.81±11.58 69.82±10.23 68.43±12.64 23.18±9.57

DeepSeek-v3
Vanilla 45.22±15.29 52.47±14.51 11.57±6.44 48.32±19.53 50.41±13.64 12.74±11.59 43.71±13.09 46.53±11.98 11.54±7.74 48.53±13.77 45.00±14.59 13.13±9.45
RAG 59.75±11.39 57.49±18.66 19.11±8.34 53.64±16.84 58.24±17.61 12.68±8.89 56.29±11.46 57.97±18.12 13.40±7.38 57.74±13.76 56.27±12.11 15.97±8.96

ICL+RAG 86.21±12.95 87.29±11.93 55.21±2.31 86.55±13.33 87.95±10.05 52.67±13.47 84.49±13.95 85.82±12.87 54.54±9.43 86.19±11.71 84.99±14.39 55.08±7.49

GPT-4o
Vanilla 41.60±15.26 52.59±13.72 10.54±8.87 54.50±17.05 55.72±11.90 12.00±8.20 54.24±10.36 56.43±11.17 13.93±9.45 55.40±16.62 59.41±11.14 12.95±4.25
RAG 54.51±18.10 58.16±17.81 17.23±7.03 56.67±13.98 61.83±14.50 21.54±10.52 62.84±10.49 59.52±12.19 15.49±6.72 56.57±15.54 57.15±12.14 16.93±6.81

ICL+RAG 88.16±10.65 87.78±10.79 58.91±13.14 88.31±11.58 87.03±11.79 57.13±13.98 85.02±13.71 85.79±12.57 54.13±14.46 87.11±12.04 84.60±14.76 53.16±13.84

Reasoners
Deepseek-r1 86.84±10.18 87.75±7.58 60.50±12.44 88.88±10.62 87.76±11.83 60.20±14.48 86.57±13.19 86.23±11.67 58.91±12.10 86.09±11.33 85.24±12.44 55.22±14.80
OpenAI-o1 88.21±9.79 89.83±8.17 63.74±10.11 87.63±12.37 88.75±11.25 59.62±15.13 87.50±12.50 89.33±10.22 60.93±17.83 88.45±11.55 87.63±10.37 58.52±16.11

LogiDebrief

Llama 3.2 81.30±4.02 88.62±7.63 58.80±6.40 87.90±3.13 88.78±6.33 54.33±9.05 85.52±5.02 87.22±7.11 50.12±6.46 84.51±3.21 87.96±6.33 51.52±5.76
Gemma 2 77.75±4.16 80.78±6.12 59.24±2.35 78.29±4.88 79.70±4.49 52.40±6.08 80.45±4.10 81.11±5.00 51.49±2.71 78.15±3.61 80.98±3.52 52.24±8.14

DeepSeek-v3 92.63±5.08 90.89±4.05 84.75±5.25 93.90±4.10 91.43±5.94 86.36±6.14 92.68±6.51 90.86±5.33 82.25±6.35 91.10±4.38 91.70±2.47 83.06±5.51
GPT-4o 95.93±4.07 94.40±5.60 94.33±5.67 94.39±5.61 95.07±4.93 94.84±5.16 95.45±4.55 95.38±4.62 94.62±5.38 94.49±5.51 95.61±4.39 94.04±5.96

Table 2: Evaluation of LogiDebrief with REAL-WORLD and EMULATION data compared with baselines. α is call-taker ‘proficiency levels’:
α percentage of the required actions are taken during the scripted emulation. At the φ level, performance is evaluated per check φ. At the Ψ
level, a response is counted as correct only if the entire set is populated accurately. Performance is reported in multi-fold F-1 scores as %.

and independently analyzed 457 calls. A total of 29 partici-
pants contributed, including 16 trainees, 5 active call-takers,
and 8 training/quality assurance officers, providing 37 feed-
back entries. We share the following findings: (1) Timeli-
ness. Traditional quality assurance feedback is provided at
the end of a shift, making it difficult for call-takers, who han-
dle over 80 calls daily, to recall specific interactions. This
delay reduces evaluation effectiveness and limits immediate
skill reinforcement. LogiDebrief delivers just-in-time feed-
back, generating quality assurance reports in under 6 seconds
per minute of call audio. Compared to the 11.5-minute man-
ual review process, it reduces evaluation time to 4.45% (<30
seconds) per call while maintaining accuracy, saving over es-
timated 311 working hours. A quality assurance officer noted:
“The feedback was quick and spot-on. It even caught the
mistakes I made on purpose. This can really save a lot of
time.” (2) Higher Coverage. LogiDebrief boosted call re-
view coverage by 73.96% to 85.05%, processing 1,701 more
calls compared to previous 2,000 to 2,300 per 4 weeks under
human efforts. (3) Comprehensiveness. Traditional quality
assurance often emphasizes errors without reinforcing cor-
rect practices. Feedback can be generic, making it harder for
call-takers to extract actionable insights. LogiDebrief pro-
vides balanced assessments, highlighting both strengths and
areas for improvement. Its STL-enhanced check offers step-
by-step guidance, clarifying why specific actions were correct
or required adjustment. One call-taker shared: “It walked me
through step by step instead of just flagging mistakes, so I
knew exactly what went wrong and how to fix it.” In sum-
mary, LogiDebrief enhances call-taking performance by pro-
viding timely, accurate, and actionable feedback. By reduc-
ing evaluation time, increasing review coverage, and improv-
ing instructional clarity, it supports continuous learning and
strengthens procedural consistency in emergency response.

6 Related Work
Automated debriefing is well-studied in education and med-
ical training, where structured feedback enhances skill devel-
opment. Intelligent tutoring systems provide adaptive feed-

back for language learning, STEM education, and problem-
solving but focus on static assessments rather than real-time
procedural evaluation [Graesser et al., 2012]. In medical
training, AI-assisted tools assess procedural adherence in
surgical simulations and emergency medicine [Toews et al.,
2021]. However, emergency call-taking remains largely over-
looked despite its need for timely feedback. Large Lan-
guage Models for procedural checks face reliability chal-
lenges. Chain-of-Thought prompting [Wei et al., 2022] im-
proves reasoning but does not ensure strict adherence, lead-
ing to hallucinations and missing steps [Turpin et al., 2024;
Ling et al., 2024]. Retrieval-Augmented Generation (RAG)
[Lewis et al., 2020] improves factual accuracy but cannot
guarantee retrieving relevant procedural guidelines, making
it unreliable for high-stakes verification [Chen et al., 2024a;
Wang et al., 2024]. Self-verification improves consistency
but lacks procedural rigor [Zelikman et al., 2022; Chung et
al., 2024], while longer prompts degrade multi-step proce-
dural integration [Weng et al., 2024]. More robust verifica-
tion is needed. Extended related work is available in the Ap-
pendix [Chen and Ma, 2025].

7 Summary

In this paper, we introduce LogiDebrief, the first AI-driven
framework for automating and assisting 9-1-1 call-taking de-
briefing. Integrating logic-driven procedural verification with
LLM-powered analysis, LogiDebrief enables rigorous call-
taker performance evaluation. Evaluation and case studies
confirm its effectiveness in debriefing real-world 9-1-1 calls
and enhancing call-taking performance.

This work can support emergency communication centers
with limited resources by assisting with quality assurance
and reducing manual debriefing burdens. With over 6,000
emergency communication centers across the US, it offers an
effective approach for call-taker performance enhancement.
Beyond emergency response, LogiDebrief’s framework can
potentially extend to structured compliance audits in other
training spaces, such as medical triage and law enforcement.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported in part by the U.S. National Sci-
ence Foundation under Grants 2427711 and 2443803, the
Google Academic Research Award, OpenAI Researcher Ac-
cess Program, and the U.S. Department of Education under
Grant R305C240010. The opinions, findings, conclusions, or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the spon-
soring agencies.
Stakeholder Discussion LogiDebrief was co-designed and
developed with Metro Nashville Department of Emergency
Communications (MNDEC). Their domain expertise directly
assisted in shaping the system’s design, from surfacing criti-
cal quality assurance gaps to co-specifying over 2,200 proce-
dural requirements in formal logic. Beyond problem framing,
MNDEC participated in refining runtime thresholds, validat-
ing output interpretations, and integrating the tool into ongo-
ing training. Beyond the reported 4-week case study, LogiDe-
brief continues to be used as part of MNDEC’s ongoing train-
ing and quality assurance workflows. The partnership transi-
tioned from initial prototyping to field deployment, establish-
ing a scalable model for AI-assisted quality assurance that
aligns with operational needs and is now being explored for
broader regional adoption.

References
[Adarkwah, 2021] Michael Agyemang Adarkwah. The

power of assessment feedback in teaching and learning: a
narrative review and synthesis of the literature. SN Social
Sciences, 1(3):75, 2021.

[Afonso, 2021] Whitney Afonso. Planning for the unknown:
Local government strategies from the fiscal year 2021 bud-
get season in response to the covid-19 pandemic. State and
Local Government Review, 53(2):159–171, 2021.

[An et al., 2024] Chenxin An, Jun Zhang, Ming Zhong, Lei
Li, Shansan Gong, Yao Luo, Jingjing Xu, and Lingpeng
Kong. Why does the effective context length of llms fall
short? arXiv preprint arXiv:2410.18745, 2024.

[An et al., 2025] Ziyan An, Xia Wang, Hendrik Baier,
Zirong Chen, Abhishek Dubey, Taylor T. Johnson,
Jonathan Sprinkle, Ayan Mukhopadhyay, and Meiyi Ma.
Combining LLMs with logic-based framework to explain
MCTS. In Proceedings of the 24th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2025), 2025.

[Chen and Ma, 2025] Zirong Chen and Meiyi Ma. Logide-
brief: Appendix and supplementary materials. https://
meiyima.github.io/angie.html, 2025. Accessed: 2025-05-
07.

[Chen et al., 2022a] Zirong Chen, Isaac Li, Haoxiang
Zhang, Sarah Preum, John A Stankovic, and Meiyi Ma.
Cityspec: An intelligent assistant system for requirement
specification in smart cities. In 2022 IEEE International
Conference on Smart Computing (SMARTCOMP), pages
32–39. IEEE, 2022.

[Chen et al., 2022b] Zirong Chen, Isaac Li, Haoxiang
Zhang, Sarah Preurn, John A Stankovic, and Meiyi Ma.
An intelligent assistant for converting city requirements
to formal specification. In 2022 IEEE International Con-
ference on Smart Computing (SMARTCOMP), pages 174–
176. IEEE, 2022.

[Chen et al., 2023] Zirong Chen, Isaac Li, Haoxiang Zhang,
Sarah Preum, John A Stankovic, and Meiyi Ma. Cityspec
with shield: A secure intelligent assistant for require-
ment formalization. Pervasive and Mobile Computing,
92:101802, 2023.

[Chen et al., 2024a] Jiawei Chen, Hongyu Lin, Xianpei Han,
and Le Sun. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pages 17754–17762, 2024.

[Chen et al., 2024b] Zirong Chen, Xutong Sun, Yuanhe Li,
and Meiyi Ma. Auto311: A confidence-guided automated
system for non-emergency calls. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pages 21967–21975, 2024.

[Chen et al., 2025] Zirong Chen, Elizabeth Chason, Noah
Mladenovski, Erin Wilson, Kristin Mullen, Stephen Mar-
tini, and Meiyi Ma. Sim911: Towards effective and equi-
table 9-1-1 dispatcher training with an llm-enabled simula-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 27896–27904, 2025.

[Chung et al., 2024] Hyung Won Chung, Le Hou, Shayne
Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma,
et al. Scaling instruction-finetuned language models. Jour-
nal of Machine Learning Research, 25(70):1–53, 2024.

[DeepSeek, 2024] DeepSeek. Deepseek-v3: Scaling open
large language models with moe, 2024.

[DeepSeek, 2025] DeepSeek. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning,
2025.

[Dong et al., 2024] Zican Dong, Junyi Li, Xin Men,
Wayne Xin Zhao, Bingbing Wang, Zhen Tian, Weipeng
Chen, and Ji-Rong Wen. Exploring context window of
large language models via decomposed positional vectors.
arXiv preprint arXiv:2405.18009, 2024.

[Google, 2024] Google. Gemma 2: Improving open lan-
guage models at a practical size, 2024.

[Graesser et al., 2012] Arthur C Graesser, Mark W Conley,
and Andrew Olney. Intelligent tutoring systems. American
Psychological Association, 2012.

[Huang et al., 2023] Jie Huang, Xinyun Chen, Swaroop
Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

[Kambhampati, 2024] Subbarao Kambhampati. Can large
language models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15–18, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://meiyima.github.io/angie.html
https://meiyima.github.io/angie.html


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Kuratov et al., 2024] Yuri Kuratov, Aydar Bulatov, Petr
Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin,
and Mikhail Burtsev. Babilong: Testing the limits of llms
with long context reasoning-in-a-haystack. arXiv preprint
arXiv:2406.10149, 2024.

[Lewis et al., 2020] Patrick Lewis, Ethan Perez, Aleksan-
dra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Infor-
mation Processing Systems, 33:9459–9474, 2020.

[Ling et al., 2024] Zhan Ling, Yunhao Fang, Xuanlin Li,
Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao
Su. Deductive verification of chain-of-thought reasoning.
Advances in Neural Information Processing Systems, 36,
2024.

[Ma et al., 2018] Meiyi Ma, John A. Stankovic, and
Lu Feng. Cityresolver: A decision support system for
conflict resolution in smart cities. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (IC-
CPS), pages 55–64, 2018.

[Ma et al., 2019] Meiyi Ma, Sarah M Preum, Mohsin Y
Ahmed, William Tärneberg, Abdeltawab Hendawi, and
John A Stankovic. Data sets, modeling, and decision mak-
ing in smart cities: A survey. ACM Transactions on Cyber-
Physical Systems, 4(2):1–28, 2019.

[Ma et al., 2020a] Meiyi Ma, Ezio Bartocci, Eli Lifland,
John Stankovic, and Lu Feng. Sastl: Spatial aggrega-
tion signal temporal logic for runtime monitoring in smart
cities. In 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pages 51–62, 2020.

[Ma et al., 2020b] Meiyi Ma, Ji Gao, Lu Feng, and John
Stankovic. Stlnet: Signal temporal logic enforced mul-
tivariate recurrent neural networks. Advances in Neural
Information Processing Systems, 33:14604–14614, 2020.

[Ma et al., 2021] Meiyi Ma, John Stankovic, Ezio Bartocci,
and Lu Feng. Predictive monitoring with logic-calibrated
uncertainty for cyber-physical systems. ACM Trans. Em-
bed. Comput. Syst., 20(5s), September 2021.

[Maler and Nickovic, 2004] Oded Maler and Dejan Nick-
ovic. Monitoring temporal properties of continuous sig-
nals. In International symposium on formal techniques
in real-time and fault-tolerant systems, pages 152–166.
Springer, 2004.

[McCoy et al., 2024] R Thomas McCoy, Shunyu Yao, Dan
Friedman, Mathew D Hardy, and Thomas L Griffiths.
When a language model is optimized for reasoning, does it
still show embers of autoregression? an analysis of openai
o1. arXiv preprint arXiv:2410.01792, 2024.

[Meta, 2024] Meta. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models, 2024.

[Miao et al., 2023] Ning Miao, Yee Whye Teh, and Tom
Rainforth. Selfcheck: Using llms to zero-shot check
their own step-by-step reasoning. arXiv preprint
arXiv:2308.00436, 2023.

[NY, 2025] NY. FDNY Issue Brief, 2025. Accessed: 2025-
01-14.

[OpenAI, 2024a] OpenAI. Gpt-4o system card, 2024.
[OpenAI, 2024b] OpenAI. Openai o1 system card, 2024.
[Rouzegar and Makrehchi, 2024] Hamidreza Rouzegar and

Masoud Makrehchi. Enhancing text classification through
llm-driven active learning and human annotation. In The
18th Linguistic Annotation Workshop (LAW-XVIII) Co-
located with EACL 2024, page 98, 2024.

[Shi et al., 2023] Weijia Shi, Xiaodong Liu, Jing Shao,
Pengcheng Liu, Jiawei Han, and Jianfeng Gao. Replug:
Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023.

[Shuster et al., 2022] Kurt Shuster, Samuel Humeau, Jing
Xu, et al. Language models that seek for knowledge:
Modular search and generation for dialogue and prompt-
ing. arXiv preprint, 2022.

[Toews et al., 2021] Andrea J Toews, Donna E Martin, and
Wanda M Chernomas. Clinical debriefing: a concept anal-
ysis. Journal of clinical nursing, 30(11-12):1491–1501,
2021.

[Turpin et al., 2024] Miles Turpin, Julian Michael, Ethan
Perez, and Samuel Bowman. Language models don’t al-
ways say what they think: unfaithful explanations in chain-
of-thought prompting. Advances in Neural Information
Processing Systems, 36, 2024.

[Wang et al., 2024] Xiaohua Wang, Zhenghua Wang, Xuan
Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, et al. Searching
for best practices in retrieval-augmented generation. In
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 17716–17736,
2024.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur-
mans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits
reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[Weng et al., 2024] Yixuan Weng, Minjun Zhu, Fei Xia, Bin
Li, Shizhu He, Kang Liu, and Jun Zhao. Mastering sym-
bolic operations: Augmenting language models with com-
piled neural networks. In The Twelfth International Con-
ference on Learning Representations, 2024.

[Wu et al., 2024] Xiaoqian Wu, Yong-Lu Li, Jianhua Sun,
and Cewu Lu. Symbol-llm: leverage language models
for symbolic system in visual human activity reasoning.
Advances in Neural Information Processing Systems, 36,
2024.

[Zelikman et al., 2022] Eric Zelikman, Yuhuai Wu, Timothy
Novikoff, and Noah Goodman Li. Star: Bootstrapping rea-
soning with reasoning. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


