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Abstract

Voting advice applications (VAAs) help millions of
voters understand which political parties or candi-
dates best align with their views. This paper ex-
plores the potential risks these applications pose
to the democratic process when targeted by adver-
sarial entities. In particular, we expose 11 manip-
ulation strategies and measure their impact using
data from Switzerland’s primary VAA, Smartvote,
collected during the last two national elections.
We find that altering application parameters, such
as the matching method, can shift a party’s rec-
ommendation frequency by up to 105%. Cherry-
picking questionnaire items can increase party rec-
ommendation frequency by over 261%, while sub-
tle changes to parties’ or candidates’ responses can
lead to a 248% increase. To address these vulnera-
bilities, we propose adversarial robustness proper-
ties VAAs should satisfy, introduce empirical met-
rics for assessing the resilience of various matching
methods, and suggest possible avenues for research
toward mitigating the effect of manipulation. Our
framework is key to ensuring secure and reliable
Al-based VAAs poised to emerge in the near future.

1 Introduction

Recent advances in information technology have significantly
transformed our daily lives. One area that remains relatively
underexplored is digital democracy, which integrates digital
innovations into the political system. Among the most no-
table developments in this field is the emergence of Voting
Advice Applications (VAAs). VAAs provide voters with per-
sonalized recommendations on which parties or candidates
best align with their preferences and policy stances. VAAs
exist in as many as 30 countries across the world, including
the USA, Canada, Australia, as well as many European coun-
tries [Terdn, 2020]. Interestingly, the legal basis of VAAs
varies widely from country to country, ranging from publicly
governed and regulated entities to loosely controlled private
associations [Garzia and Marschall, 2012]. Strikingly, almost
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every country chooses a different method to match voters to
candidates [Louwerse and Rosema, 2014]. In countries where
VAAs are currently in use, they are often consulted by 10-
50% of voters [Terdn, 2020], making them a highly popular
source of information. On top of that, the advice provided
by these applications has been shown to significantly influ-
ence both voter turnout and voter decisions [Munzert and
Ramirez-Ruiz, 2021]. In Switzerland specifically, Germann
and Gemenis [2019] showed that the VAA mobilized 58,000
additional voters in 2007, while Ladner and Pianzola [2010]
reported that 67% of the users had stated that the VAA had
influenced their voting behavior. The profound impact of
VAAs has gone as far as triggering a shift from representative
to promissory democracy, in which VAA profiles are inter-
preted as electoral promises [Ladner, 2016]. This transition
occurred without requiring any changes to constitutional or
legal frameworks. While the benefits of VAAs are undeniable
and well-documented [Munzert and Ramirez-Ruiz, 2021], for
the first time, this study aims to shed light on their potential
vulnerabilities. Specifically, we seek to quantify the impact
that a hypothetical adversarial actor could have on the rec-
ommendations. Toward this goal, we focus our analysis on
Smartvote, Switzerland’s primary VAA. In 2023, Smartvote
was used by up to 20% of eligible Swiss voters, up from 17%
in 2011. In 2023, a total of 2.1 million voting advice reports
were created [Politools, 2024a]. Our contributions:

1. We propose three adversarial robustness properties for
VAAs. Namely, robustness against manipulation by (i)
candidates and parties, (ii) platform operators, and (iii)
question designers (Section 2).

2. We empirically demonstrate the importance of these ro-
bustness properties by leveraging two comprehensive
datasets collected by Smartvote during the Swiss na-
tional elections of 2019 and 2023. We uncover a total of
11 vulnerabilities through which adversaries could ma-
nipulate the recommendations (Table 1 and App. C).2

3. Based on the highest-risk vulnerabilities, we suggest 9
metrics to compare the adversarial robustness of existing
and newly proposed matching methods (Section 5).

4. Finally, with input from Politools, the non-profit organi-
zation behind Smartvote, we propose research directions
to mitigate these vulnerabilities, enabling the develop-
ment of more robust VAAs in the future (Section 6).
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Vulnerability Adversary Type Code Section Data Benefactors Visibility Likelihood Impact
Gain

Answer Optimization  Candidates AO 4.1 v - 259% Low

Answer Calibration Candidates AC 4.1 X ~ 248% -

Diversification Candidates (Party) DIV 4.1 X ~ 345% Medium

List Centralization Candidates (Party) LC App. C X i= - Low Low

Matching Method Platform operator MM 4.2 X NGy 105% Medium  Medium

Question Ordering Platform operator QO App. C v ~ 6% Low Low

Weight Selection Platform operator WS 4.2 X I ) ~15% Low Low

Similarity Score Platform operator SS 4.2 X ~ - Medium Low

Tie-breaking Platform operator TB App. C X -3 210% Medium  Medium

Question Favoritism Question designer QF 43 v ~ 261% Low  High

Question Correlation Question designer QC 43 X ~ - Medium  Medium

Table 1: Overview of the main vulnerabilities associated with each type of adversary, with type-specific color codes for reference in the paper.
The Data column indicates whether a strategy exploiting that vulnerability requires knowledge of the voters’ or candidates’ answers. For
Benefactors, & denotes single candidates, i= denotes lists, M denotes parties, and 88 denotes party coalitions (i.e., left, center, right as

shown in Figure 5). The primary benefactor is highlighted in black, secondary benefactors are shown in

. The Visibility Gain factor

indicates its best-case potential relative increase in visibility in the VAA if that vulnerability is exploited, as estimated by our experiments
throughout the paper (left blank if no experiment was conducted). The table also includes a subjective assessment of the Likelihood and

Impact of each strategy.

2 Background

Most popular VAAs use a set of questions QQ = {qt}ivqu to Ro-
sition both candidates C' = {¢; }jvgl and voters V' = {v; },1%
within the high-dimensional Euclidean space R™«. For-
mally, each question ¢; : V UC — A, assigns an answer
to a given voter or candidate, with A; C R being the set
of allowable answers for that question (generally discrete
and bounded). For example, the question “Are VAASs ro-
bust?” might map the answers “No”, “Rather no”, “Rather
yes”, and “Yes” to the numerical values 0, 25, 75, and
100, respectively. Additionally, for each question g, vot-
ers can typically choose a numerical weight within a set of
allowable values W; C R to reflect how important each
question is to them. This weight is formally represented
as a mapping wy V — W;. Given a voter-candidate
pair (v;,c¢;) and their respective answer and weight vec-

tors v; = [q1(vs), "'anq(Ui)]T’ Cj = [Q1(Cj)»~~»QNq(Cj)}T
and w; = [w1(v;), ..., wn, (v;)]7, the VAA computes a sim-
ilarity score s(v;,c;) between v;’s and ¢;’s opinions using
a predefined weighted distance function d(v;, w;, c;), with
d:RNe x RV x RNe — R,. Lastly, for each voter v;, the
VAA provides a ranking r; € R(C') based on these similarity
scores, with R(C') the set of total orders on C'. See Table 3 in
the Appendix for a summary of how the most popular VAAs
align with this framework. As some of our analysis will con-
cern parties and lists, we also account for the fact that can-
didates can belong to exactly one party p € P and one list
l € L, with P and L being the set of all parties and lists,
respectively. In Swiss National Council elections, lists are
party- or coalition-specific slates of candidates from which
voters choose or modify their preferred selections (see Ap-
pendix A.1 for more details). A canonical set of properties
that any safe VAA must satisfy commonly includes [Garzia
and Marschall, 2014]:

(R) Reproducibility: The VAA produces reproducible rec-
ommendations, enabling users to verify the system’s re-
liability.

(I) Interpretability: The rationale behind the VAA’s rec-
ommendations is easily understandable and intuitive to
users, including those with less technical expertise.

(T) Transparency: The VAA’s matching algorithm and all
factors influencing recommendations are open-source.

(F) Fairness: The VAA is purely issue-based and does not
consider any other characteristics of voters or candi-
dates.

(E) Explainability: Voters receive clear and intuitive expla-
nations for candidate or list recommendations.

(P) Privacy: The VAA ensures the privacy and anonymity
of users’ responses and preferences.

Although the importance of these properties is clear, they do
not offer protection against malicious actors (i.e., adversaries)
aiming to manipulate the recommendations to favor a partic-
ular candidate or party. From the above definitions, one can
identify three potential types of such adversaries: (i) The can-
didates providing their answer vectors,N(ii) the plzjlvtform op-
erator in charge of choosing d, {A4:},%, {W:},, and all
other aspects related to VAA’s interface (such as question or-
dering, tie-breaking, etc.), and (iii) the question designers
writing the questions .> In Section 4, we analyze the pri-
mary dangers associated with each type of adversary, ground-
ing our analysis in the two datasets from Smartvote presented
in Section 3. Then, in Section 6, we propose solutions to mit-
igate these risks.

*For Smartvote, the non-profit association Politools is responsi-
ble for selecting the questions and operating the platform [Politools,
2024al.
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3 Dataset

We empirically evaluate our claims using two comprehen-
sive datasets collected by Smartvote [Politools, 2024al,
which include questionnaire responses and metadata from
both voters and candidates in the 2019 and 2023 Swiss
National Council elections. In both elections, approximately
85% of electable candidates participated by completing
the questionnaire, and around 20% of eligible Swiss vot-
ers used Smartvote for voting recommendations. These
recent datasets provide a solid foundation for analyzing
VAA robustness, capturing a significant portion of both
voters and candidates. Smartvote contains N, = 75 ques-
tions with A, = {0,25,75,100} for questions 1 < ¢ < 60
(policy questions), A; = {0,17,33,50,67,83,100} for
61 <t < 67 (value questions) and A; = {0, 25,50, 75,100}
for 68 <t < 75 (budget questions). For all questions, the
allowable values for the weights are W; = {0,0.5,1,2},
with 1 being the default value for answered questions and 0
the value automatically assigned to any unanswered question.
The distance metric used in Smartvote is the L2 distance

Ny

> (Wir(vie—ci))% (1)

t=1

dia(vi, Wi, ¢j) =

which is used to compute the normalized similarity scores

dia(vi, Wi, €;)
ie) =100 (1— e
S(U Cj) ( dLZ(loo'qu,Wi70Nq) ()

where 1, (respectively Oy,) denote the one-valued (respec-
tively zero-valued) N, dimensional vector. In addition to
candidate rankings, Smartvote also provides a list ranking by
averaging the similarity scores of all candidates on each list
l e L,ie., s(v;,l) = ﬁ > cc1 8(vi, c). For a more detailed
description of the Swiss political system and Smartvote, we
refer the reader to Appendix A. In Appendix B, we provide
a comprehensive description of the preprocessing applied to
the two datasets, as well as an exploratory data analysis. We
conducted all analyses and experiments on both datasets, but
present results from the more recent 2023 dataset, as the over-
all findings are consistent across both elections.

4 Vulnerabilities

While Smartvote satisfies in large part* all the safety prop-
erties listed in Section 2, its robustness to adversarial en-
tities remains unclear. In this section, we analyze the key
strategies that the different types of adversaries might use
to increase the visibility of a particular candidate or party.
Given a set of candidates C' and a set of recommendations
(i.e., rankings) Rc = {r; € R(C) | v; € V'}, we define the
k-visibility of a candidate vy, (c | C) as the frequency with
which candidate c appears in the top k positions of the rank-
ings Rc. Additionally, we define the k-visibility of a party
veg(p | P) as the fraction of the top k recommendations

*The fairness and reproducibility properties of Smartvote are not
fully met, as they break ties using last names and allowed some can-
didates to overwrite their initial answers on a few questions.
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Figure 1: Visibility of crafted candidates (red) compared to all other
candidates (blue) in the states of Zurich (k = 36), Bern (k = 24),
and St. Gallen (k = 12). The larger dots highlight the crafted and
actual most visible candidates.

that are occupied by members of that party. Finally, we de-
fine the k-visibility of a list v/4,(I | L) as the frequency with
which [ appears in the top k positions of the list rankings
Rp = {r; € R(L) | v; € V}. Throughout this work, unless
specified otherwise, we set k to the number of seats allocated
to the candidate’s state’ in the National Council, for both can-
didate and party visibility. For lists, we use k = 1 by default,
as voters can only vote for one list. These default values also
correspond to the number of candidates and lists visually put
forward by Smartvote. Due to their specificity, we discuss the
list centralization (LC), the question ordering (QO), and the
tie-breaking (TB) vulnerabilities in Appendix C.

4.1 Candidates and Parties

Answer Optimization (AO) We start by investigating the po-
tential for a single candidate to manipulate their answers to
increase their popularity. The computation of the provably
optimal candidate is of combinatorial complexity and thus in-
feasible, as pointed out by Etter e al. [2014]. However, we
can find an approximate solution through randomized opti-
mization. For each state, we craft an artificial candidate c¢*
using simulated annealing [Kirkpatrick et al., 1983] and op-
timizing v (c* | C U{c*}). In almost all states, the crafted
candidate appears in more than 50% of top k£ recommenda-
tions, significantly outperforming the previously crafted can-
didate by Etter et al. [2014], as well as any actual candidate.
Figure 1 shows that the crafted candidates in the states of
Zurich, Bern, and St. Gallen easily surpass their competi-
tion in terms of visibility. Table 7 in Appendix C contains the
popularity of our best crafted candidate for each state, as well
as a comparison with other optimization strategies. Specifi-
cally, it demonstrates that the visibility of candidates crafted
using only 1% of the voters’ data is nearly as high as those op-
timized with the full dataset, achieving 51.70%, 50.66%, and
52.55% in Zurich, Bern, and St. Gallen, respectively. The

>Usually referred to as a canton in Switzerland
®Note that Etter et al. [2014] set k = 50 in the popularity metric,
while forus k € {1,---,36}. Our result is thus strictly stronger.
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Figure 2: Relationship between the answer strength of candidates, as
defined in Eq. (3), and their visibility in the state of Zurich (k = 36).
Each dot shows a candidate and the black line represents an ordinary
least squares trend line.

analysis of the crafted candidate’s profile reveals that almost
no questions are answered on the answer spectrum’s extrem-
ities (e.g., only 2 out of 75 answers for the crafted candidate
in Zurich). This points to a systematic bias toward candidates
with moderate positions. We investigate this lead next.

Answer Calibration (AC) In Smartvote, candidates are pro-
vided with four or more response options. They can deliber-
ately choose to respond “strongly” by selecting answers at the
poles (0 or 100) or “moderately” by choosing options closer
to the middle of the answer spectrum (25 or 75).” We de-
fine the strength o of an answer c; by its deviation from the
neutral position in absolute value, i.e.,

N
1 — 1
o(cj) = N, ; e — 5 (max Ay + min A)[. ()
In Figure 2, we find that in Smartvote, candidates with mod-
erate answers (i.e., lower answer strength) are recommended
significantly more often. This concerning trend suggests that
candidates can artificially boost their visibility by providing
moderate answers to all questions. This strategy is particu-
larly problematic because it can be executed with minimal de-
viation from the true candidate’s position, making it difficult
to detect. Figure 3 reveals that with the current distance met-
ric used in Smartvote (dp,), some parties can increase their
visibility fourfold by unilaterally adopting this strategy.

Diversification (DIV) Figure 4 shows that parties with more
candidates relative to their vote share tend to receive dispro-
portionately more recommendations on Smartvote. This sig-
nificant correlation suggests that having more candidates can
skew recommendations, thereby providing an artificial advan-
tage in voter outreach and potentially electoral success.

4.2 Platform Designers

Matching Method (MM) Louwerse and Rosema [2014]
show how sensitive recommendations are to changes in the

" Answering moderately can be used to indicate a nuanced posi-
tion, openness to compromise, or ambivalence. As such, the added
expressivity is regarded to be beneficial [Batterton and Hale, 2017].
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Figure 3: Comparison of actual and calibrated party visibility using
the L1 and L2 distance metrics. To simulate this scenario, the an-
swer profiles of all candidates in the party were adjusted to weaken
their responses (e.g., changing all “Yes” to “Rather yes”), and the
recommendations were recalculated using the L1 and L2 distance
metrics.

matching method. We extend these findings by quantitatively
evaluating the bias and accuracy of each distance function in
Table 2. Additionally, in Table 8 of the Appendix, we show
that some methods can disproportionately favor candidates at
either end of the political spectrum.

Weight Selection (WS) In Smartvote, voters have the op-
tion to decrease or increase the weight of each ques-
tion q¢, but without knowing the actual numerical weights
W, = {0, 1,1,2} corresponding to these actions.® Figure 5
displays the relative change of the main parties’ visibility
(among voters that have weighted at least one question) if
these values are changed.

Similarity Score (SS) Apart from determining the ranking r;,
the similarity scores s(v;, ¢;) can also be displayed to provide
voters with a sense of their relative proximity to different can-
didates. The exact calculation of such a score is mostly arbi-
trary. In Smartvote, the Euclidean distance between the voter
and candidate is scaled by the maximum possible distance
between two answers, as specified in Eq. (2). Figure 6 shows
that the similarity scores of the best-matching candidate vary
by party and are generally quite low, which is in large part a
consequence of the curse of dimensionality [Thirey and Hick-
man, 2015]. This disparity could ultimately influence voters
from different parties in different ways.

4.3 Question Designers

Question Favoritism (QF) Certain questions can signifi-
cantly benefit specific parties by aligning closely with their
popular stances. Figure 7 shows the relative change in
party visibility based on the size of alternative questionnaires.
These questionnaires consist of a subset of questions from
the original set, selected to benefit the respective parties the
most during the elections in the state of St. Gallen. With

8These values are available on the About page on Smartvote, but
they are not displayed directly alongside the questions.
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Figure 4: Relationship between the number of candidates per per-
cent of vote share and the ratio of visibility to vote share for parties
in the state of Zurich. The size of each dot represents the vote share
of the corresponding party. Vote shares are calculated based on the
votes received by candidates participating in Smartvote for the 2023
National Council election. Exact values can be found in the column
Vote Share (adjusted) of Table 4 in the Appendix.

this knowledge, an adversarial question designer could favor
questions that benefit their preferred party.

Question Correlation (QC) If a question is advantageous for
a particular party, introducing additional questions with an-
swers highly correlated to this question (among voters and
candidates) implicitly increases its weight. For instance, ask-
ing the negation of a question effectively doubles the original
question’s weight. Although this strategy is inherently associ-
ated with question favoritism, it has the potential to magnify
its impact.

5 Measuring Robustness

From Table 1, we note that three high-risk vulnerabilities,
namely AC, AO, and MM, are highly dependent on the
matching method. To assess the impact of matching methods
on robustness, we compare the five most commonly used dis-
tance functions and two novel proposals using various key ro-
bustness metrics. A formal definition of these distance func-
tions is provided in Appendix D.3.

Party Bias (BIA). We assess the deviations in party visibility
for each matching method relative to the median visibility ob-
served across all other evaluated methods (see Appendix D.1
for a detailed discussion). Here we consider the mean ab-
solute deviation (BIA1) and max deviation (BIA2) over the
eight largest parties.

Calibration Potential (CP). For each matching method, we
repeat the analysis of Figure 3 and measure the average rel-
ative visibility gain or loss that results from a party employ-
ing the moderate answering strategy (CP-M) or the strong an-
swering strategy (CP-S) weighted by the adjusted voter shares
of the parties in the 2023 election (see Table 4 in Appendix A
for the exact values).

Answer Strength Correlation (ASC). This metric addresses
the answer calibration manipulation strategy. It is defined as
the Pearson correlation between the answer strength (defined
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Figure 5: Relative visibility change of all parties if the avail-
able question weights are set to W; = {0, %, 1,10} (strong) or
Wy = {0, 5,1, 29} (weak). The visibility of each party is com-
puted using only the voters that have weighted at least one question.
Parties are listed according to their parliamentary seating arrange-
ment, with traditional larger coalitions (left, center, right) shown
at the top. As observed, the actual numerical value of the weights
can significantly favor certain coalitions, with center parties benefit-
ing from weak weights and left- and right-wing parties from strong
weights.

in Eq. 3) and the expectation-normalized visibility of candi-
dates. The expectation-normalized visibility adjusts for the
varying number of candidates in each state by multiplying
the visibility by the ratio of the number of candidates to the
number of available seats in the state, ensuring comparability
across different states. To minimize the effectiveness of any
answer calibration strategy regarding the answer strength, this
metric should ideally be close to zero, indicating no system-
atic bias toward candidates with moderate or strong answers.

Gini Coefficient (GIN). This metric measures the Gini coef-
ficient of the expectation-normalized visibilities over all can-
didates, indicating how evenly distributed the recommenda-
tions are among them. A Gini coefficient of O represents a
perfectly even distribution, and a coefficient of 1 indicates a
completely uneven distribution. While there is no ideal Gini
coefficient for a distance method, and actual election votes
are typically less evenly distributed than Smartvote recom-
mendations (see Figure 20 in the Appendix), the Gini coef-
ficient offers insight into the differences in recommendation
diversity between matching methods.

Party Match Accuracy (ACC1). This metric measures the
proportion of voters whose top list recommendation matches
their preferred party. As manual accuracy checks are imprac-
tical, comparing the voter’s stated preferred party with the
party recommended by the algorithm is common for assess-
ing the accuracy of VAAs [Garzia and Marschall, 2014]. For
Smartvote, which does not directly recommend parties, we
use the party from the best-matching list as a proxy. While
this metric is appealing for its simplicity, it assumes that vot-
ers know the party that best represents them, which may not
always be true.

Normalized Party Rank (ACC2). This metric provides
deeper insight into the rankings of lists associated with vot-
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Figure 6: Distribution of similarity scores between voters and their
top matching candidate, with colored histograms isolating voters
whose top candidate is from a specific party. This histogram reveals
that the matching percentages vary significantly based on the party
of the top matching candidate. It also shows that for many voters,
their top matching candidate is surprisingly low (below 70%).

ers’ preferred parties. It measures the average normalized
rank of the top list for the preferred party, with normaliza-
tion adjusting for the number of lists per state. A normalized
rank of 0 means the list is recommended first, while a value
of 1 means it is recommended last.

Strong Disagreement Accuracy (ACC3). This metric mea-
sures the disagreements between voters and their recom-
mended candidates. However, it specifically focuses on ques-
tions that voters weighted more strongly, indicating their
greater importance. This metric should ideally be low, as vot-
ers likely expect their recommended candidates to align with
them on these high-priority questions.

6 Future Work on Mitigation Approaches

Below, we present a series of possible mitigation strategies,
specifying the vulnerabilities they aim to address. We also
provide mitigations for TB, QO and LC in Appendix E. We
emphasize that these strategies have not been extensively
tested and may introduce unintended harms. We introduce
them here as a foundation for future work, aiming to facili-
tate systematic research in this direction. Mitigation strate-
gies currently under Politools review are marked with Q.

Q L1 or Angular instead of L2 (AC, AO, MM). While
each distance metric has its trade-offs, we find in Table 2
that L1 and Angular consistently offer better robustness than
L2 without sacrificing accuracy. Specifically, L1 outperforms
L2 in ACC1 and ACC2, while Angular excels in ACC3 with
only minor reductions in ACC1 and ACC2. Therefore, we
argue that any of these two methods is a viable robust sub-
stitution for L2. Alternatively, the Hybrid method appears to
offer strong robustness properties with only a slight decrease
in accuracy across all three metrics.

Lower Expressivity (AC, AO). Reducing the number of al-
lowable answers can reduce the impact of many vulnerabil-
ities by limiting opportunities for fine-grained manipulation.
Since expressivity is important for voters, it could be reduced
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Figure 7: Relative visibility gain for each party using a set of greed-
ily selected optimal questions to generate voting advice in the state
of St. Gallen. Each line represents a political party and shows its
increase in visibility as more and more favorable questions are in-
cluded, compared to the baseline scenario with the full question-
naire. Circles indicate each party’s maximum attainable visibility
(e.g., when only choosing the best-aligned 12 questions, the Green
party can increase its visibility by 120%).

specifically for candidates. For example, candidates could
be restricted to answering “Yes” or “No” for each question,
while voters still have “Rather yes” and ‘“Rather no” as op-
tions. This would effectively mitigate the answer calibration
strategy, which, based on our subjective assessment in Ta-
ble 1, poses the greatest risk.

Q, Deal-breaker Filtering (WS). As demonstrated by the
vulnerability to weight selection, voters could easily misun-
derstand the effect of weighting questions. To address this is-
sue, we propose to allow only the weights to W; = {0, 1, oo}
for each question ¢;. Assigning a weight oo to a question
effectively treats it as a deal-breaker [Isotalo, 20211, directly
excluding all candidates who answered differently from the
voter on that question. To avoid leaving voters without candi-
dates due to excessive filtering, the matching algorithm could
consider the number of disagreements on deal-breakers as the
primary factor in determining the similarity scores. Alterna-
tively, one could also allow voters to exclude all candidates
not aligned with their chosen side of the answer spectrum rel-
ative to the neutral response.

Q Selective Answering (QF, QC). Voters should be in-
formed that answering more questions does not necessarily
lead to a more accurate recommendation and may even dis-
tort the results. The user interface could instead promote a
more selective approach to question selection by each voter.

Distance to Party Mean (AC, AO). Voters often lack tools to
assess a candidate’s honesty and determine if they answered
truthfully or exploited VAA vulnerabilities to boost their vis-
ibility. One solution is to display the distance between each
candidate’s answers and their party’s mean answers. A large
distance might prompt voters to scrutinize the candidate’s re-
sponses more closely. However, this metric would only be a
proxy for honesty, as some candidates may naturally deviate
from their party’s position [Schwarz et al., 2010].



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Distance Function | BIA1 BIA2 CP-M CP-S ASC GIN | ACC1 ACC2 ACC3 Used By
(See App. D.3) [V [\ v v V| 1t ¥ ¥

L2 23.0% +40.7% (EVP) +207% -711%  -0470 0475| 41.0%  0.103 7.8% Smartvote
L1 143%  +24.4% (Centre)  +46% -50%  -0.280 0.373| 41.8% 0.101 11.0% Wahl-O-Mat
Angular 4.1% -12.2% (GLP) 27%  -13% 0.190  0.349| 40.2%  0.109 7.0% -
Agreement Count 3.6% +7.8% (SVP) -36% -4% 0.256 0.317| 35.7%  0.111 15.0% Stemwijzer
Mahalanobis 29.2% -47.2% (EDU) +305% -69% 0.044 0.523| 29.0% 0.142 21.6% -

L1 Bonus 15.5% -27.1% (GLP) -81% +27% 0.583  0.387| 37.9%  0.109 11.3% | Smartvote (old)
Hybrid 5.3% -15.7% (GLP) -55% -12% 0.292  0.349| 402% 0.106 10.1% EUVox

Table 2: Comparison of alternative distance functions based on various metrics defined in Section 5. The arrows indicate what is desired from
the metric (4: Higher is better, \: Lower is better, [N|: Closer to 0 is better). The best value for each metric is highlighted in bold, and the
worst value is underlined. The GIN metric is purely informational, with no suggestion that higher or lower values are better. Smartvote (old)
refers to the Smartvote VAA until 2010. A detailed discussion about the counterintuitive CP-M and ASC value for Mahalanobis is provided

in Appendix D.2.

Limiting the Number of Candidates (DIV). To prevent par-
ties from disproportionately boosting their visibility by in-
creasing candidate numbers, we propose limiting the number
of candidates from the same party that can be recommended
to any voter. This limit could be based on the similarity score
between the voter’s position and each party’s average posi-
tion. For instance, if two parties have the same similarity
score with a given voter but one has more candidates, the top
k recommendations should be evenly distributed between the
parties, minimizing the risk of biased recommendations aris-
ing from the diversification strategy.

Fair Answer Normalization (SS). To avoid presenting vary-
ing similarity scores to voters from different parties (as shown
in Figure 6), we propose normalizing similarity scores rela-
tive to the top candidate for each voter (who would always
be considered a 100% match). While this would change the
score’s meaning and might reduce its overall usefulness, it
would also eliminate bias.

7 Related Work

VAAs emerged around 30 years ago and have quickly gained
popularity since then. Garzia and Marschall [2012] provide
a comprehensive overview of existing VAAs, summarized in
Table 3 in the Appendix. The voter data collected by VAAs
are a treasure trove, for political, social, and computer scien-
tists alike. Etter et al. [2014] for example, extract valuable
data on the Swiss political landscape. An extended related
work discussion on the influence of VAAs on democratic in-
stitutions and their development is detailed in Appendix F.

VAAs under Scrutiny. Walgrave et al. [2009] show that the
question selection has a substantial impact on the voting ad-
vice. Louwerse and Rosema [2014] highlight the significant
impact matching methods (mainly L1 and L2) have on rec-
ommendations, using StemWijzer as an example. We corrob-
orate this finding but crucially demonstrate that these match-
ing methods behave differently in the presence of an adver-
sary. Van der Linden and Dufresne [2017] critically analyze
current methods to visualize aggregate results, and propose
a technique based on learned dimensions to correct short-
comings. Finally, Isotalo [2021] identifies several issues with
Finnish VA As, including lack of transparency, user interactiv-

ity, and problems in statement structure. Our work supports
the effectiveness of their suggested filtering method.

Adversarial Robustness of Recommender Systems. Other
applications have recognized the importance of adversarial
robustness [Hurley, 2011; Tang ef al., 2019] and the chal-
lenges of questionnaire design [Pasek and Krosnick, 2010].
Ovaisi et al. [2022] provide a toolkit to compare the ro-
bustness of learning-based recommender systems. Given
the much stricter requirements of recommender systems for
democracy (see Section 2), while our introduced metrics ap-
ply to all methods, we restrict our evaluation to non-learning-
based methods for now.

8 Outlook

This study highlights critical vulnerabilities in voting ad-
vice applications (VAAs), providing empirical evidence that
malicious actors could pose a risk to democratic processes.
Crucially, many vulnerabilities also uncover the existence of
strong biases in VAAs, even in the absence of adversarial en-
tities. We are convinced that VAAs are a highly desirable
addition to the political landscape and believe that our pro-
posed comparative metrics and mitigations can help guide fu-
ture VAA development toward more robust designs. As VAAs
continue to evolve in the era of Al, future work should also
aspire to extend our results to other types of political recom-
mender systems that fall outside our formalism.

Ethical Statement

The dataset has been collected and anonymized by Poli-
tools in accordance with the new Swiss Federal Act on Data
Protection (nFADP), the Telecommunications Act (TCA),
and other applicable data protection regulations [Politools,
2024b]. Further, we strictly follow the platform’s terms of
use for data. As such, we do not publish results that may
be attributed to specific individuals. In accordance with the
terms of use for research, the dataset is kept private, and we
adhere to established best practices for dealing with sensitive
data. While the dataset cannot be made accessible directly, it
might be made available to researchers by Politools upon re-
quest [Politools, 2024al. Given access to the data, all numeri-
cal results and figures can be easily reproduced using the code
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in the supplementary material. In the absence of established
Ethics guidelines, we follow Menlo’s report on Computer
Science research principles [Kenneally and Dittrich, 2012].
Publicly disclosing all found vulnerabilities presents a risk, as
various actors might benefit from exploiting them. We miti-
gate these risks by publishing our results after Switzerland’s
national election, leaving enough time to implement potential
mitigation for the 2027 elections. To the best of our knowl-
edge, no countries with popular VAAs that could be affected
by our research will hold national elections in the months fol-
lowing the publication of this work. Thus, we believe that this
is the right time to shed light on these vulnerabilities. Over-
all, we believe that despite some inherent risks, this work will
have a clear net positive social impact by providing tools to
enhance the robustness of VAAs, and consequently, democ-
racies.
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