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Abstract

Grounding open-domain knowledge from large
language models (LLMs) into real-world reinforce-
ment learning (RL) tasks represents a transforma-
tive frontier in developing intelligent agents capa-
ble of advanced reasoning, adaptive planning, and
robust decision-making in dynamic environments.
In this paper, we introduce the LLM-RL Grounding
Taxonomy, a systematic framework that categorizes
emerging methods for integrating LLMs into RL
systems by bridging their open-domain knowledge
and reasoning capabilities with the task-specific dy-
namics, constraints, and objectives inherent to real-
world RL environments. This taxonomy encom-
passes both training-free approaches, which lever-
age the zero-shot and few-shot generalization ca-
pabilities of LLMs without fine-tuning, and fine-
tuning paradigms that adapt LLMs to environment-
specific tasks for improved performance. We criti-
cally analyze these methodologies, highlight prac-
tical examples of effective knowledge grounding,
and examine the challenges of alignment, gener-
alization, and real-world deployment. Our work
not only illustrates the potential of LLM-RL agents
for enhanced decision-making, but also offers ac-
tionable insights for advancing the design of next-
generation RL systems that integrate open-domain
knowledge with adaptive learning.

1 Introduction

The integration of large language models (LLMs) with re-
inforcement learning (RL) represents a transformative mile-
stone in the development of intelligent agents. By leverag-
ing LLMs’ powerful capabilities in reasoning, generalization,
contextual understanding, and their rich priors over world
knowledge, RL agents can overcome persistent challenges
such as sample inefficiency, poor generalization, and brittle
task-specific behavior in complex environments. This syn-
ergy equips agents with greater foresight, semantic ground-
ing, and adaptability, opening new possibilities for robust
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Figure 1: Overview of the LLM-RL Grounding Taxonomy. This
framework illustrates how large language models support RL agents
through multimodal perception, structured reasoning, adaptive plan-
ning, and task generalization, enabling decision-making in complex,
dynamic environments.

decision-making across domains such as robotics, healthcare,
and multi-agent systems.

At the core of this integration lies the concept of ground-
ing, a critical process that aligns the broad, open-domain
knowledge embedded within LLMs with the structured, goal-
directed nature of RL tasks. Grounding involves the transla-
tion of high-level, abstract knowledge into actionable insights
that are consistent with the dynamic state-action-reward
paradigms of RL. This encompasses several key dimensions:
what to ground (e.g., commonsense reasoning, procedural
knowledge, and semantic priors), how to ground (through
mechanisms like prompting, retrieval, or fine-tuning), and
why grounding matters (to enhance decision efficiency, task
generalization, and policy robustness). Effective grounding
ensures that RL agents not only react to environmental feed-
back but also proactively reason, plan, and adapt in contextu-
ally meaningful ways.

Recent advances in LLM-powered agents, exemplified by
GPT-4 [OpenAl, 2023], DeepSeek [DeepSeek, 20231, Gem-
ini [DeepMind, 2024] and LLAMA [Touvron et al., 2023],
highlight their growing potential in tackling complex, real-
world tasks by providing strong priors over language, knowl-
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edge, and commonsense reasoning. These capabilities po-
sition LLLMs as promising complements to RL, which tradi-
tionally depends on learning through direct interaction. Yet,
integrating LLMs into RL pipelines remains fundamentally
challenging. The knowledge encoded in LLMs, shaped by
pretraining on broad, general-purpose data, often misaligns
with the structured, interactive demands of RL environments,
leading to hallucinations, overconfidence, or brittle policies.
While RL agents are designed to adapt continuously through
feedback, most LLMs operate in static inference settings and
lack mechanisms for contextual adaptation. Bridging this
gap requires a principled understanding of grounding: how
to translate abstract knowledge into behavior that is sensitive
to environmental dynamics, responsive to interaction, and ro-
bust across varied tasks. Developing such grounding strate-
gies is essential to unlocking the potential of LLM and RL
integration.

To this end, we propose the LLM-RL Grounding Tax-
onomy, a principled framework that organizes and critically
examines the methodologies used to align LLM capabili-
ties with RL objectives. This survey is based on a targeted
review of approximately 40 recent papers, primarily pub-
lished between 2022 and 2024 in top-tier Al venues such as
NeurIPS, ICML, and ICLR. The selection emphasizes high-
quality studies that explicitly integrate LLMs into RL systems
through grounding mechanisms. The taxonomy categorizes
these approaches into two principal paradigms: training-
free grounding and fine-tuning-based grounding. Training-
free methods leverage techniques such as structured prompt-
ing, chain-of-thought reasoning, and retrieval-augmented in-
ference to guide LLM behavior without modifying model
weights. In contrast, fine-tuning-based strategies adapt LLMs
through parameter updates, feedback-driven optimization,
and modular architectural design. This taxonomy clarifies the
emerging design space, surfaces key techniques and trade-
offs, and offers a practical guide for researchers and practi-
tioners developing grounded LLM-RL agents.

Furthermore, this survey highlights three cross-cutting di-
rections that are central to advancing LLM-RL systems. First,
multimodal grounding aims to connect language models with
perceptual inputs such as vision and audio, enabling agents
to interpret and act within richer sensory environments. A
central challenge is aligning symbolic reasoning with con-
tinuous, high-dimensional observations. Second, hierarchi-
cal reasoning supports planning and control across both tem-
poral and semantic scales, bridging abstract objectives with
low-level execution through structures like subgoals or mod-
ular policies. Third, adaptive grounding focuses on mecha-
nisms that enable agents to dynamically adjust to feedback
and evolving environments. Progress across these areas will
also require evaluation frameworks that go beyond task com-
pletion to assess generalization, robustness, and the effective-
ness of grounding itself.

1.1 Objectives of This Survey

This survey aims to offer a focused synthesis of recent meth-
ods for grounding pretrained LLMs to enhance the decision-
making capabilities of RL agents. Rather than providing ex-
haustive coverage, we emphasize conceptual clarity and prac-
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Figure 2: LLM-RL Grounding Taxonomy: categorizing ground-
ing paradigms for LLM-RL agents into training-free and fine-tuning
(FT)-based approaches, along with their respective subcategories
and representative models.

tical taxonomy to support both understanding and applica-
tion. Beyond categorization, we present a critical analysis
of training-free and fine-tuning-based paradigms, identify-
ing key algorithms alongside the underlying design princi-
ples and architectural patterns that drive their success across
diverse RL environments. Through the proposed LLM-
RL Grounding Taxonomy, we offer a strategic framework
that maps the evolving landscape, reveals synergies between
grounding strategies, and serves as a practical reference for
researchers. We extract actionable insights and classify state-
of-the-art techniques that connect LLMs’ generalized knowl-
edge with task-specific demands. Additionally, we highlight
core challenges, such as the brittleness of LLM reasoning in
dynamic environments and the inefficiencies of scaling fine-
tuned models, while identifying opportunities for developing
adaptive, scalable agents. Unlike prior surveys on general
LLM-based agents, which typically emphasize planning, rea-
soning, or static tool use, our focus is specifically on agents
that learn and adapt through reinforcement feedback in inter-
active, dynamic environments. Ultimately, this survey aims
to advance the integration of language understanding and RL,
laying the groundwork for versatile, context-aware intelligent
systems capable of robust real-world performance.

2 Training-free Grounding Paradigms

Training-free grounding paradigms for LLM-RL agents
leverage the general reasoning abilities, contextual under-
standing, and vast prior knowledge embedded in LLMs to
enable seamless integration into RL tasks. By bypassing the
need for additional parameter updates, these methods min-
imize computational complexity and simplify implementa-
tion, making them a practical and efficient choice for diverse
decision-making scenarios.

2.1 Instructive Grounding

Instructive grounding guides LLM-RL agents using explicit
instructional signals, including natural language prompts,
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demonstrations, and task-specific templates. These sig-
nals serve to structure the agent’s behavior, aligning high-
level reasoning with desired outcomes without modifying the
LLM’s parameters.

LLMs, enriched with extensive pretrained knowledge from
complex decision-making problem domains, can be strate-
gically guided through prompting to translate their capa-
bilities into grounded, task-relevant behavior. Ghost-in-
Minecraft [Zhu et al., 2023] employs structured instruc-
tion templates that define action interfaces, illustrate queries,
specify response formats, and incorporate error-enriched in-
teraction guidelines to ground LLM for task execution in
sparse-reward environments. DEPS [Wang et al., 2023b] dy-
namically generates agent-in-the-loop programs, using a self-
explanation module for error correction and a trainable goal
selector to rank and prioritize sub-goals for effective task de-
composition. Voyager [Wang et al., 2024] employs GPT-
4 to autonomously generate executable programs, maintain-
ing a dynamic curriculum of skills while actively collecting
bug messages from the game for self-correction. These ap-
proaches demonstrate how carefully designed prompts, cur-
riculum structures, and self-corrective feedback loops can en-
able robust grounding in sparse-reward environments.

Instructive grounding can also be utilized to teach LLMs
essential RL dynamics and outcomes, effectively aligning
their reasoning capabilities with task execution. Inner Mono-
logue [Huang et al., 2022] integrates the planning capabili-
ties of LLMs with robotic control policies via textual instruc-
tions that incorporate real-time environmental feedback. This
approach allows the agent to iteratively refine its actions by
evaluating observed outcomes, seamlessly linking high-level
reasoning with low-level control. Similarly, SCHEMA [Niu
et al., 2024] employs LLMs to generate step representations
by describing state changes at each step, achieved through
sophisticated chain-of-thought prompting, enabling a deeper
understanding of task dynamics. Plan-Seq-Learn [Dalal et
al., 2024] designs structured prompts to guide LLMs in
breaking down complex robotic control tasks into manage-
able sequential sub-goals. The model generates step-by-step
action plans that link subgoals to objectives through chain-of-
thought reasoning, and iteratively refines them using environ-
ment feedback to adapt to task-specific dynamics.

Beyond guiding action selection, instructional signals have
also been used to shape reward functions, aligning agent be-
havior more directly with human intent. Recent work extends
instructive grounding beyond task guidance, using language
to shape internal objectives and reward functions. Instruct-
RL [Hu and Sadigh, 2023] uses pretrained LLMs to generate
a prior policy conditioned on the human instruction and lever-
ages it to regularize the RL objective, steering policy learning
toward behavior aligned with human preferences, effectively
grounding the agent’s behavior in explicitly human provided
directives. Reward-Self-Align [Zeng et al., 2024] employs
LLMs to autonomously generate and refine reward functions
via iterative self-alignment. By analyzing its outputs and it-
eratively adjusting the reward signals, the LLM creates task-
specific feedback loops, directly grounding the reward design
in structured prompts. This enables the agent to refine its ac-
tions dynamically, with the LLM continuously optimizing the

reward function to encourage behaviors that achieve success-
ful task execution.

Discussions Instructive grounding is most effective when
tasks admit language-based decompositions and when pre-
trained knowledge can reduce the need for environment-
driven exploration. It is particularly well-suited to sparse-
reward and long-horizon settings, where structured prompts
and task priors help scaffold behavior early in training. How-
ever, success depends critically on the clarity and complete-
ness of instructions, the agent’s ability to ground language
in situated perception and dynamics, and the robustness of
feedback loops over time. Common patterns across meth-
ods include hierarchical prompt design, subgoal generation,
and self-refinement through interaction. While enabling fast
iteration without fine-tuning, it remains limited in scenarios
requiring fine-grained perception or real-time adaptation be-
yond what static language can express.

2.2 Retrieval-based Grounding

Retrieval-based grounding enhances LLM-RL agents by in-
jecting external, task-relevant knowledge at inference time.
By dynamically querying sources such as document corpora,
demonstration traces, or structured representations, these
methods allow agents to incorporate context that cannot be
memorized or inferred from pretraining alone. This capabil-
ity is particularly beneficial for tasks that involve sparse re-
wards, long horizons, or shifting domain knowledge.

A common strategy is to retrieve exemplars or environment
traces to ground decision-making in specific contexts. For
example, Rewrite-Retrieve-Read [Ma et al., 2023] leverages
web search to retrieve contextual information during query
rewriting, ensuring the responses are better aligned with task
requirements. EWC-LoRA [Xiang et al., 2023] incorporates
2-10 exemplars in prompts, comprising instructions, question
contexts, and answers, to facilitate effective in-context learn-
ing. In robotics, InCoRo [Zhu et al., 2024] provides demon-
stration traces to the robotic manipulation system for imita-
tion learning, enabling zero-shot generalization to new tasks.
Plan4MC [Yuan et al., 2023] constructs skill categorization
in Minecraft, covering actions such as finding, manipulating,
and crafting, to instruct LLMs to extract the relationship be-
tween skills to construct a skill graph beforehand.

A prominent subclass of retrieval-based methods incorpo-
rates structured representations, such as knowledge graphs
and 3D scene graphs, to scaffold high-level reasoning and
policy planning. SayPlan [Rana et al., 2023] leverages hi-
erarchical 3D scene graphs to perform iterative replanning in
complex household environments. Embodied Robotic Con-
trol (ERC) [Qi et al., 2024] integrates knowledge graphs
with LLMs to enforce safety constraints in service robotics.
TreePlanner [Hu et al., 2024] reframes task planning with
LLMs into three distinct phases: plan sampling, action tree
construction, and grounded decision-making, to enable LLMs
to perform top-down control. Beyond planning, other graph-
based methods emphasize knowledge-guided reasoning and
distillation, using structured representations to transfer poli-
cies and abstract complex tasks. Reasoning on Graphs
(RoG) [Luo et al., 2024a] implements a planning-retrieval-
reasoning pipeline, where relation paths grounded in knowl-
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edge graphs serve as faithful intermediate plans, supporting
multi-step reasoning and compositional knowledge transfer.

Discussions Retrieval-based grounding is effective when
essential knowledge lies outside the LLM’s pretrained scope.
It supports generalization in long-horizon tasks by injecting
contextual or structured information at inference time, al-
leviating the need for extensive environment-driven explo-
ration. Graph-based methods, in particular, enable inter-
pretable reasoning and safety-aware planning through sym-
bolic constraints. However, performance depends critically
on retrieval quality, latency, and the agent’s capacity to in-
terpret retrieved content in context. These methods are less
suited for real-time or reactive settings, where tight feedback
loops or high-frequency decisions are required.

2.3 Grounding from Multimodal Data

Grounding from multimodal sources involves integrating in-
formation from diverse data modalities, such as text, images,
and video, to enhance contextual understanding and task rel-
evance, particularly in environments where single-modality
inputs fall short. These approaches use multimodal LLMs
to align perceptual inputs with language-conditioned objec-
tives, enabling dynamic grounding of observations into task-
relevant decisions.

One primary direction for multimodal grounding is to en-
hance task representation. LGA [Peng ef al., 2024] investi-
gates how language can be leveraged to create state abstrac-
tions that streamline decision-making in RL agents. By uti-
lizing pretrained LLMs, LGA automatically constructs state
abstraction functions tailored to new, unseen tasks. The ap-
proach then trains an imitation policy using a smaller set of
demonstrations, operating on the generalized abstract states,
thereby enhancing the efficiency and adaptability of the RL
agent. PaLM-E |Driess et al., 2023] integrates multiple sen-
sory inputs—such as vision, language, and embodied ac-
tions—into a unified model that can understand and respond
to complex tasks in real-world environments. This alignment
is learned by training the model to correlate visual obser-
vations with language-conditioned objectives and action se-
quences. RL is used to optimize the model’s policy, with task
success serving as feedback to refine multimodal represen-
tations. ELLM [Du et al., 2023] encourages exploration by
rewarding agents for achieving LLM-specified goals, using
a state captioner to bridge visual observations and language
instructions. PLA [Gao er al., 2024] aligns multi-domain im-
ages based on textual prompts to facilitate zero-shot policy
transfer. In contrast, Jarvis-1 [Wang et al., 2023a] is designed
as a multi-modal open-world agent focused on scalability and
adaptability in complex environments like Minecraft. Un-
like PaLM-E’s tightly integrated structure, Jarvis-1 employs
a modular architecture where VLMs are decoupled from the
planning and control modules. This design allows for more
flexible task adaptation, with the vision-language compo-
nent primarily responsible for semantic understanding, while
task planning is handled by specialized models optimized for
open-ended exploration. While PaLM-E is well-suited for
end-to-end robotic control, Jarvis-1 is more adaptable in dy-
namic, unstructured environments, benefiting from its modu-
larity and long-horizon memory design.

Multimodal information can be harnessed to ground the
decision-making through constructing informative reward
functions. RLCF [Zhao et al., 2024] proposes an RL frame-
work with CLIP reward feedback for test time adaptation
for VLM models in zero-shot classification problems. The
authors propose a novel CLIP reward which samples low-
entropy predictions from multiple views as test-time sam-
ples for reward maximization. VLM-RM [Rocamonde et al.,
2024] introduces a CLIP-based model to generate zero-shot
rewards, enabling MuJoCo humanoid agents to learn complex
tasks without the need for manually specified reward func-
tions. The approach utilizes a simple, single-sentence text
prompt to describe the desired task, with minimal prompt en-
gineering, while the VLM generates correlation scores that
serve as reward signals for training. Minedojo [Fan et al.,
2022] leverages internet-scale multimodal Minecraft knowl-
edge to pre-train a VLM model named MineCLIP to com-
pute the correlation between a language goal string and visual
RGB frames, which can further serve as a reward function
to train RL agents. ESC [Zhou et al., 2023] proposes goal-
conditioned exploration with soft commonsense constraints
to transfer commonsense knowledge in pre-trained models
to open-world object navigation without any navigation ex-
perience or other training on the visual environment. ESC
models the commonsense constraints into navigation actions
with soft logic predicates for efficient object navigation in the
Habitat and RoboTHOR navigation challenges. Read-and-
Reward [Wu et al., 2023a] simultaneously performs vision
captioning on Atari game frames and QA extraction and rea-
soning module to learn to play Atari from the user manual.

Furthermore, multimodal grounding has been explored
through retrospective learning and hierarchical decomposi-
tion. VLM-HER [Sumers et al., 2023] utilizes pre-trained
VLMs to integrate visual and textual data for enhancing agent
learning. By combining VLMs with hindsight experience re-
play (HER), the approach retroactively generates language
descriptions of agent trajectories based on visual and task-
specific observations. These relabeled trajectories enable the
agent to learn multiple tasks along different dimensions, ef-
fectively grounding its behavior in multimodal data. This
approach not only leverages the strengths of vision-language
models for semantic understanding but also enhances data ef-
ficiency by reusing past experiences in a more informative
way. By transforming raw trajectories into structured lan-
guage, VLM-HER facilitates more interpretable and transfer-
able policy learning across diverse tasks.

Discussions Multimodal grounding enables RL agents to
incorporate signals from language, vision, and environmental
context, producing decisions that are more situationally aware
and semantically aligned. This integration supports expres-
sive task representations, adaptive reward shaping, and trans-
parent reasoning, especially valuable in open-ended or real-
world environments. It also allows agents to disambiguate
complex scenarios by cross-referencing multiple modalities,
enhancing robustness in noisy or partially observable settings.
Furthermore, leveraging pretrained multimodal models can
improve sample efficiency by injecting semantic priors into
perception and action loops. As multimodal systems continue
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to evolve, ensuring alignment across modalities and preserv-
ing interpretability will be critical for real-world deployment.

3 Fine-Tuning-Based Grounding Paradigms

Fine-tuning-based grounding paradigms adapt pre-trained
LLMs to specific RL tasks by updating model parameters
with task-specific data and feedback. This approach enhances
task alignment and adaptability, enabling improved perfor-
mance in dynamic and complex scenarios at the cost of addi-
tional computational overhead and design complexity.

3.1 Environment-Specific Fine-Tuning

Environment-specific fine-tuning tailors LLMS to the dynam-
ics of a particular RL setting by modifying model architec-
tures or leveraging parameter-efficient adaptation techniques.
These methods aims to bridge the gap between general-
purpose language pretraining and the grounded, interaction-
heavy requirements of RL tasks.

One approach involves architectural modifications to en-
hance adaptability in complex domains. LaMo [Siyao et al.,
2024] replaces standard linear projections with MLPs, im-
proving representation learning in offline RL. It also uses
LoRA (Low-Rank Adaptation) to fine-tune just 0.7% of the
parameters, achieving computational efficiency while main-
taining generalization. However, limiting updates to a small
subset of parameters can constrain the model’s ability to inter-
nalize nuanced task dynamics—particularly in long-horizon
or rapidly changing environments. This highlights a key
trade-off in parameter-efficient tuning: preserving general
knowledge versus fully adapting to new domains.

A related challenge is catastrophic forgetting, where fine-
tuning on a specific task erodes prior capabilities. This is-
sue undermines the robustness of LLM-RL agents in life-
long or multi-environment settings, where continual retention
of diverse competencies is critical. Other methods address
the need to bridge language-based reasoning with low-level
environmental signals. KALM [Pang er al., 2024b] adapts
LLMs for robotic control by incorporating MLP layers that
translate textual goals into executable trajectories. This en-
ables alignment between linguistic reasoning and numeric ob-
servations. Despite its strong performance in domains like
CLEVR-Robot and Meta-World, KALM’s reliance on dense
fine-tuning of multimodal layers raises scalability concerns,
especially when expanding to new domains. This motivates
the need for adaptive strategies that adjust tuning depth based
on task complexity and modality.

In embodied and interactive settings, fine-tuning can
enhance task grounding through policy optimization.
GLAM |[Carta et al., 2023] augments LLMs with a value
head and uses PPO to align predictions with RL rewards.
TwoSome [Tan et al., 2024] addresses action-length bias by
combining LoRA fine-tuning with word normalization, im-
proving performance in long-horizon tasks like VirtualHome.
POAD [Wen et al., 2024] proposes Policy Optimization with
Action Decomposition (POAD), which tokenizes actions and
applies fine-grained credit assignment to each component.
This formulation enables more expressive gradient signals
and enhances learning efficiency in structured environments
like Overcooked.

Modular task designs offer another direction for scalable
fine-tuning. CoELA [Zhang et al., 2024] embeds pretrained
LLMs in a modular multi-agent framework, using LoRA to
adapt specific components while freezing general reasoning
layers. This approach supports both linguistic generalization
and domain-specific control, enabling decentralized coordi-
nation in cooperative environments such as TDW-MAT and
C-WAH. Modular designs strike a balance between adaptabil-
ity and interpretability, allowing agents to reason, plan, and
communicate effectively in dynamic multi-agent settings.

Discussions Environment-specific fine-tuning enables tight
coupling between LLM representations and RL task dy-
namics, often yielding high performance in static or in-
distribution settings. Yet this comes at the cost of scalabil-
ity, particularly in multi-task or continually evolving envi-
ronments. While parameter-efficient methods like LoRA re-
duce overhead, they often trade off adaptation depth and long-
term flexibility. A promising direction is modular grounding:
freezing core language reasoning while attaching lightweight
adapters for fast, task-specific alignment, preserving general-
ity without sacrificing adaptability.

3.2 Feedback-Driven Fine-Tuning

Feedback-driven fine-tuning adapts LLMs to RL tasks by in-
corporating signals such as preferences, rewards, critiques, or
self-assessments. It iteratively adjusts model behavior using
feedback rather than static labels, allowing the model to better
align with task-specific objectives in dynamic environments.

A prominent direction is preference-based fine-tuning,
where LLMs are trained to prefer certain outputs over alter-
natives. For instance, DPO [Rafailov er al., 2023] simpli-
fies alignment by directly optimizing a preference-aware loss,
avoiding explicit reward modeling or reinforcement learning
loops. This yields efficient training pipelines while maintain-
ing strong alignment in tasks like summarization and dia-
logue. Fine-Grained RLHF [Wu et al., 2023b] extends this
framework with multi-dimensional feedback signals (e.g.,
fluency, coherence, informativeness), enabling LLMs to learn
nuanced task-aligned behaviors via fine-tuned reward shap-
ing. Such approaches offer flexibility but require careful sig-
nal design to avoid reinforcing superficial cues.

Another important class of methods explore self-generated
feedback. SIRLC [Pang et al., 2024a] uses diverse reason-
ing paths to produce high-confidence answers, which are then
used to fine-tune the model via supervised learning. Elastic
Reset [Noukhovitch et al., 2023] introduces a stabilization
technique, periodically reverting the model to a moving av-
erage of its parameters to preserve generalization while still
optimizing for task-specific rewards. These techniques high-
light the promise of internal feedback but still face limitations
in feedback quality and signal calibration.

Feedback can also be structured through symbolic princi-
ples or alignment rules. SALMON [Sun et al., 2024] gen-
erates synthetic preferences using human-aligned heuristics
to shape a reward model for policy optimization. Comple-
menting this approach, INSIGHT [Luo et al., 2024b] com-
bines symbolic reasoning with reward feedback, enabling
the model to produce interpretable decisions and explana-
tions. These methods exemplify how grounding can be en-
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hanced through principled, iterative, and explanation-aware
feedback, enabling more interpretable and trustworthy RL
agents.

Other works explore dynamic and multi-level feedback for
more granular control. SIRLC [Pang et al., 2024a] gener-
ates reward signals from its own output quality and updates
its policy accordingly. ArCHer [Zhou et al., 2024] intro-
duces multi-level reinforcement signals, at both token and
utterance levels, to fine-tune long-horizon dialogue agents.
Thought Cloning [Hu and Clune, 2023] captures human de-
cision processes by training agents on synchronized demon-
strations of both actions and underlying reasoning, improv-
ing alignment with human-like behavior and thought patterns.
These approaches reflect a broader trend toward interactive,
cognitively aligned fine-tuning, where models adapt not only
to task feedback but to process-level guidance that reflects
human-like decision flows.

Discussions Feedback-driven fine-tuning enables iterative
alignment between LLM behavior and task-specific RL ob-
jectives, offering adaptability where static supervision falls
short. Its flexibility makes it especially suited for complex
or underspecified settings, but also exposes models to risks
like feedback loops, misalignment, or reward hacking. While
preference learning and self-evaluation provide lightweight
alternatives to full supervision, their effectiveness hinges on
signal quality and calibration. Symbolic priors and structured
feedback offer a path forward, enabling more stable and in-
terpretable fine-tuning with clearer grounding dynamics.

3.3 Task Generalization and Transfer

Task generalization and transfer under fine-tuning-based
grounding aim to equip LLMs with the flexibility to oper-
ate beyond the training distribution, adapting to new tasks,
instructions, and environments through targeted parameter
updates. This capability is crucial for LLM-RL agents in-
tended to function in open-ended, multi-task settings with
minimal supervision. A representative example is 3D-
VLA [Zhen et al., 2024], which fine-tunes a vision-language-
action model for 3D embodied environments. It aligns mul-
timodal inputs—language, perception, and action—through
task-specific interaction tokens and a generative diffusion
planner, enabling spatial reasoning and policy generalization
across previously unseen 3D manipulation scenarios. In a
complementary direction, RoboFlamingo [Li et al., 2024] se-
lectively fine-tunes task-specific modules (e.g., policy heads
and cross-modal attention layers) while freezing the core pre-
trained vision-language backbone. This modular tuning strat-
egy supports effective transfer to novel language-conditioned
manipulation tasks, achieving strong generalization without
overfitting to specific environments. Similarly, LLaRP [Szot
et al., 2024] adopts a reinforcement learning framework that
fine-tunes peripheral modules while keeping the central LLM
frozen. This setup preserves general-purpose reasoning while
allowing efficient adaptation to novel instructions, tasks, and
paraphrased command variations in embodied contexts.
Beyond modularization, several approaches leverage
principle-driven reward mechanisms to improve transfer.
SALMON [Sun et al., 2024] incorporates human-aligned
heuristics into a synthetic preference model, which then

guides iterative fine-tuning of LLMs via reinforcement learn-
ing. This facilitates alignment with abstract goals and pro-
motes consistency across tasks. A-LOL [Baheti er al., 2024]
introduces advantage-weighted learning in offline RL to op-
timize sequence-level rewards, supporting adaptation across
a broad spectrum of language tasks. Zhai et al. [Zhai et
al., 2024] further combine chain-of-thought prompting with
RL fine-tuning of vision-language models, improving in-
termediate reasoning and enabling generalization to previ-
ously unseen multi-step tasks. By embedding structural pri-
ors and reasoning scaffolds into the training process, these
approaches expand transfer capabilities while reducing the
fragility often associated with conventional fine-tuning.

Discussions The ability to generalize across tasks and en-
vironments remains a central bottleneck for LLM-RL agents.
While freezing pretrained LLM backbones preserves broad
reasoning skills, it limits fine-grained adaptation to specific
control and interaction patterns. Emerging strategies that
fine-tune peripheral modules or modular policy heads show
promise in striking a balance between reuse and flexibility.
By decoupling abstract semantic reasoning from grounded
decision-making, these methods enable more efficient, task-
specific adaptation with minimal interference to general ca-
pabilities. Moving forward, advances in structured mem-
ory, compositional skill libraries, and meta-adaptation mech-
anisms will be key to achieving robust, low-shot generaliza-
tion in open-ended, dynamic environments.

4 Challenges and Opportunities

Grounding LLMs in RL tasks holds immense potential to
revolutionize intelligent decision-making across diverse do-
mains, yet realizing this vision demands overcoming several
deep and interrelated challenges:

* Contextual Adaptation to Environment-Specific Dynamics:
While LLMs are pretrained on broad open-domain cor-
pora, real-world RL environments exhibit domain-specific
dynamics, temporal dependencies, and task constraints
that shift over time. Aligning LLM predictions with
such evolving state-action structures remains a core chal-
lenge, particularly under non-stationarity and distribu-
tional drift. Effective adaptation requires mechanisms like
environment-conditioned prompting, online fine-tuning,
and continual knowledge distillation that can respond to
task variation without sacrificing prior competence.

e Mitigating Hallucination and Misalignment Risks: LLMs
are prone to hallucinations and generating overconfident
yet incorrect outputs, which can severely compromise the
safety and reliability of RL agents in critical tasks. Verify-
ing, quantifying, and mitigating such risks requires robust
grounding mechanisms, uncertainty-aware decision mod-
els, and fail-safe fallback strategies to prevent cascading
errors in sequential decision-making.

e Evaluating Effectiveness and Reliability: Traditional RL
evaluation metrics focus on reward performance, which
may not fully capture the nuanced contributions of LLM-
augmented reasoning. Developing comprehensive eval-
uation frameworks that assess consistency, assumptions,
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Model Domain Tasks Mod FT HR EMBMTL Backbone
Ghost-in-Minecraft [Zhu et al., 2023] Games Minecraft T x v v GPT-3
DEPS [Wang et al., 2023b] Games Minecraft T x v v Y GPT-3
Voyager [Wang et al., 2024] Games Minecraft T x v v X GPT-4
SCHEMA [Niu et al., 2024] Video CrossTask, COIN, NIV T+V x v X v GPT3.5
Plan-Seq-Learn [Dalal et al., 2024] Robotics MetaWorld, Kitchen, Ro- T+V x v X GPT-4
bosuite, Obstructed Suite
InstructRL [Hu and Sadigh, 2023] Games Hanabi, Say-Select T X X X v GPT-3.5
Plan4MC [Yuan et al., 2023] Games Minecraft T+V x v Vv v GPT-3.5
SayPlan [Rana et al., 2023] Robotics Home, Office T+V x v Vv v GPT-3.5
ELLM [Du et al., 2023] Games Crafter; Housekeep T X X X X GPT-3
VLM-RM [Rocamonde et al., 2024] Robotics Humanoid-v4 T+V x X X X CLIP
Read and Recap [Wu er al., 2023a] Games Atari T+V x  x X X RoBERTa+Macaw
INSIGHT [Luo et al., 2024b] Neuro-Symbolic  Atari T+V v v X X GPT-4
PalLM-E [Driess et al., 2023] Robotics TAMP T+V v v Vv v PalLM
SALMON [Sun et al., 2024] Assistant OpenAssistant T v X X X Llama2-70B
Duolando [Siyao et al., 2024] Motion Duet Dance 100 T v X X v minGPT
KALM [Pang e al., 2024b] Robotics CLEVR-Robot T v X X v Llama2-7B
GLAM [Carta et al., 2023] Games BabyAl T vVioox o X v T5-Large
TWOSOME [Tan et al., 2024] Embodied Overcooked, Virtual- T v x Vv X Llama-7B
Home
POAD [Wen et al., 2024] Embodied Overcooked, Virtual- T v x v X Llama2-7B
Home, DataSciCoding
CoELA [Zhang et al., 2024] Embodied C-WAH, TDW-MAT ™V v v v Vv Co/Llama2
DPO [Rafailov et al., 2023] Alignment NLP tasks T v X X v GPT-2/]
Fine-Grained RLHF [Wu ez al., 2023b] ~ Alignment NLP tasks T voox X v GPT-2/T5-L
SIRLC [Pang er al., 2024a] Alignment NLP tasks T v X X v FLAN-T5
Elastic-Reset [Noukhovitch ez al., 2023]  Alignment NLP tasks T v X X v GPT-2/Llama2-7B
ArCHer [Zhou er al., 2024] Language Agent  Multi-turn tasks T v o voox v GPT-2/RoBERTa
Thought Cloning [Hu and Clune, 2023] ~ Games BabyAlI (BossLevel) T v v X X BabyAI LM
3D-VLA [Zhen et al., 2024] Robotics RLBench, CALVIN T™+V v v Vv v BLIP2+T5x 1,
RoboFlamingo [Li ef al., 2024] Robotics RLBench, CALVIN T™+V v x Vv v OpenFlamingo
LLaRP [Szot et al., 2024] Robotics ALFRED T+V v x v Llama2-7/13B
A-LoL [Baheti et al., 2024] Alignment NLP Tasks T Vv x x Y Llama-7B
LLaVA-RL [Zhai et al., 2024] Robotics ALFRED ™V v v v Vv LLaVA-1.6

Table 1: Grounding LLMs in RL: A Taxonomy of Approaches. This table categorizes representative methods for grounding pretrained
LLMs within reinforcement learning pipelines, structured under six core dimensions: (1) Model: the method or system name; (2) Domain:
the application area (e.g., games, robotics, alignment); (3) Tasks: the benchmark environments or task suites; (4) Mod: input modality, with
T for text and V for vision; (5) FT: whether the LLM is fine-tuned during grounding; (6) HR: use of hierarchical policy structures; (7) EMB:
whether the LLM is embodied within an agent interacting with an environment; (8) MTL: support for multitask learning and generalization;
and (9) Backbone: the underlying LLM architecture. The taxonomy highlights diverse grounding strategies, revealing emerging trends such
as multimodal integration, hierarchical control, and fine-tuning for decision-making in embodied agents.

reasoning accuracy, policy robustness, and generalization
is essential for reliable grounding. This includes bench-
marks for multi-task learning, out-of-distribution perfor-
mance, and longitudinal adaptability.

* Data Efficiency and Computational Scalability: Fine-
tuning large models for RL is resource-intensive, espe-
cially when paired with RL’s high sample complexity. Yet,
the scalability challenge extends beyond training: real-
world deployment introduces tight constraints on inference
latency, memory usage, and system integration, particu-
larly in robotics and embedded settings. These practi-

cal bottlenecks demand grounding strategies that are not
only computationally efficient during learning but also
lightweight and responsive at inference time.

Trust, Interpretability, and Ethical Alignment: The inte-
gration of LLMs into RL pipelines introduces new ca-
pabilities, but also amplifies the need for interpretability,
trust, and ethical safeguards. In high-stakes domains, these
are not ancillary concerns; they are prerequisites. Inter-
pretability must go beyond surface-level explanations and
be woven into the learning and decision-making fabric
of the agent. Ethical alignment, likewise, must be op-
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erationalized at the level of reward modeling, preference
elicitation, and interactive feedback, not treated as an af-
terthought. Recent advances in causal reasoning, policy
summarization, and natural language rationalization offer
practical avenues for making agent behavior transparent
and scrutinizable. Coupled with human-in-the-loop over-
sight and normative constraints, these techniques are es-
sential to ensure that LLM-RL systems are not only perfor-
mant but also accountable and aligned with societal values.

While these challenges are significant, they also present a
unique opportunity to redefine the boundaries of reinforce-
ment learning and catalyze transformative progress across
both research and real-world applications:

Dynamic Knowledge Adaptation for Real-Time Decision-
Making: LLMs can serve as dynamic knowledge mod-
ules that adapt to real-time changes in the environment,
enabling RL agents to continuously update their poli-
cies without exhaustive retraining. This facilitates robust
decision-making in non-stationary and high-variance envi-
ronments, such as autonomous driving and real-time strat-
egy games.

Augmenting Exploration with Knowledge-Driven Priors:
Traditional RL agents rely on random exploration, which
can be inefficient. LLMs can provide structured pri-
ors based on accumulated knowledge, guiding agents to-
ward more promising state-action spaces. This knowledge-
driven exploration accelerates learning in sparse-reward
settings and complex environments.

Cross-Domain Transfer and Generalization: The broad
generalization capabilities of LLMs enable RL agents to
transfer knowledge across domains with minimal adapta-
tion. This paves the way for universal RL agents that can
operate effectively in diverse environments, from health-
care simulations to industrial robotics, without domain-
specific retraining.

Human-Al Collaborative Learning: By leveraging LLMs
for natural language interaction, RL agents can seamlessly
incorporate human feedback into their learning loops. This
human-AI collaboration enhances the alignment of agent
behavior with human values and improves safety in critical
tasks through intuitive guidance.

5 Conclusion

This survey presents a comprehensive synthesis of ground-
ing methodologies for integrating large language mod-
els (LLMs) into reinforcement learning (RL) systems. It
covers both training-free approaches, including instruc-
tive prompting, retrieval-augmented reasoning, and multi-
modal integration, and fine-tuning-based strategies such as
environment-specific adaptation, feedback-driven refine-
ment, and multi-task transfer. The taxonomy in Table 1
organizes grounding methods into coherent paradigms,
clarifying how LLM capabilities in reasoning, abstrac-
tion, and generalization can be harnessed to enhance RL
agents’ adaptability in dynamic environments. While re-
cent progress is encouraging, significant challenges remain

in scaling grounding methods, balancing generalization
with task specificity, and integrating symbolic reasoning
with embodied, multimodal interaction. Addressing these
open questions, especially through safe and data-efficient
feedback-driven fine-tuning, will be critical for advancing
toward context-aware agents capable of effective reason-
ing, planning, and real-world decision-making.
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