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Abstract
The integration of symbolic computing with neu-
ral networks has intrigued researchers since the
first theorizations of Artificial intelligence (AI).
The ability of Neuro-Symbolic (NeSy) methods
to infer or exploit behavioral schema has been
widely considered as one of the possible proxies
for human-level intelligence. However, the lim-
ited semantic generalizability and the challenges
in declining complex domains with pre-defined
patterns and rules hinder their practical imple-
mentation in real-world scenarios. The unprece-
dented results achieved by connectionist systems
since the last AI breakthrough in 2017 have raised
questions about the competitiveness of NeSy so-
lutions, with particular emphasis on the Natural
Language Processing and Computer Vision fields.
This survey examines task-specific advancements
in the NeSy domain to explore how incorporat-
ing symbolic systems can enhance explainabil-
ity and reasoning capabilities. Our findings are
meant to serve as a resource for researchers ex-
ploring explainable NeSy methodologies for real-
life tasks and applications. Reproducibility details
and in-depth comments on each surveyed research
work are made available at https://github.com/
disi-unibo-nlp/task-oriented-neuro-symbolic.git.

1 Introduction
“Stacked neural layers is all we need”. This statement sum-
marizes most of the current research efforts in the Artificial
Intelligence (AI) field, especially in Natural Language Pro-
cessing (NLP) and Computer Vision (CV). The advancements
and achievements of the latest neural models are marvelous,
but they conceal fundamental drawbacks regarding data ef-
ficiency and explainability. The need to resort to Neuro-
Symbolic (NeSy) components naturally arises from the ne-
cessity for trustworthy and efficient solutions. The data type
of “thoughts” in the connectionist approaches—also known
as tensors—and the hidden unsupervised manipulations of
such information constitute a physical barrier to hierarchical
and abstract planning, whose achievement cannot be reached
via mere input-output relationships [Marcus, 2018]. If we

AAAI 50 (20)
IJCAI 31 (11)
NeurIPS 28 (17)
ICLR 17 (10)
ICML 17 (14)
EMNLP 9 (6)
CVPR 7 (4)
ACL 7 (5)
ICCV 2 (0)
JMLR 2 (2)
NAACL 1 (1)
TACL 1 (1)

N
eS

y

92B
lack-Box42

Lo
gi

c20
Short

18

Considered Discarded

Figure 1: Distribution of NeSy peer-reviewed papers over the pe-
riod 2017-2024. The innermost ring delineates the inclusion criteria.
Greyscale slices denote studies excluded for relying on black-box
methods, exclusively logical approaches, or brevity, while the col-
ored slice comprises the surveyed ones. The outermost ring repre-
sents the number of research works from each selected venue, with
exact counts reported in the legend. The number of papers consid-
ered for each track is enclosed in parentheses.

envision a not-too-distant future where data availability and
quality become critical concerns, mainly due to the poten-
tial bias introduced by synthetic information, we urge finding
and exploring research pathways with compositional abilities
weakly related to the training set’s dimension [Giunchiglia
et al., 2022]. We uphold that neuro-symbolic methods can
provide an alternative to break the curse-of-dimensionality
modern methodologies suffer from. While effective, spar-
sity enforcement regularization mechanisms [Bach, 2017] re-
quire strong assumptions about the nature of the target dis-
tribution, which is unrealistic for the complex domains NLP
and CV models usually deal with [Bronstein et al., 2021].
We argue that symbolic components can be the regulariza-
tion for forcing more complex behavior into neural mod-
els. By combining data-driven insights with explainable,
logic-based representations, we can achieve higher general-
ization capabilities [Besold et al., 2021]. Other data-driven
paradigms have also been considered [Lodi et al., 2010;
Domeniconi et al., 2015].

As the keywords “reasoning” and “explainability” are gain-
ing more attention in the community, we highlight a key
notational misunderstanding between rule-guided and post-
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inference forensic strategies. While both methods aim to pro-
vide a rationale behind predictions, they fundamentally differ
in their approach. Rule-guided methods constrain the out-
put to meet specific criteria, while post-inference approaches
retrospectively reconstruct plausible interpretable reasoning
pathways that led to the results. We further claim that these
terms should not be used to advocate human-like faculties
but as proxies for generalization behavior within a hierar-
chical backbone architecture governed by predefined rules or
component-interaction schemas.

Our Contribution The lack of a clear definition of NeSy
in the AI field, the inconsistency in evaluation benchmarks,
and the multitude of uncoordinated study directions with no
common comparison grounds primarily drive this survey. In
this work, we conduct a task-directed literature analysis fo-
cusing on how NeSy methods apply and scale in diverse ap-
plication contexts. We assess the methodological soundness
of such approaches and compare them to black-box systems
in real-world scenarios to identify the current limitations of
these strategies. Departing from recent surveys that attempt
to classify research works along taxonomical axes or net-
work architectural variations, we propose a new methodolog-
ical approach that disentangles these conceptual and practi-
cal inconsistencies by providing a comprehensive and critical
overview of NeSy systems. We aim to deepen the understand-
ing of these hybrid systems’ advantages and inherent limita-
tions, laying the groundwork for future research and bridging
the gap between explainability and performance in AI.

2 Taxonomy
This section discusses the structure and systematic repro-
ducible methodologies followed to define our task-directed
taxonomy for NeSy methods. We further examine datasets,
evaluation benchmarks, and their limitations in delineating
fair comparisons across different approaches. As previously
discussed, we acknowledge the nuanced usages and incon-
sistency in the declination of the term NeSy in NLP and CV
literature, where it is often misapplied to methods claiming
reasoning and interpretability without structured symbolic
frameworks. In this paper, NeSy exclusively refers to ap-
proaches integrating neural networks with symbolic compo-
nents such as solvers, logical rules, or state-action schemas.

Inclusion Criteria This survey aims to investigate NeSy
systems from the last AI revolution in 2017. To iden-
tify relevant research systematically, we used the DBLP
SPARQL endpoint to collect research papers published be-
tween 2017 and 2024 from general-purpose leading venues
in those fields where such technological leap has taken hold
more — Natural Language Processing (NLP) and Computer
Vision (CV). A customized query was executed to retrieve
publications related to NeSy methods using the keywords:
“neuro-symbolic”, “nesy”, “rule-based”, “probabilistic-
logic”, “probabilistic-reasoning”, “logic-based”, “soft-logic”,
“fuzzy-logic”, “concept-learning”, “inductive-logic program-
ming”. Figure 1 illustrates the number and distribution of the
research works meeting our requirements. We meticulously
analyzed the resulting 172 papers and categorized them to

identify works that deviated from the designated NeSy for-
mulation, excluding non-interpretable methods, purely logi-
cal approaches, and short papers. This collection was thor-
oughly studied to derive a pool of research works focusing
on NeSy approaches that integrate symbolic reasoning with
neural networks. We further explored relevant related works
to gain a precise picture of the NeSy research landscape.

Datasets and Benchmarks We analyzed real-world
datasets and benchmarks to ensure an unbiased comparison
across methods while focusing on practical applications.
This study highlighted reproducibility challenges in tasks
involving sampling operations, such as negative-example
mining. We found substantial inconsistencies on the
WN18RR1 benchmark for different research works using
the same black-box model baselines. We further spotlight
an evaluation trend in the Nesy literature where synthetic
datasets and toy tasks are specifically tailored for the features
of the newly proposed method. For this reason, we consider
them unsuitable for drawing conclusions and comparisons.
In Figure 2, we label most of the identified NeSy tasks with
their respective evaluation benchmark if they respect our
fairness criteria. Missing values appear in image generation,
where different instruction prompts significantly impact
results; in Reinforcement Learning (RL), where each method
is evaluated on custom tasks or games; and in causal effect
estimation, due to outdated benchmarks with limited entries.

A Task-Oriented Formulation We organize our analysis
by identifying three distinct methodological frameworks
that traverse the neural-symbolic research landscape: (1)
Rule Mining, (2) Rule Enforcement, and (3) Program
Synthesis. Within each framework, we categorize techniques
based on their theoretical grounding and the tasks they
address, focusing on how constraints, symbolic structures,
and interpretable programmatic constructs are respectively
extracted, integrated, or synthesized. Our taxonomy in
Figure 2 is designed to be read in two complementary ways.
A top-down perspective highlights how these frameworks
interconnect, emphasizing shared logical formalisms and
learning paradigms. A bottom-up approach begins with a
specific task, moving upward to identify the most relevant
methodological families and techniques for that objective.
This dual perspective preserves the field’s theoretical coher-
ence while promoting a task-directed formulation of NeSy
solutions. Enabling bidirectional exploration between related
methodologies allows researchers to identify analogous
strategies to refine or expand existing approaches based on
their objectives. In Figure 3 we show examples of the formal
languages employed by each theoretical framework in the
taxonomy.

In the following sections, we analyze each methodology in
depth, illustrating its core principles and highlighting oppor-
tunities for advancements in neural-symbolic integration.

1https://github.com/TimDettmers/ConvE
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Figure 2: Task-Directed NeSy Taxonomy. We organize the most relevant task families by classifying each according to applicable NeSy
techniques and grouping them into three macro-categories: (1) Rule Mining, (2) Rule Enforcement, and (3) Program Synthesis. We also label
the most commonly used datasets to highlight their role in real-world benchmarking and model evaluation. Tasks are organized from bottom
to top and from left to right within each category, mirroring the survey’s conceptual progression.

3 Rule-Mining techniques
Neuro-Symbolic techniques employ rule-mining as a core
methodology for model construction, focusing on extract-
ing interpretable rules from diverse input data. The com-
putational complexity of rule extraction directly correlates
with the chosen formal specification language. Horn clause
approaches exhibit the highest complexity, requiring matrix
representations for ground atom truth values. Natural Logic
frameworks show moderate complexity, combining linguis-
tic preprocessing with question-answering for entity and op-
erator extraction. Deterministic Finite Automata (DFAs)
present the lowest complexity, leveraging operational traces
with SAT-solving for rule learning.

3.1 Horn Clauses
Horn Clauses (HCs), a fundamental component of logic pro-
gramming, provide a structured framework for rule-based
reasoning. Defined as disjunctions of literals with at most
one positive literal as the clause head, HCs enable logical in-
ference across various domains.

Temporal point process modeling relies on HC-based rea-
soning to capture event dependencies, which is particularly
crucial in fields such as medicine and autonomous driving,
where sudden changes in conditions can have severe conse-
quences. [Yang et al., 2024] introduced a NeSy rule induction
method that leverages a sequential covering algorithm and a
custom attention mechanism to extract HCs. While demon-
strating scalability, trustworthiness, and strong performance
over existing models, its ability to capture increasingly com-
plex rules remains an open research question.

The Inductive Logic Programming (ILP) paradigm auto-
mates the discovery of HC-based rules, supporting general-
ized reasoning and inference over structured data. In the con-
text of extracting rules from structured data like tables and
graphs, ILP seeks to identify missing connections between
entities by uncovering patterns in existing relationships.
DFORL [Gao et al., 2024], a recent lightweight method for
efficient rule extraction, introduces a depth-limited breadth-
first search for neighborhood extraction. This proposition-
alization technique converts relational facts into vector rep-
resentations suitable for neural network-based learning and
applies syntactic constraints to reduce the rule search space.

By integrating auxiliary matrices and curriculum learning,
DFORL uncovers hidden predicates and enhances the effi-
ciency and progression of the training process. Although
this approach demonstrates potential in real-world applica-
tions such as drug design [King et al., 1995], its performance
on the WN18RR link prediction benchmark remains incon-
sistent. This variability primarily stems from the dataset’s
design, which omits inverse relations in the test set, com-
plicating direct comparisons with baseline methods and sug-
gesting that methods like DFORL could benefit from incor-
porating negation in rule bodies to enhance the model’s abil-
ity to handle higher-arity predicates. NCRL, a complemen-
tary approach by [Cheng et al., 2023], focuses on rule com-
positionality, sampling alternative paths between connected
nodes to construct Horn clauses. This method employs an it-
erative algorithm combining an RNN-based selection process
with an attention mechanism, aiming to maximize the like-
lihood that head predicates can be reconstructed from sam-
pled path predicates. By leveraging predicate embeddings,
NCRL outperforms [Gao et al., 2024] on WN18RR, mainly
due to its higher ability to infer semantic relationships when
inverse relations are missing. Its strong performance in low-
data regimes and rapid convergence on GPU makes NCRL a
compelling alternative for the same task.

Applied to tabular data, Inductive Logic Programming
foundations are leveraged in Fold-SE [Wang and Gupta,
2024] to extract interpretable logical rules for supervised
tabular classification. Designed to handle both categorical
and numerical data with minimal preprocessing, it scales ef-
ficiently to large datasets while preserving rule coherence.
Following a sequential covering strategy, Fold-SE iteratively
refines rules by optimizing a modified Gini Impurity met-
ric to enhance classification performance. Built upon Fold-
SE, NeSyFOLD [Padalkar et al., 2024] adopts ILP on ex-
tracted high level features for an image classification task.
NeSyFOLD derives rules from binary activation masks pro-
duced by Convolutional Neural Networks (CNNs), assign-
ing semantic labels to kernels post hoc. Its reliance on
CNN architectures —extended and outperformed by modern
transformer-based models— constrains its effectiveness, and
the exclusion of exception predicates in semantic labeling fur-
ther restricts its representational capacity.
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In the textual domain, Document-level Relation Extrac-
tion (DocRE) is a supervised learning task that identifies re-
lations r(h, t) between entities, where r represents the re-
lation, h is the head entity, and t is the tail entity. Both
NeSy models and black-box approaches have been evalu-
ated on DWIE, a widely recognized benchmark for DocRE.
JMLR, a novel framework introduced in [Qi et al., 2024],
integrates DocRE with rule extraction through residual con-
nections. This approach computes rule support as a weighted
sum of atom supports, facilitating the implementation of soft-
proof mechanisms that combine relations into HCs. [Jain et
al., 2024] adopted an alternative formulation, treating DocRE
as a knowledge base link prediction task and utilizing the
black-box model DocRE-CLiP to infer relational structures.
FedNSL, introduced in [Xing et al., 2024], extends NeSy
methods to a federated learning setting for DocRE, achiev-
ing performance between that of DocRE-CLiP and JMLR.
While its evaluation of real-world datasets remains limited to
DWIE, the framework demonstrates the potential for privacy-
preserving algorithms. By leveraging variational expectation
maximization, it efficiently constrains the rule search space,
reducing training rounds while maintaining competitive per-
formance. A comparative evaluation of these methods —as
shown in Table 1— indicates that JMLR significantly out-
performs DocRE-CLiP on DWIE while achieving similar re-
sults on other benchmarks, highlighting the advantages of
rule-based reasoning in capturing complex multi-sentence re-
lationships. However, JMLR does not explicitly incorporate
external knowledge, a feature more naturally integrated into
knowledge-base-driven methods.

3.2 Natural Logic

Natural Language Inference (NLI) determines entailment re-
lations between a premise and a hypothesis using formal op-
erators such as equivalence (≡) and forward entailment (⊏).
[Feng et al., 2022] proposed a transformer-based NeSy model
that integrated GPT-2 with reinforcement learning for op-
erator composition and introspective revision using Word-
Net. This approach outperforms baselines like BERT on most
benchmarks but remains sensitive to linguistic noise, such
as adverbs and prepositional phrase modifications in bench-
mark datasets. QA-NatVer [Aly et al., 2023] extended this
framework to claim verification, constructing proofs through
sentence alignment, operator assignment, and a custom DFA.
As shown in Table 1, QA-NatVer highlights the trade-off be-
tween NeSy models’ explainability and performance, with a
notable accuracy drop due to its reliance on a small training
set. Its black-box counterpart, SFAVEL [Bazaga et al., 2024],
overcomes this limitation using self-supervision and distilla-
tion to remove the need for labeled data. TabVer [Aly and
Vlachos, 2024] further extended NLI to tabular claim ver-
ification by incorporating numerical reasoning, recognizing
equivalences, alongside pragmatic reasoning through deter-
ministic rules. While achieving strong results on FEVER-
OUS datasets, it struggles with exact numerical matching, un-
derscoring ongoing challenges in adapting NeSy methods to
less rigid reasoning tasks.

3.3 Deterministic Finite Automaton
Deep Q-learning has proven effective in reinforcement
learning (RL), particularly in tasks that require sequen-
tial decision-making and structured exploration. Traditional
black-box methods struggle with environments like the Atari
classic game “Montezuma’s Revenge”, where success de-
pends on complex interactions between objects and precise
room navigation. A Deterministic Finite Automaton provides
a structured way to model sequential dependencies by rep-
resenting state transitions through a finite set of rules. This
formalism can be leveraged to guide exploration and im-
prove decision-making in complex RL environments. Lever-
aging this formalism, [Hasanbeig et al., 2024] proposes a
deep Q-learning framework augmented with DFA synthesis
to enhance exploration efficiency and policy optimization.
By structuring learned behaviors as state transitions, this ap-
proach enables more effective reasoning over sequential de-
pendencies. Within this framework, the RL algorithm gener-
ates exploration traces that capture sequences of state-action
pairs alongside reward estimates. These traces inform a DFA
synthesis module, which formulates logical constraints and
employs a SAT solver to construct a minimal-state DFA en-
coding the agent’s learned behavior. By leveraging this struc-
tured representation, the deep learning module refines policy
transitions, optimizing state-action mappings and iteratively
improving decision-making within the RL process. Experi-
ments demonstrate that the framework achieves faster conver-
gence in tasks requiring sequential planning and object inter-
actions, outperforming conventional models that fail to con-
verge. Integrating expert-designed DFAs further enhances ef-
ficiency by eliminating the initial exploration phase and expe-
diting training. Future research may extend this approach be-
yond gaming and investigate using more expressive automata,
such as Pushdown Automata, to model hierarchical memory
structures [Sipser, 1997].

4 Rule-Enforcement Techniques
This section presents promising methodologies for enforcing
constraints in the form of rules over systems for various appli-
cation purposes. These constraints can be enforced through
tailored networks or by regularization.

4.1 First-Order-Logic
Integrating First-Order Logic (FOL) rules into constrained
image generation has been explored to enhance controlla-
bility and trustworthiness. [Sueyoshi and Matsubara, 2024]
introduced a pioneering approach that extracts FOL con-
straints from text using dependency parsing and translates
them into equations governing the intensity of attention
maps. Rather than mining logical constraints from large
datasets, this method employs a regularization strategy —a
well-established practice in neuro-symbolic reasoning— as
demonstrated by later works in this survey [Cai et al., 2022;
Pryor et al., 2023]. In this approach, the logical structure is
not inferred from data but explicitly imposed through a spe-
cialized loss function that guides the generation process. No-
tably, this method natively supports logical quantifiers, which
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Figure 3: Overview of the intermediate formal languages employed by each taxonomy method.

allow for formulating more precise and interpretable con-
straints. Qualitative analyses suggest that incorporating FOL
constraints in image generation significantly enhances con-
tent fidelity, making this approach highly relevant for applica-
tions like chatbots and automated content creation. However,
the absence of a counting mechanism prevents constraint en-
forcement on repeated entities (e.g., “a black dog and a white
dog”), while a bias toward prototypical examples limits flexi-
bility. Visual concept learning and semantic parsing could be
incorporated to address these challenges [Mao et al., 2019].

Reasoning over images is essential for detecting multi-
modal misinformation, where deception stems from the in-
terplay of text and visuals. While traditional black-box ap-
proaches have achieved high accuracy in this domain, the lack
of interpretability remains a major limitation. [Dong et al.,
2024] introduced a NeSy pipeline that enhances transparency
by integrating logical reasoning into the classification pro-
cess. Using two encoder models, the model extracts patterns
from both modalities and employs a teacher-student network
to estimate probabilities for three latent variables: image ma-
nipulation, cross-modal inconsistency, and image repurpos-
ing. A unique FOL rule classifies a sample as fake if any of
the three variables hold true. Table 1 shows this method trail-
ing its black-box counterpart by a few points, likely due to
the more advanced vision models used by the competitor.

Ensuring neural network reliability is a major challenge,
especially in fact-checking [Bussotti et al., 2024], and me-
dia forensics, where errors can have serious consequences.
Formal verification methods guarantee model behavior un-
der specific conditions, ensuring compliance with predefined
properties. [Xie et al., 2022] introduced a structured verifica-
tion framework based on the Neuro-Symbolic Assertion Lan-
guage (NeSAL), a fragment of FOL designed for expressing
and verifying neural network properties. NeSAL formalizes
relationships between the inputs and outputs of a neural net-
work under verification (NUV) and those of a specification
network, which acts as a binary classifier to assess compli-
ance with a given property. For instance, in an image classi-
fication task, the specification network outputs “true” when-
ever the NUV correctly identifies a specific class, such as the
digit ”2” in MNIST. This framework enables the formal spec-
ification and verification of key properties, such as correct
classification of specific classes, stability of high-confidence
predictions under certain data distributions, and functional
equivalence between different architectures within a defined

margin of error. While NeSAL does not provide quantitative
measures for violations, its qualitative evaluations of model
confidence under distributional shifts demonstrate its poten-
tial for debugging and improving neural networks. This ap-
proach enhances model reliability by providing a structured
verification method, making it valuable in high-risk tasks.

4.2 Probabilistic Logic
Probabilistic Logic (PL) integrates probability theory with
formal logic to model uncertainty, enabling structured reason-
ing in noisy or incomplete data environments. SLEER [Cai
et al., 2022] addresses reporting bias in temporal event data
expressed in text, where uncommon events are overrepre-
sented compared to routine occurrences (e.g., “It took me an
hour to get out of bed” versus “It takes me 15 seconds to get
out of bed”). This imbalance poses challenges for temporal
commonsense reasoning tasks, which rely on multiple-choice
question formats derived from textual benchmarks. SLEER
aims to improve model robustness in handling temporal in-
formation by incorporating structured reasoning principles.
A language encoder supports multi-task learning, where clas-
sification heads predict specific temporal dimensions, each
optimized using cross-entropy loss. The total loss function
integrates these individual losses with a regularization term
derived from predefined probabilistic soft logic (PSL) rules.
Implemented with t-norms, these rules enforce logical con-
sistency by connecting the outputs of the classification heads.
Unlike traditional PSL models that use weighted rules, this
approach relies on carefully crafted constraints for effective-
ness. Despite its innovative design, the approach yields only
marginal improvements on the McTACO [Zhou et al., 2019]
benchmark2, underperforming on other multi-task encoders
such as [Pereira et al., 2020]. Expanding on this work, [Cai
et al., 2023] introduced LECTER, which integrates a context
encoder, a logic induction module for temporal dependencies,
and a DeepProbLog-based logic validator incorporating hu-
man knowledge. Optimized through regression and logic en-
tailment losses, LECTER demonstrated strong zero-shot per-
formance on the TIMEDIAL [Qin et al., 2021] benchmark.
As shown in Table 1, LECTER outperforms GPT-3.5 [Brown
et al., 2020] in 2-best accuracy, which checks if the top two
ranked answers are correct, while GPT-3.5 is benchmarked
with standard accuracy. However, its evaluation remains lim-
ited to TIMEDIAL, leaving its generalizability unverified.

2https://leaderboard.allenai.org/mctaco/submissions/public
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Generating interpretable dialogues presents a significant
challenge that can be addressed through reasoning over exter-
nal KBs. [Yang et al., 2022] introduced NS-Dial, a model that
integrates external knowledge bases into the dialogue gen-
eration process to enhance interpretability. The framework
processes input dialogues through an encoder, which extracts
relevant features before a hypothesis generator formulates an
initial assumption. A hierarchical reasoning engine then iden-
tifies supporting triples within the KB, constructing a struc-
tured reasoning chain represented as a single weighted HC.
This inferred knowledge guides the decoder, which generates
the next token based on belief scores derived from the reason-
ing process. Although this approach improves interpretabil-
ity, black-box methods demonstrate higher performance in di-
alogue generation—as shown in Table 1. In the same context,
[Pryor et al., 2023] proposed a NeSy model to identify di-
alogue states and transitions in goal-oriented conversations
(Dialog Structure Induction), especially in low-resource set-
tings. The model combines a Variational Recurrent Neural
Network (VRNN) with a symbolic loss based on PSL to en-
force structural consistency in sequence prediction. Though
effective in domain generalization and adaptation, the ap-
proach is surpassed by a simpler VRNN baseline as labeled
data increases, revealing potential complexity limitations.

PL, like FOL, provides a framework for ensuring network
safety. [Yang et al., 2023] proposed a RL policy that en-
forces action safety through structured probabilistic reason-
ing. The policy uses annotated disjunctions for action proba-
bilities, probabilistic facts for environmental conditions, and
logic clauses for safety specifications, enabling queries on
shielded policy probabilities and action safety metrics. The
approach employs a PL-based strategy, where a shielded pol-
icy gradient optimizes rewards while enforcing safety con-
straints in situationally aware environments, and a safety gra-
dient enhances action reliability in physically constrained set-
tings like those affected by inertia. Empirical evaluations in-
dicate that the collaboration between these components is es-
sential to avoid performance degradation. With RL playing an
increasing role in language modeling, we argue that integrat-
ing these techniques with instruction tuning may enhance re-
sponse accuracy and safety in future real-world applications.

4.3 Deterministic Finite Automaton

[Jiang et al., 2021] introduced a temporal-logic-based re-
ward shaping technique to enhance Q-learning in scenarios
where the behavior policy deviates from the optimal policy.
Their approach incorporates a potential-based reward term
derived from a DFA to encode temporal logic constraints,
such as “following a human” or “staying in a corridor”. In
this framework, the agent iteratively refines a Q-table to esti-
mate state-action values, typically updating it at episode end-
points. By integrating these rules into the reward function,
the method encourages alignment with desired behaviors, ac-
celerating convergence to the optimal policy without enforc-
ing specific actions. Simulations across various tasks demon-
strate that reward shaping is more effective than shielding
in exploration-intensive scenarios, while shielding performs
better when constraints precisely match task requirements.

5 Program Synthesis Techniques
Program Synthesis (PS) techniques generate structured pro-
grams in either general-purpose programming languages or
domain-specific languages (DSLs) to guide system prediction
or behavior. This approach shares similarities with method-
ologies such as NLI syntax, where words and operations are
combined to generate a structured representation for each
sample. However, PS introduces significant complexity, as
generating a valid program often depends on semantic pars-
ing or search algorithms like A*. Its greater expressive power
distinguishes it from formal rule-based methods, which are
typically constrained by the removal of quantifiers and face
challenges in integrating domains such as mathematics.

5.1 Context-Free Grammars
PS has been applied to causal effect estimation, where tradi-
tional models often rely on strong assumptions that limit their
flexibility. [Reddy and Balasubramanian, 2024] introduced
NESTER, a model using a DSL defined by a context-free
grammar. An A* algorithm with heuristic guidance selects
grammar rules iteratively, generating differentiable programs
acting as inductive biases. The DSL supports operations such
as binary selection, addition, multiplication, and subset com-
putation but excludes recursion to maintain simplicity. While
evaluations showed competitive results on small benchmarks,
scalability to more diverse datasets remains uncertain.

5.2 Semantic Parsing
LINC [Olausson et al., 2023] approaches logical reasoning
through semantic parsing, translating natural language inputs
into FOL clauses processed by the Prover9 solver. To enhance
robustness, the method employs majority voting across mul-
tiple generated programs. Comparisons with alternative rea-
soning paradigms, including naive prediction, scratchpad rea-
soning, and Chain-Of-Thought, show superior performance
on synthetic datasets and competitive results on expert bench-
marks. A key limitation of this approach is the occurrence
of semantic parsing errors, which could be addressed by
integrating context-free grammars and consistency-checking
mechanisms to improve reliability. Unlike SATLM [Ye et al.,
2023], which encodes problems into SAT formulations and
demonstrates strong benchmark performance, LINC relies on
FOL-based reasoning, offering a distinct approach to explain-
ability compared to SAT’s declarative framework.

Beyond textual reasoning, NeSy methods have been ex-
plored for visual tasks, with NS-CL [Mao et al., 2019] serv-
ing as a foundational model. By integrating a visual en-
coder, semantic parser, and program executor, it achieves
near-perfect generalization on CLEVR [Johnson et al., 2017]
and strong performance on real-world datasets like VQS [Gan
et al., 2017], requiring only 10% of the training data. [Stam-
mer et al., 2021] extended this approach by incorporating user
feedback and explanation loss, improving robustness against
confounding factors through symbolic explanations and Slot
Attention mechanisms. Building on NS-CL, FALCON [Mei
et al., 2022] introduced meta-learning concepts via hyper-
boxes, enhancing visual encoders for few-shot learning and
biased settings, with competitive results on CLEVR, CUB
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Method Task Benchmark Evaluation Metric Score Black-Box Competitor ∆ Score

JMLR [2024] Document Lv. Relation Extraction DWIE [2021] ACCURACY 77.9% DocRE-CLiP [2024] +10.8%
QA-NatVer [2023] Claim Verification FEVER (Dev) [2018] ACCURACY 70.3% SFAVEL [2024] −20.0%
NSLM [2024] Image-Text Verification Weibo [2017] F1-MACRO 84.4% SAFE + Hami-m3d [2024] −3.7%
SLEER [2022] Temporal Commonsense Reasoning McTACO [2019] F1-MACRO 69.0% ALICE [2020] −10.5%
LECTER [2023] Temporal Commonsense Reasoning TIMEDIAL [2021] ACCURACY 71.5% GPT-3.5 [2020] +6.5%∗

NS-Dial [2022] Goal-oriented Dialogue Generation MultiWoZ 2.1 [2020] BLEU 10.6 GALAXY [2022] −9.4

NS3D [2023] Visual Question-Answering Sr3D [2020] ACCURACY 67.0% GPS [2024] −10.5%

= Rule Mining Task; = Rule Enforcement Task; = Program Synthesis Task.
∗ LECTER [2023] is evaluated using the 2-best accuracy.

Table 1: NeSy Competitiveness. The ∆ Score field reports NeSy methods’ performance gain over the black-box competitors.

[Wah et al., 2011], and GQA [Hudson and Manning, 2019].
NEUROSIM [Singh et al., 2023] further explored image ma-
nipulation by integrating scene graph-based operations and
tailored loss functions, though its real-world applicability re-
mains unclear. GENOME [Chen et al., 2024] shifted the
focus to modular incremental learning, generating Python-
based components for visual reasoning, image manipulation,
and knowledge tagging. While outperforming [Singh et al.,
2023] in real-world tasks, its comparison with [Mei et al.,
2022] remains limited. In continual learning, COOL [Mar-
conato et al., 2023] tackled catastrophic forgetting, surpass-
ing regularization-based approaches on CLEVR. NS3D [Hsu
et al., 2023], adopting the NS-CL formalism in the 3D set-
ting, demonstrates strong generalization and zero-shot rea-
soning. However, as shown in Table 1, its performance on the
ReferIt3D (SR3D) [Achlioptas et al., 2020] benchmark falls
short of the black-box GPS model [Jia et al., 2024].

6 Discussion
Finally, we address open problems, NeSy application chal-
lenges, and comparisons with black-box methods.

Competing with Black-Box Methods NeSy models ex-
cel in tasks requiring explicit rule enforcement and struc-
tured reasoning, but often struggle in open-domain settings
where black-box architectures benefit from large-scale, un-
structured data. Table 1 highlights these differences, showing
that performance inconsistencies across similar benchmarks
make some NeSy solutions highly sensitive to their appli-
cation frameworks. The Temporal Commonsense Reasoning
task exemplifies how score discrepancies may arise from dif-
fering benchmarking strategies. While TIMEDIAL focuses
on dialogue masking prediction, McTACO is designed for
multiple-choice Question-Answering, resulting in varied per-
formance and further highlighting the sensitivity of NeSy
solutions to specific application frameworks. Performance
drops are particularly evident in tasks such as claim verifi-
cation on FEVER [Thorne et al., 2018] and visual question-
answering on Sr3D [Achlioptas et al., 2020], where black-
box models excel in leveraging semantically-reach unlabeled
data. A key insight from QA-NatVer [Aly et al., 2023] is the
trade-off between interpretability and data efficiency. Multi-
granular chunking and step-by-step scoring improve explain-
ability but limit generalization versus black-box methods,
creating a balance between symbolic clarity and neural adapt-
ability as NeSy models vary in efficiency and expressiveness.

Future Applications As research in NeSy models evolves,
certain areas appear to be approaching saturation. The ex-
tensive body of work following NS-CL [Mao et al., 2019]
suggests that image-based reasoning has reached a point of
diminishing returns. This evolution demonstrates that well-
structured synthetic benchmarks reflecting real-world sce-
narios can drive field-wide advances (e.g., CLEVR’s im-
pact on spatial reasoning). While reinforcement learning
gains traction in robotics and NLP, its high-stakes appli-
cations remain limited. Enhancing trustworthiness through
structured constraints with NLI—integrating domain knowl-
edge via DFAs, shaping rewards to enforce desired behav-
iors, and using shielding to prevent unsafe actions—could
enable deployment in critical domains like surgery, medi-
cal Q&A and gene discovery [Frisoni et al., 2024; Domeni-
coni et al., 2016], autonomous driving, and legal analysis.
In this regard, the robust NLI methods proposed in [Feng
et al., 2022] would benefit from the rigorous evaluation
on benchmarks featuring complex sentence structures with
multi-phrase hypotheses, premises, and conclusions, while
systematically analyzing alternation, negation, and indepen-
dence operators—particularly valuable for legal text analysis.
We argue that the design pattern introduced by NeSyFOLD
[Padalkar et al., 2024], which treats high-level neural fea-
tures as semi-structured data for rule mining and partial in-
terpretability, warrants further exploration. Investigating its
application to models like transformers, autoencoders, and
GNNs could enable explainability in black-box models.
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