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Abstract

Current Digital Twin (DT) technology lacks the
cognitive capabilities needed for true autonomy
and intelligent adaptation. This paper intro-
duces CogTwin, a hybrid cognitive architecture
framework for developing Cognitive Digital Twins
(CDTs). CogTwin integrates a 50ms cognitive
cycle inspired by human cognition, dual knowl-
edge graphs (static Domain Knowledge Repository
(DKR) and dynamic Internal Knowledge Graph
(DIKG)), a hybrid attention mechanism, and self-
healing capabilities. Combining symbolic, sub-
symbolic, and neuro-symbolic AI, CogTwin en-
ables real-time learning and decision-making. Sim-
ulated smart city scenarios, including traffic in-
cident management and power outage response,
demonstrate CogTwin’s potential. Preliminary per-
formance evaluations of the pseudocode suggest
feasibility of the target 50ms cycle. The archi-
tecture also incorporates explainable AI (XAI) for
transparency and human-CogTwin collaboration.
CogTwin contributes towards a unified theory of
cognition for DTs, laying the groundwork for more
sophisticated and autonomous CDTs.

1 Introduction
Digital Twin (DT) technology is revolutionizing complex sys-
tem management by creating virtual representations of phys-
ical entities and processes [Jones et al., 2020]. While DTs
often excel at real-time analysis and predictive modelling
[Kobayashi and Alam, 2024], they often lack the cognitive
capabilities necessary for true autonomy and intelligent adap-
tation in dynamic environments [Hribernik et al., 2021]. Cur-
rent DTs typically struggle to handle unforeseen events and
complex, evolving situations due to their reliance on pre-
programmed rules and data-driven models. This inability to
learn, reason, and adapt in real time hinders the full realiza-
tion of their potential.

CogTwin addresses this gap with a hybrid cognitive archi-
tecture (CogArchs) combining symbolic, sub-symbolic, and
neuro-symbolic AI for robust reasoning and adaptive learn-
ing. CogTwin aims to imbue DTs with human-like cognitive

abilities, enabling real-time learning, reasoning, and intelli-
gent decision-making. Key features include a 50ms cognitive
cycle inspired by human cognition; Dual Knowledge Graphs
(KGs) - a static Domain Knowledge Repository (DKR) and
a dynamic Internal Knowledge Graph (DIKG); a hybrid at-
tention mechanism; and self-healing capabilities. Explain-
able AI (XAI) techniques ensure transparency and facilitate
human-CogTwin collaboration. Initially, CogTwin’s architec-
ture inherently supports explainability through its symbolic
components: the DKR and DIKG provide a structured repre-
sentation of knowledge that can be queried to understand the
basis for certain conclusions, and the rule-based systems in
the Reactive Layer offer transparent decision logic. More so-
phisticated, dedicated XAI modules, such as those generating
counterfactual explanations or visualizing attention weights
in neural networks (as discussed in Section 5.3), are planned
as future enhancements to interface with both symbolic rea-
soning paths and sub-symbolic model outputs, thereby pro-
viding deeper transparency into the hybrid system’s opera-
tions. This research contributes a novel architectural frame-
work (CogTwin available at1) and detailed pseudocode im-
plementation for building CDTs.

2 Related Work
This section examines existing research relevant to CogTwin,
encompassing CogArchs, DTs and Cyber Physical Systems
(CPS), Landscape of CDTs, KGs, hybrid AI, attention mech-
anisms, real-time systems, and metacognition.

Existing CogArchs such as ACT-R [Anderson et al.,
2004], SOAR [Laird, 2019], LIDA [Franklin et al., 2013],
SIGMA [Rosenbloom, 2013] and CLARION [Sun, 2006]
provides a foundation for cognitive modeling. However,
they weren’t initially designed for the real-time interaction
and dynamic adaptation required by DT applications. While
some have real-time extensions (e.g., ACT-R/E [Trafton et
al., 2013] and [Thórisson and Helgasson, 2012]), they typ-
ically rely on a single AI paradigm and face challenges in
achieving rapid adaptation, complex system representation,
and autonomous self-healing crucial for robust DT operation.
CogTwin addresses these limitations with a hybrid AI ap-
proach within a unified framework. Table: Comparison of

1https://github.com/sukanyamandal/ProjectCogTwin
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CogTwin with Cognitive Architectures [CogTwin, 2025d]
provides a detailed comparison.

DT and CPS research [Singh et al., 2021], [Jinzhi et al.,
2022], [Baheti and Gill, 2011] provides context for CogTwin.
The field of CDTs [Zheng et al., 2022] is nascent, primarily
limited to exploring theoretical frameworks and applications.
CogTwin offers a holistic CogArch framework for DT inte-
gration.

CogTwin in the landscape of CDTs [Shahzad et al., ];
building upon foundational CogArchs (detailed in [CogTwin,
2025d], carves a distinct niche by specifically addressing the
unique demands of DTs. To clearly position CogTwin and
highlight its advancements within this emerging domain, Ta-
ble: Comparison of CogTwin with Representative Cogni-
tive Digital Twin (CDT) Architectures [CogTwin, 2025e]
provides a comparative analysis against representative con-
temporary CDT frameworks [Calderita et al., 2020], [Lv et
al., 2023], [Abburu et al., 2020], [Lu et al., 2020], [Eiri-
nakis et al., 2020], [Du et al., 2020]. This comparison covers
key dimensions including architecture type, cognitive capa-
bilities, knowledge representation, and real-time responsive-
ness.

KGs are crucial for CogTwin’s knowledge representation
(KR) and reasoning. Research in KG construction, reason-
ing, and application informs CogTwin’s dual KG approach
(static DKR and dynamic DIKG), enabling the representation
of both stable domain knowledge and dynamic, real-time in-
formation. The DKR addresses real-time KG reasoning chal-
lenges in dynamic DT environments.

CogTwin’s hybrid AI [Kunz et al., 1984] architecture
draws upon research in symbolic [Smolensky, 1987], sub-
symbolic [Ilkou and Koutraki, 2020], and neuro-symbolic AI
[Bhuyan et al., 2024]. It leverages each paradigm’s strengths:
symbolic for explainable reasoning, sub-symbolic for learn-
ing and adaptation, and neuro-symbolic for bridging the gap.
Research on KR [Prasad and others, 2012] and reasoning
techniques [Bettini et al., 2010] further informs CogTwin’s
self-healing and XAI capabilities.

CogTwin’s hybrid attention mechanism (self-attention &
cross-attention [Vaswani, 2017] dynamically prioritizes in-
formation, enabling the 50ms cognitive cycle.

CogTwin’s 50ms cognitive cycle is based on research
on real-time and reactive systems [Stankovic and others,
1988], [Harel and Pnueli, 1984] incorporating principles of
real-time scheduling [Sha et al., 2004], event-driven archi-
tectures [Michelson, 2006], and timing analysis [Liu et al.,
2025]. This rapid cycle is essential for closed-loop interac-
tion and control within dynamic DT environments.

CogTwin’s metacognitive layer, enabling self-monitoring,
self-regulation, and self-healing [S-Julián et al., 2023], draws
upon research on metacognitive architectures [Samsonovich,
2009] and computational models of metacognition [Cox,
2011]. This layer contributes to robustness and resilience in
dynamic environments.

3 CogTwin: A Hybrid CogArch Framework
for Adaptable and Cognitive DTs

Current DT technologies, while effective for managing com-
plex systems, lack the cognitive capabilities needed for true
autonomy and intelligent adaptation. This limitation moti-
vates the development of CDTs, enhancing DTs with ad-
vanced reasoning, learning, and decision-making capabilities.
CogTwin, a hybrid cognitive architecture, addresses this gap
by providing a framework for realizing CDTs in dynamic en-
vironments (formalized in CogTwin Framework [CogTwin,
2025b]). CogTwin’s design, guided by key principles from
[Newell, 1994], aims to integrate diverse cognitive functions
within a practical framework tailored for the DT domain.
This section details CogTwin’s modular architecture and its
target 50ms cognitive cycle for real-time responsiveness.

3.1 Architecture Overview and Framework
Approach

CogTwin integrates symbolic, sub-symbolic & neuro-
symbolic AI paradigms to overcome the limitations of single-
paradigm approaches for CDTs. This hybrid approach is cru-
cial for creating CDTs capable of both robust, explainable
reasoning and powerful, adaptive learning. Symbolic AI (us-
ing the DKR and DIKG) provides KR and logical reasoning.
Sub-symbolic AI (through neural networks (NNs) in the De-
liberative Layer) enables learning complex patterns. Neuro-
symbolic integration combines the strengths of both, essential
for real-time responsiveness and intelligent decision-making
in dynamic DT environments. This framework approach of-
fers modularity, extensibility, standardization, and interoper-
ability. CogTwin’s target 50ms cognitive cycle, inspired by
human cognition [Newell, 1992], enables real-time interac-
tion. The following subsections detail the individual modules
and their interactions within this cycle.

3.2 Modules, Integration, and Workflow
CogTwin comprises the following key modules designed to
interact within a continuous cognitive cycle, aiming for real-
time responsiveness and adaptation within the DT environ-
ment (see Table: CogTwin Module Interactions [CogTwin,
2025c] for module interactions):
DKR Layer (World Model KG): The DKR provides the
initial static world knowledge. Constructed offline using
methods from [Mandal and O’Connor, 2024], [Mandal and
O’Connor, 2024] for multimodal KG and ontology creation, it
encapsulates the DT environment’s representation. It is peri-
odically updated offline with new knowledge gained through
CogTwin’s interactions.
Perceptual Buffers: Bridging the DT environment and
CogTwin, these buffers receive real-time sensor data and
knowledge injections. An integrated hybrid attention mech-
anism (self- and cross-attention [Vaswani, 2017]) filters and
prioritizes relevant data by dynamically balancing focus on
internal context (self-attention) with correlating informa-
tion across streams or with DKR/DIKG knowledge (cross-
attention). This balance is governed by cognitive goals,
data salience, and learned policies optimizing information
throughput.
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Figure 1: CogTwin: A Hybrid Cognitive Architecture Framework for Adaptable and Cognitive Digital Twins

Real-Time Knowledge Integration (RTKI) Module: The
RTKI processes filtered perceptual data, dynamically inte-
grating it into CogTwin’s DIKG. It transforms raw data into
symbolic representations compatible with the DKR’s ontol-
ogy, resolving inconsistencies and managing conflicts us-
ing ontological rules and confidence scores (e.g., prioritizing
newer or higher-confidence data, or cross-referencing related
points). Complex/persistent inconsistencies are flagged for
Meta-Cognitive Layer assessment.

CogTwin DIKG: This dynamic KG is CogTwin’s central
hub, storing the perceived and interpreted state of the DT en-
vironment. Continuously updated by the RTKI, the DIKG
provides context for all cognitive functions and serves as in-
put to NNs. A simplified formal data flow representation can
be found in CogTwin Data Flow: Perceptual Buffer to In-
ternal KG Update [CogTwin, 2025a]. Future work will ex-
plore a more complete formalization using OWL.

Reactive Layer: Operating rapidly, the Reactive Layer
handles immediate actions based on DIKG patterns.
Its rule-based system (e.g., IF <condition> THEN
<action>), with rules stored in Procedural Memory,
ensures swift responses to critical situations. For example,
IF (DIKG contains ‘‘Power Outage’’ AND
‘‘Hospital’’ is affected) THEN (initiate
emergency power).

Working Memory: Acts as a short-term memory store,
holding information relevant to CogTwin’s active goals and

tasks. It extracts this information from the DIKG based on
the current context and provides a workspace for the Deliber-
ative Layer, holding both symbolic and sub-symbolic data.
Deliberative Layer: Responsible for higher-level cogni-
tive functions (planning, decision-making, complex reason-
ing). It interacts with Working Memory, the DIKG, and
LTM, employing a hybrid reasoning approach combining var-
ious reasoning types (case-based, deductive, inductive, ab-
ductive, analogical, temporal, and spatial). Integrated NNs
(e.g., GNNs) operate on the DIKG to learn and refine reason-
ing strategies.
Long-Term Memory (LTM): The LTM stores learned
knowledge and experiences in a hybrid format (symbolic
and sub-symbolic), comprising Declarative, Procedural, and
Episodic Memory (including the Memory Repository for
Case-Based Reasoning).
Memory Repository (within Episodic Memory): Enables
Case-Based Reasoning (CBR) within the Deliberative Layer
by storing past experiences as cases for retrieval and adapta-
tion to new situations.
Action Execution Module: Translates decisions from the
Reactive or Deliberative Layers into actions within the DT
environment via a REST API. It also receives feedback from
the environment on action outcomes.
Feedback and Learning (F&L) Loop: Closes the cogni-
tive cycle by using action outcomes and feedback to update
the DIKG, LTM, and periodically the DKR. It incorporates
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learning algorithms [Park and Park, 2020] and provides feed-
back to NN components.

Meta-Cognitive Layer: Monitors and controls the overall
cognitive process, assessing performance, detecting inconsis-
tencies, and dynamically allocating resources for robust and
efficient operation.

3.3 DKR Enrichment and Evolution
The DKR serves as a static baseline during real-time oper-
ation but is periodically enriched offline to incorporate new
knowledge, balancing stability with long-term learning. (See
CogTwin Framework [CogTwin, 2025b] for details). The
enrichment process involves:

Initial DKR Construction: The DKR is initially con-
structed offline using two complementary approaches: (a)
real-world data processing [Mandal and O’Connor, 2024] to
create an initial ontology and populate the DKR with fac-
tual information sourced from the specific DT environment,
and (b) a synthetic multimodal knowledge graph (MMKG)
generation method [Mandal and O’Connor, 2024] to address
potential sparsity issues and provide a rich initial knowl-
edge base, particularly crucial during development phases;
production environments would ideally leverage comprehen-
sive real-world data from the outset. This combined ap-
proach ensures a robust and comprehensive starting point for
CogTwin’s cognitive processes.

CogTwin Operation and Learning: CogTwin interacts
with the DT environment, updating its DIKG through real-
time data processing and learning. The DKR remains un-
changed during this phase, providing a stable knowledge base
for real-time operations within the 50ms cycle. The RTKI
module dynamically processes real-time data to update the
DIKG, and the F&L Loop updates the DIKG based on learned
experiences.

Offline DKR Enrichment (Periodic): Learned informa-
tion deemed valuable for long-term knowledge is extracted
from CogTwin’s DIKG.

This extracted knowledge forms the primary basis for of-
fline DKR updates. The DKR is enriched by: (a) first, inte-
grating this consolidated valuable knowledge from the DIKG.
(b) If knowledge gaps are identified after this step (primar-
ily during development, as production ideally relies on com-
plete real-world data), synthetic data is then generated us-
ing the [Mandal and O’Connor, 2024] method to address
these specific gaps. The complete set of enriched knowledge
(DIKG-derived and any supplementary synthetic data) is sub-
sequently integrated into the DKR using the ontology-based
approach [Mandal and O’Connor, 2024], ensuring overall
consistency and structure.

This offline enrichment enables intensive validation. Con-
flicts between DIKG-derived knowledge and the DKR are
managed by enforcing consistency with the established on-
tology (including schema validation, semantic contradiction
checks, and prioritization of recent/validated data). Further
safeguards against corruption include ontological alignment,
DKR versioning, and human review for complex or conflict-
ing integrations.

This offline update enables intensive knowledge consol-
idation without impacting real-time operations. DKR en-
richment is triggered by schedules, significant new DIKG
knowledge accumulation, or detected performance degrada-
tion. ‘Valuable’ DIKG information is selected for DKR in-
corporation based on its stability, persistence, application
success, novelty, added value, and goal impact. This semi-
automated selection, using F&L and DIKG metrics, may in-
clude human oversight for critical integrations to ensure ac-
curacy.

Next Cognitive Cycle: The updated DKR serves as the
initial knowledge base for the next operational cycle of
CogTwin. This iterative process of DKR enrichment al-
lows CogTwin to continuously learn and adapt to long-term
changes in the DT environment.

3.4 The 50ms Cognitive Cycle
CogTwin is designed to operate on a 50ms cognitive cycle for
rapid responses and continuous learning, inspired by mod-
els of human cognition and cognitive architectures [Ander-
son et al., 2004], [Newell, 1992], [Just and Carpenter, 1992],
[Kieras and Meyer, 1997]. This cycle comprises the follow-
ing phases (full pseudocode in [CogTwin, 2025b]):

Perception (Target: 5ms): Perceptual Buffers receive sen-
sory data and textual information. An attention mechanism
filters and prioritizes information. Relevant DKR portions
are accessed for context.

Knowledge Integration (Target: 10ms): The RTKI mod-
ule integrates filtered data into the DIKG, transforming raw
data into symbolic representations consistent with the DKR
ontology.

Situation Assessment (Target: 10ms): The Deliberative
Layer assesses the situation by analyzing the DIKG, Working
Memory, and potentially the Memory Repository and Long-
Term Memory. NNs may contribute to this assessment.

Planning and Decision-Making (Target: 15ms): The De-
liberative Layer formulates a plan, potentially using search
algorithms, heuristics, or NN input. For simpler actions, the
Reactive Layer may select an action directly.

Action Selection and Execution (Target: 5ms): The Ac-
tion Execution Module selects and executes the chosen ac-
tion, sending commands to the DT environment.

F&L (Target: 5ms): The F&L Loop processes feedback
from the DT environment, updating the DIKG and Long-
Term Memory. Periodically, the DKR is updated offline.
Feedback is also provided to NNs, refining their learning pro-
cess.

Metacognitive Monitoring and Control (Continuous -
Low Overhead): Throughout the entire cycle, the Meta-
Cognitive Layer monitors the performance of all modules,
including NNs. It detects inconsistencies, adapts strategies,
and dynamically allocates computational resources to opti-
mize performance and ensure robust operation. This moni-
toring should have minimal overhead to avoid impacting the
50ms cycle. To ensure this minimal overhead, the Meta-
Cognitive Layer primarily employs lightweight mechanisms
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such as sampling-based monitoring of key performance indi-
cators rather than exhaustive checks of all processes, event-
driven triggers for deeper analysis (e.g., when performance
metrics drop below a predefined threshold or inconsistencies
are repeatedly flagged by other modules), and efficient heuris-
tics for performance assessment. More computationally in-
tensive meta-cognitive processes, such as detailed strategy re-
evaluation, would be scheduled to run with lower priority or
during periods of lower cognitive load, thus preserving the
integrity of the real-time cycle.

This 50ms target cycle enables CogTwin to adapt to the DT
environment and learn from experience. Future work will fo-
cus on optimizing these timings for real-world deployments.

3.5 Integration of Cognition
CogTwin’s architecture integrates key cognitive principles to
create a unified system within the DT domain:

Dual-Process Theory: CogTwin, inspired by the dual-
process theory of cognition [Kahneman, 2011], integrates
two processing modes: a fast, intuitive System 1 (Perceptual
Buffers, RTKI, DIKG) for rapid responses, and a slower, an-
alytical System 2 (Deliberative Layer) for complex reason-
ing. Example: In traffic management, System 1 could adjust
traffic lights locally, while System 2 optimizes overall traffic
flow.

Cognitive Control: Action selection integrates sym-
bolic reasoning (Deliberative Layer), sub-symbolic learning
(NNs), and Reactive Layer inputs. The Meta-Cognitive Layer
monitors performance and adjusts strategies. Example: If the
Reactive Layer performs poorly, the Meta-Cognitive Layer
might shift control to the Deliberative Layer.

Lifelong Learning: Memory Modules and the F&L Loop
enable lifelong learning. The Memory Repository stores
past experiences, while Long-Term Memory retains learned
knowledge. Example: In predictive maintenance, CogTwin
could learn to anticipate equipment failures by analyzing his-
torical data.

Goal-Oriented Behavior: CogTwin operates in a goal-
directed manner, with goals provided externally or derived in-
ternally. All cognitive processes are directed towards achiev-
ing these goals. Example: In smart grid management, a goal
could be minimizing energy consumption while maintaining
reliability.

3.6 Data Handling and Distributed Cognition
CogTwin incorporates strategies for efficient data handling
and scalability in complex DT environments:

KG Compression and Optimization: Techniques like
graph summarization [Liu et al., 2018], indexing [Zhao et al.,
2007], and partitioning [Buluç et al., 2016] reduce the com-
putational cost of reasoning and retrieval. Example: Graph
summarization can create a compact DKR for faster access
during perception.

Attention Mechanisms: Attention mechanisms in the Per-
ceptual Buffers prioritize relevant information, filtering noise

and irrelevant details. These can be goal-directed or salience-
based. Example: In security applications, attention mecha-
nisms could prioritize video feeds showing unusual activity.
Distributed Processing and Cognition: CogTwin’s modu-
lar design supports distributed processing and future integra-
tion with multi-agent systems (MAS) [Sycara, 1998]. Multi-
ple CogTwin instances could collaborate, specializing in dif-
ferent aspects of the application. Example: In a smart city,
different CogTwin instances could manage individual dis-
tricts, coordinating actions for city-wide optimization.

These strategies, inspired by Newell’s criteria for unified
theories of cognition [Newell, 1994], aim to provide a robust
and efficient CogArch for the DT domain.

4 CogTwin Use Case Scenarios: Smart City
Applications

This section presents four different smart city scenarios il-
lustrating CogTwin’s potential for unified cognition. These
use cases are further detailed in pseudocodes [CogTwin,
2025f], [CogTwin, 2025g], [CogTwin, 2025h], [CogTwin,
2025i], [CogTwin, 2025j] demonstrating the interaction be-
tween CogTwin’s modules and the 50ms cycle.

4.1 Use Case 1: Traffic Incident Management
Scenario Description: A multi-vehicle accident occurs
during rush hour at a major intersection, causing significant
traffic congestion. This scenario involves complex interac-
tions between vehicles, traffic signals, the road network, and
emergency services.
CogTwin’s Approach: CogTwin leverages its hybrid cog-
nitive architecture to address this challenge. Real-time data
from traffic cameras, GPS devices, and social media feeds
populate the Perceptual Buffers. An attention mechanism pri-
oritizes information related to the incident. The RTKI module
integrates this filtered data into the dynamic DIKG, represent-
ing the current traffic state. The static DKR provides context,
including knowledge of the road network, traffic light con-
trol logic, and emergency service protocols. Within the 50ms
cycle, CogTwin’s Deliberative Layer reasons about the inci-
dent’s impact, predicting congestion propagation and evaluat-
ing alternative routes based on pre-defined rules and learned
patterns. The Reactive Layer can quickly implement imme-
diate traffic light adjustments at the affected intersection. The
planned actions are then executed, dynamically adjusting traf-
fic light timings, recommending alternative routes via naviga-
tion apps, and notifying emergency services. (See Use Case
1: Traffic Incident Management [CogTwin, 2025f])
Expected Outcomes: CogTwin’s real-time adaptation and
reasoning capabilities can mitigate congestion more effec-
tively than traditional systems, resulting in reduced travel
times, minimized disruption, and improved emergency re-
sponse times.
Future Implications: This use case highlights CogTwin’s
potential to transform traffic management. Future research
will explore incorporating predictive models and leveraging
machine learning on the KG to anticipate congestion and im-
plement preventative measures.
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4.2 Use Case 2: Power Outage Response
Scenario Description: A transformer failure causes a
power outage in a residential area during extreme heat, pre-
senting challenges in managing the power grid, ensuring crit-
ical infrastructure operation, and addressing vulnerable pop-
ulations’ needs.
CogTwin’s Approach: CogTwin integrates data from
smart meters, social media sentiment analysis, and weather
information into its DIKG. The DKR provides context about
the power grid topology, critical infrastructure, and demo-
graphics, including vulnerable residents. CogTwin’s hybrid
reasoning assesses the outage’s impact, prioritizes power
restoration to critical facilities and vulnerable populations,
and evaluates strategies for rerouting power and deploying
backup generators. The 50ms cycle allows for rapid response
and adaptation. (See Use Case 2: Power Outage Response
[CogTwin, 2025g])
Expected Outcomes: CogTwin reduces outage duration
and minimizes the impact on critical infrastructure and vul-
nerable populations by optimizing power rerouting, activat-
ing backup generators, dispatching repair crews, and provid-
ing timely information to residents.
Future Implications: This use case illustrates CogTwin’s
potential for proactive and adaptive grid management. Future
research will explore incorporating predictive models to an-
ticipate equipment failures and optimize preventative mainte-
nance.

4.3 Use Case 3: Smart Home Automation
Scenario Description: A resident returns home on a hot
day. The smart home system must optimize comfort and en-
ergy efficiency based on the resident’s preferences, current
conditions, and historical energy usage.
CogTwin’s Approach: CogTwin integrates data from the
smart home system (presence sensors, smart thermostats, en-
ergy readings) into its DIKG. The DKR contains informa-
tion about resident preferences and historical energy pro-
files. CogTwin’s reasoning determines optimal settings for
devices (thermostats, lighting, appliances), considering com-
fort, cost, and environmental impact. CogTwin learns and
adapts to evolving preferences. The 50ms cycle ensures rapid
adjustments. (See Use Case 3: Smart Home Automation
[CogTwin, 2025h])
Expected Outcomes: CogTwin offers a more adaptive and
efficient approach to smart home automation, personalizing
the environment and maximizing comfort while minimizing
energy consumption.
Future Implications: This use case demonstrates
CogTwin’s potential for personalized and adaptive smart
homes. Future research will explore incorporating more
sophisticated learning algorithms to anticipate resident needs
and proactively adjust settings.

4.4 Use Case 4: Medical Emergency Response
Scenario Description: A person experiences a medical
emergency. Rapidly dispatching the nearest available ambu-
lance and alerting the appropriate medical team is critical.

CogTwin’s Approach: CogTwin receives real-time data
about the emergency (location, type, vital signs). The DKR
provides information about ambulance locations, hospital ca-
pacities, and medical team expertise. CogTwin’s reasoning
determines the optimal response, considering severity, re-
source proximity, hospital capacity, and patient needs. The
real-time cycle ensures rapid dispatch and resource alloca-
tion. (See Use Case 4: Medical Emergency Response
[CogTwin, 2025i])
Expected Outcomes: CogTwin reduces response times,
improves patient outcomes, and optimizes resource utiliza-
tion by rapidly dispatching ambulances, alerting medical
teams, and providing real-time information to first respon-
ders.
Future Implications: This use case illustrates CogTwin’s
potential to transform emergency response. Future research
will explore predictive models to anticipate demand and opti-
mize resource allocation. Integration with the traffic manage-
ment system (Use Case 1) will enable dynamic ambulance
routing to minimize congestion-related delays.

4.5 Use Case: Cross-Domain Interaction
Smart city systems are interconnected, allowing CogTwin to
demonstrate unified cognition by managing cross-domain in-
teractions. For example, a traffic incident (Use Case 1) can
impact ambulance response times (Use Case 4). CogTwin can
prioritize emergency vehicle routes by adjusting traffic sig-
nals. Similarly, a power outage (Use Case 2) can affect traffic
lights and smart homes (Use Case 3). CogTwin leverages its
KG and hybrid reasoning to coordinate responses across these
domains, demonstrating its potential for integrated smart city
management. (See Use Case: Cross-Domain Interaction
[CogTwin, 2025j])

5 Discussion and Future Work
CogTwin presents a novel hybrid CogArch for CDTs, en-
hancing DT autonomy and adaptability. Key characteristics
include the dual KG (DKR and DIKG), the 50ms cognitive
cycle, the hybrid attention mechanism, and self-healing ca-
pabilities. Integrating symbolic, sub-symbolic, and neuro-
symbolic AI, CogTwin combines robust reasoning with pow-
erful learning. The smart city use cases demonstrate its gen-
eralizability and capacity for cross-domain reasoning and dy-
namic adaptation - showcasing the realization of unified the-
ory of cognition.

5.1 Performance Evaluation and Feasibility
Analysis

A core requirement is the 50ms cognitive cycle. While
full empirical evaluation awaits implementation, analysis us-
ing Big O notation and estimated execution times based
on realistic hardware, software, and data volume assump-
tions suggest feasibility. Preliminary estimates indicate the
50ms target is achievable on a cloud server across all use
cases. However, achieving this target on a Raspberry Pi 4
presents challenges, particularly for computationally inten-
sive tasks like traffic management. Mitigation strategies in-
clude hierarchical graphs, pre-computed paths, and optimized
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graph libraries (See Use Cases: Performance Evaluation
[CogTwin, 2025k]).

5.2 Current Implementation and Next Steps
The associated pseudocodes provides a detailed blueprint for
future software implementations. The next major step is
translating this pseudocode into a working implementation,
followed by rigorous testing in simulated and real-world set-
tings. Future work will prioritize empirical validation on
target hardware to refine estimations and confirm the 50ms
target feasibility, especially on resource-constrained devices.
This validation is crucial for demonstrating CogTwin’s real-
time capabilities. Further research will explore more sophis-
ticated learning algorithms, predictive modeling for proactive
adaptation, and expanded cross-domain interaction capabili-
ties.

5.3 Future Directions
Building upon the current pseudocode framework and sim-
ulated scenarios, future research will focus on the following
key areas:

Functional Software Implementation and Real-World
Validation: Our immediate next step is translating the
pseudocode into a functional software implementation. Fol-
lowing implementation, rigorous testing and validation will
be conducted in both simulated and real-world smart city pi-
lot projects. Key Research Questions: What are the opti-
mal software design patterns for real-time DT environments?
How can we manage the computational demands of neuro-
symbolic components and KG operations at scale?

Performance Optimization, Sensitivity Analysis and Scal-
ability: We will conduct detailed performance evaluations,
including sensitivity analysis and optimization. Crucially,
this involves identifying/developing suitable benchmarks for
CogTwin’s cognitive abilities, addressing a current gap in
standardized CDT evaluation that frameworks like CogTwin
can help fill. Scalability testing will assess large-scale ap-
plicability. Key Research Questions: Effective real-time
optimization strategies? Dynamic adaptation of strategies?
CogTwin’s scalability limits?

Unified Frameworks for CDT Standards and Bench-
marks: The lack of CDT benchmarks is linked to the ab-
sence of standardized methodologies or architectures for cog-
nitive capabilities in DTs; nascent CDT development features
diverse, bespoke approaches hindering comparison and in-
teroperability [Khan et al., 2023]. Unified frameworks like
CogTwin, with its structured architecture, can serve as a
blueprint, facilitating standardized CDT development meth-
ods, interfaces, and performance metrics. This is essential
for accelerating benchmark creation, fostering cohesive re-
search, and enabling broader adoption and interoperability of
advanced CDT systems.

KG Refinement and Automated Ontology Learning: Re-
fining KR within CogTwin involves developing more expres-
sive ontologies and automated learning methods for populat-
ing and updating the DKR and DIKG. Key Research Ques-
tions: How can we ensure consistency between the DKR and

DIKG? How can we optimize KG representations for effi-
cient reasoning and retrieval? What are the trade-offs be-
tween completeness and computational complexity?

Advanced Reasoning and Learning: Integrating proba-
bilistic reasoning, deep reinforcement learning, and XAI
will enhance CogTwin’s capabilities [Parnafes and Disessa,
2004], [Furbach et al., 2019], [Anshakov and Gergely,
2010]. Research will focus on dynamically selecting rea-
soning methods based on context. Key Research Questions:
What are the best strategies for dynamically selecting rea-
soning and learning methods? How can we evaluate the ef-
fectiveness of different approaches in real-world scenarios?
How can we leverage learned knowledge to improve future
decision-making?

Human-CogTwin Collaboration: Designing intuitive in-
terfaces [Rogers, 2012] for human operators to monitor, pro-
vide feedback, and intervene will foster collaboration. This
involves developing mechanisms for explaining CogTwin’s
reasoning. Key Research Questions: How can we build
trust and transparency in human-CogTwin interactions? How
can XAI address ethical concerns related to transparency and
bias? How can we balance automation and human control?

Enhancing Cognition with Theory of Mind (ToM) and
Information Theory (IT): Incorporating ToM [Byom and
Mutlu, 2013] will enable CogTwin to reason about other
agents’ beliefs and intentions. IT [Ash, 2012] can optimize
information flow for more efficient decision-making. Key Re-
search Questions: How can ToM and IT be integrated with
other cognitive modules? What are the computational chal-
lenges of incorporating ToM and IT in real-time? How can
we evaluate the benefits of ToM and IT in multi-agent scenar-
ios?

Multi-Agent Cognitive Systems (MAS): Integrating MAS
[Van der Hoek and Wooldridge, 2008] principles will enable
multiple CogTwin instances to collaborate and coordinate,
enhancing scalability and management of urban systems. Key
Research Questions: How can we manage conflicts and en-
sure consistent behavior in a MAS? How can we distribute
cognitive tasks among agents? What are the challenges of
coordinating actions in a decentralized system?

Federated Learning and Privacy: Employing federated
learning will enable training on distributed data while pre-
serving privacy, crucial for sensitive smart city data [Mandal,
2024]. Key Research Questions: What are the trade-offs be-
tween privacy and model performance in federated learning?
How can we address bias and fairness concerns? How can we
adapt federated learning to real-time DT environments?

Ethical and Safety Considerations: Addressing ethical
implications and ensuring safety and reliability involves de-
veloping mechanisms for accountability, transparency, bias
detection, and robust error handling. Key Research Ques-
tions: How can we ensure accountability and transparency in
decision-making? What are the potential biases, and how can
we mitigate them? How can we establish ethical guidelines
for cognitive DT systems?
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Explainable AI (XAI) Integration: Integrating XAI tech-
niques like rule-based explanation, attention visualization,
provenance tracking, saliency maps, and counterfactual rea-
soning is crucial for transparency and trust. Key Research
Questions: How can we effectively combine different XAI
techniques for comprehensive explanations of the component
workflow and processes with the CogTwin framework? How
can we tailor explanations to different user groups? How
can we evaluate the effectiveness of XAI in improving un-
derstanding and trust?

6 Conclusion
This paper introduced CogTwin, a novel hybrid cognitive ar-
chitecture designed to significantly enhance DT autonomy
and adaptability by integrating hybrid AI paradigms. Its
key characteristics enable perception, reasoning, action, and
learning within dynamic environments, with associated pseu-
docode providing a blueprint for development and prelimi-
nary evaluations suggesting the 50ms cognitive cycle’s feasi-
bility for real-time responsiveness. CogTwin represents a sig-
nificant step towards achieving a unified theory of cognition
within the DT domain, with the potential to transform com-
plex system management. The immediate path forward pri-
oritizes full software implementation and rigorous real-world
validation in smart city pilot projects, followed by research
into computational optimization and broader XAI integration
as outlined in Section 5.

Realizing CogTwin’s full potential, however, necessitates
addressing critical future research avenues. Key among these
are the empirical validation of the 50ms cycle across diverse
hardware, the development of standardized CDT benchmarks
crucial for assessing performance and adaptability, and the
refinement of knowledge management processes, including
DKR/DIKG conflict resolution and criteria for offline enrich-
ment. Furthermore, the practical implementation and thor-
ough evaluation of specific XAI techniques (Section 5.3)
and empirically validating the Meta-Cognitive Layer’s low-
overhead adaptive control are vital next steps. Systemati-
cally addressing these areas will be crucial in translating the
CogTwin framework into robust, deployable, and truly in-
telligent CDT systems, its reusable architecture enabling di-
verse solutions beyond specific applications, fostering trans-
parency, trust, and effective human-CogTwin collaboration.
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