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Abstract
Climate change is one of the most pressing global
challenges that requires urgent adaptation and re-
silience efforts, highlighting the need for both sci-
entific solutions and effective communication. In
the digital age, online content plays a key role in
shaping climate narratives. Therefore, previous re-
search has mainly focused on public perception or
categorized content by topics such as impacts, mit-
igation, policy, etc. Despite these efforts, identify-
ing discussions that address climate change adap-
tation is crucial for monitoring resilience and as-
sessing public sentiment, while recognizing denial
narratives helps combat misinformation. Moreover,
the public’s exposure to online climate content can
either lead to or hinder climate action, emphasiz-
ing the need for climate content moderation. To
address these issues, we propose a novel multi-
stage framework where stage 1 categorizes climate-
related content into adaptation, resilience, and de-
nial while stage 2 moderates content by enhancing
or intervening based on its alignment with climate
goals. We present a novel dataset by manually an-
notating publicly available tweets and news articles
into different climate categories with the help of a
taxonomy developed by domain experts. Extensive
experiments with benchmark climate and other do-
main datasets validate the efficacy of our prediction
stage, while human and external evaluations con-
firm the relevance of our moderation stage.

1 Introduction
Climate change is one of the most critical challenges that
our planet is facing today. As its impacts intensify, the need
for climate adaptation and resilience has become more im-
portant than ever [Solecki et al., 2024]. Climate adaptation
is the process of adjusting to climate change to minimize
risks, while climate resilience is the ability to anticipate, with-
stand, and recover from climate-related impacts [Hallegatte
et al., 2020]. These efforts are central to the United Nations
Sustainable Development Goal (SDG) 13—Climate Action1

1https://sdgs.un.org/goals/goal13

(Targets 13.1 & 13.3), which emphasizes not only scientific
and policy-driven solutions but also the critical role of effec-
tive communication and public engagement in driving mean-
ingful change.

As in today’s digital era, online content plays a crucial role
in shaping public perception and influencing climate action
[Pearce et al., 2019]. Governments and policymakers rely on
data-driven insights to formulate adaptation strategies, while
climate scientists use digital discourse to spread awareness
about scientific evidence. The general public, in turn, is ex-
posed to diverse narratives on online platforms that can either
promote climate action or spread misinformation [Treen et
al., 2020; Vivion et al., 2024]. Due to this significant influ-
ence of online content, categorizing climate data into adapta-
tion, resilience, and denial is critical not only for informing
climate policies but also for combating misinformation.

While a plethora of research has analyzed public opinion
on climate change [Upadhyaya et al., 2023a; Upadhyaya et
al., 2023c], some of the prior studies have focused on clas-
sifying climate-related tweets into various categories such
as root cause, impact, mitigation, politics, human interven-
tion, and others [Vaid et al., 2022; Duong et al., 2022;
Effrosynidis et al., 2022]. Recently, [Islam et al., 2023] re-
leased a theme-based dataset by exploring how organizations
use climate campaigns to shape public perception. Despite
these efforts, identifying discussions related to climate adap-
tation is crucial for tracking progress on resilience initiatives
as well as assessing the public perception of climate poli-
cies [Woodruff et al., 2022]. Furthermore, recognizing de-
nial narratives could help combat misinformation. Hence,
this diverse categorization will ensure that credible climate
information reaches key stakeholders, ultimately supporting
global climate adaptation efforts. This motivated us to focus
on the classification of online content into climate adaptation,
resilience, and denial as our primary objective.

To achieve this, different domain experts collaboratively
developed a taxonomy and manually annotated publicly
available climate-related tweets and news articles into adap-
tation, resilience, and denial categories (Section 3.1). We
then propose a climate category prediction stage (stage 1) that
utilizes both textual content and explicit cues extracted via
LLMs (climate psychology values, hidden intent, and target
stakeholders). These explicit and implicit features are pro-
cessed through various model components to capture their in-
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teractions to finally predict climate categories (Section 2.2).
In addition, during the conduct of our classification exper-

iments, we observe that some of the input posts contain mis-
leading climate information such as “Forget the f**k climate-
Action!! Eat more meat #ClimateHoax”. Previous research
has also shown that social media platforms, online news arti-
cles, and discussions serve as powerful tools to drive climate
action or conversely hinder it [Pearce et al., 2019]. Such in-
formation necessitates that existing content moderation sys-
tems not only react but proactively mitigate the harm of such
content. Therefore, we consider climate content moderation
as our secondary goal to ensure informed discussions.

To aim this, we design a climate content moderation stage
(stage 2) that iteratively refines responses using a base-LLM
(content generator) and climate-specific judge-LLM (content
evaluator). Unlike prior works using LLMs for generating in-
terventions [Jha et al., 2024], our approach refines response
generation through implicit token penalties and logits pro-
cessing during training, without relying on ground truth while
validating LLM responses in testing phase using external
tools for robustness (Section 2.3).

Hence, in this study, our main contributions are as follows:
(i.)To the best of our knowledge, this is the first study to clas-
sify online content (tweets, news articles) into climate adap-
tation, resilience, and denial categories, followed by generat-
ing moderated, context-aware responses that either enhance
or intervene based on climate mitigation alignment. (ii.) We
present a novel dataset of publicly available climate-related
tweets and articles, annotated using taxonomy collaboratively
developed by domain experts. (iii.)Our two-stage framework
first classifies online posts using implicit and explicit con-
textual cues into different climate categories, then performs
climate content moderation by generating refined responses
through an iterative process involving a base-LLM and judge-
LLM in the absence of ground-truth responses. (iv.)Extensive
experiments on benchmark climate and other domain datasets
validate the significance of our prediction stage (stage 1),
while human and external evaluations confirm the effective-
ness of the LLM-based content moderation stage (stage 2).
Code, Dataset, and Appendix are available here2.
Task Alignment with UN SDGs This study aligns with UN
SDG 13: Climate Action, specifically Targets 13.1 and 13.3,
by categorizing online content into climate adaptation, re-
silience, and denial and introducing a climate content mod-
eration system. This approach helps amplify credible climate
discussions, promote resilience, foster awareness, and drive
informed action among policymakers, scientists, and the pub-
lic. Experimental analysis further demonstrates the effective-
ness of targeted interventions and predictions across adap-
tation, resilience, and denial domains, strengthening climate
communication and community preparedness and ultimately
combating misleading information. Moreover, this interdis-
ciplinary research, conducted in collaboration with computer
science, biology, and science education researchers, school
educators, and climate activists, aligns with SDG 17 (Part-
nerships for the Goals) by fostering cross-sector cooperation.

2https://osf.io/u4jnq/?view only=
8e706f57e9a7443b9fc6a9cc9222e26b

2 Methodology
Figure 1 shows the overall architecture of our approach,
which consists of two main stages: Climate Category Pre-
diction and Climate Content Moderation. We refer to our
proposed method as ClimaGuard (Climate Awareness and
Guidance System). Next, we first describe the input features
followed by the workflows of both stages.

2.1 Input Features
The textual content of the input post is considered as one of
the input features (t). Since human behavior plays a crucial
role in both causing and responding to climate change [Kik-
stra et al., 2022; Steg, 2023], we query the LLM using the
input text (t) to extract the user’s climate psychology values
(p) that influence their preferences and perceptions of climate
actions (prompt in Figure 1 [Appendix A]), user’s hidden in-
tention that defines the purpose of the post (u), e.g. support-
ive, clarifying, provoking, satire, informative (Figure 2 [Ap-
pendix A]), and identify the key stakeholders/target groups of
the post and assess the potential impact or perception of the
post on each stakeholder group (s) using Figure 3 (Appendix
A) to interpret how the post might influence or impact target
audience, e.g, positive engagement, backlash, climate policy
considerations. We consider p, u, and s as LLM-extracted
features (see Figure 1).

2.2 Stage 1: Climate Category Prediction
This stage is responsible for classifying the given post into
multiple climate categories. Implicit text (t) and LLM-
extracted cues (p, u, s) are encoded and processed through
attention mechanisms and a dynamic gated module to gener-
ate a context-aware representation. A feed-forward network
then predicts multi-label categories for climate adaptation, re-
silience, and denial.
Embedding We initially pass all the input features (t, p, u,
s) through separate embedding models. Following previous
work [Nan et al., 2024], we also use BAAI/bge-base-en-v1.5
[Xiao et al., 2023] to generate high-quality meaningful repre-
sentations of the input features, with dimension (de) followed
by the dense layer of dimension df , leading to Ep, Eu, Es,
and Et ∈ Rm×df , where m is the maximum sequence length.
Self-Attention The embedded input text is then fed to
the MultiHeadAttention (MHA) [Vaswani et al., 2017]
based on the concept of query (Q), key (K), and value
(V) to uncover latent patterns in the input. We employ
torch.nn.MultiheadAttention layer followed by dense layer of
dc, where embedded text (Et) is fed as query, key, and value
(Q = Et,K = Et, V = Et), resulting in Ci ∈ Rm×dc

[Ci = MultiHeadAttention([Q,K, V ])], representing im-
plicit contextual information (refer Figure 1).
Co-Attention In parallel, we apply the co-attention mech-
anism to the LLM-extracted features to bridge the psycho-
logical values (Ep), intent (Eu), and real-world impacts (Es)
to achieve a more cohesive representation for predicting nu-
anced climate categories in text (Figure 1). Here, we first ap-
ply co-attention between the user’s psychology (Ep) and in-
tention (Eu), which captures the interplay between what the
user’s values and what they aim to achieve; resulting in psy-
chologically informed user intent. To compute co-attention
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Figure 1: Architectural overview of our proposed ClimaGuard.

between Ep and Eu, we initially compute the affinity ma-
trix M between Ep and Eu following [Xiong et al., 2016]
[M = EuEp]. The matrix M is normalized row and column-
wise to obtain the attention weights Ap = softmax(M) and
Au = softmax(MT ). We then calculate the attention con-
text of intention w.r.t psychology (Cp = EuAp) and vice-
versa (Cu = EpAu). Similar to [Cui et al., 2016], we capture
CpAu of the previous attention contexts in parallel, leading
to the final co-dependent representation of psychology and
intention as co-attention context, where ∈ Rm×2(df ) (Eq. 1).

Co−Atten(Ep, Eu) = [EpAu;CpAu] (1)

Co-attention is again applied to integrate psychologically in-
formed user intent with the stakeholder impact (Es) [simi-
lar process is applied using Eq. 1]. This reflects how well
the user’s motivations match the external effects and identify
potential conflicts or synergies between intent and audience
reception.

Ce = Co−Atten(Co−Atten(Ep, Eu)), Es) (2)

The final co-attentive vector (Eq. 2), passed through a
dense layer of dc, encapsulates subtle interactions of exter-
nal knowledge and ensures that both user-driven (values and
intentions) and audience-driven (impact on stakeholders) fac-
tors are modeled holistically, which helps capture the multi-
faceted explicit context Ce ∈ Rm×dc .
Dynamic Contextual Gated Integration is responsible for
dynamic fusion strategy that combines the input with both
implicit and explicit contexts. The implicit (Ci) and ex-
plicit (Ce) context, along with the encoded text (Et), flow
through this gating component (Figure 1). The main intuition
is rooted in dynamically leveraging complementary perspec-
tives to make a more nuanced and context-aware prediction.

It allows the model to adjust its focus depending on the nature
of the input. For example, if implicit context is clear, it may
dominate; if explicit signals are strong (e.g., skepticism), they
may carry more weight. To achieve this, we introduce two
gates, Cfilter

i and Cfilter
e , which assess the interplay between

the input and inferred context, producing a filtered implicit or
explicit representation respectively.

ui = σ(W1 · Et +W2 · Ci + b1) (3)
ue = σ(W3 · Et +W4 · Ce + b2) (4)

where W1, W2, W3, W4, b1, and b2 are trainable weights
and bias parameters and ui and ue dynamically decide how
much weight to assign to the implicit or explicit context with
respect to the encoded input. These vectors are then filtered
using equations 5 and 6, ensuring that context is balanced
against the input text while reducing the impact of irrelevant
representations.

Cfilter
i = ui · Ci + (1− ui) · Et (5)

Cfilter
e = ue · Ce + (1− ue) · Et (6)

These filtered representations are then combined via a
Hadamard product to capture their interactions, and this re-
sult is fused with the embedded input (Et) leading to Ffinal ∈
Rm×dc (Eq. 7), ensuring that core semantic information is
preserved while leveraging the complementary strengths of
implicit and explicit contexts.

Ffinal = Et + Cfilter
i ⊙ Cfilter

e (7)

Feed Forward Network The final fused representation
(Ffinal) is flattened and then passed through the feed-forward
network consisting of two dense layers with ReLU activation
to classify the context-aware input representation into present
climate adaption, resilience, or denial categories.
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2.3 Stage 2: Climate Content Moderation
Once the multiple climate categories are extracted, this phase
aims to moderate the content of the given input post by gen-
erating a response to either improve or intervene in the post,
thus promoting ethical and engaging climate discourse. Al-
gorithm 1, defining the workflow of iterative response gener-
ation and evaluation, is present in Appendix D.
Climate Mode Extractor serves as a critical intermediary
between the category prediction and the content moderation
stages, guiding how the system interprets and responds to a
post based on its alignment with climate change narratives
(Figure 1). In this module, we interpret predicted categories
(preds) from Section 2.2 to determine the climate mode of
post (Step 1, Algorithm 1). We consider mode as align to-
wards climate change if the post consists of climate adapta-
tion or resilience as predicted categories. If it contains coun-
terproductive narratives (e.g., denial or misinformation), the
mode is determined as diverge. When categories are am-
biguous (e.g. a mix of denial and adaptation), the mode is
undetermined.
Response Generation ensures moderated outputs by itera-
tively refining responses using a base-LLM (content moder-
ator) and a judge-LLM (content evaluator) in the absence of
ground truth responses. Here, base-LLM first generates a re-
sponse [Step 4, Algorithm 1], which is then evaluated by a
judge-LLM [Step 9, Algorithm 1]. Failed responses incur
a penalty based on the climate mode, which adjusts token
weights [Steps 13-16, Algorithm 1]. These adjusted weights
influence token probabilities via logits processor during sub-
sequent response generation by base-LLM [Steps 7 and 17,
Algorithm 1]. This cycle continues iteratively, refining the
response by base-LLM until it passes the evaluation or the
maximum iterations are reached. Next, we detail the compo-
nents of response generation.
Content Moderator (base-LLM) takes input text, LLM-
extracted features, predicted climate categories, and the ex-
tracted climate mode to generate a moderated response using
Prompt 5 (Appendix C) based on context while ensuring it
aligns with user’s intent or diverges as per the mode.
Content Evaluator (Judge-LLM) evaluates the base-LLM’s
response based on toxicity (0-1), persuasiveness (-3 to 3), fac-
tual accuracy (true/false/misleading/undetermined), and a bi-
nary pass/fail judgment (Step 9, Algorithm 1). As ground
truth is unavailable, a climate-specific LLM serves as the
judge, ensuring domain-relevant evaluation and structured
feedback for refinement (supported by Section 4.2). The
range for toxic and persuasive scores and different factual cat-
egories relies on external validation (Section 2.3).
Penalty for Failing Responses If judge-LLM rates a base-
LLM response as “fail”, a penalty is applied based on the
climate mode to enforce alignment (Step 13, Algorithm 1). A
stronger penalty (0.7) in ‘diverge’ mode is applied to reflect
the failure to counter anti-climate input or context, while a
moderate penalty (0.5) in ‘align’ mode applies for inadequate
alignment. A softer penalty (0.2) in ‘undetermined’ mode
accounts for uncertainty.
Token Penalization for Failing Responses After applying
the penalty, base-LLM is further penalized for generating a
failed response by adjusting token weights based on the cli-

mate mode. Initially, all tokens have equal weight (1) (Step 5,
Algorithm 1). If the response is judged as “fail”, cosine simi-
larity between generated tokens and the combined input con-
text (p, u, s, preds) is calculated. In align mode, tokens dis-
similar to the context (cos sim< 0.5) are penalized by reduc-
ing their weight to 0.5 (1−penalty), encouraging alignment.
In diverge mode, overly similar generated tokens with con-
text (cos sim>= 0.5) are punished by reducing their weight
to 0.3 (1 − penalty), preventing the use of tokens that de-
viated from climate change. In undetermined mode, a mild
penalty of 0.8 (1−penalty) is applied to all tokens. These ad-
justments guide the base LLM toward improved responses by
penalizing specific tokens from the failed response in subse-
quent iterations (Steps 14-16, Algorithm 1). Please note that
we reduce the weights by 1−penalty to punish the tokens of
a failed response, as lower weights decrease the probability
of selecting those tokens in future iterations.
Logits Processor adjusts token selection during generation
by applying the log of penalized token weights to the log-
its (Steps 16 and 17, Algorithm 1). This custom-made logits
processor is then passed in the ‘logits processor’ parameter of
the base-LLM while generating response. Since the log of a
reduced token weight is negative, it decreases the logit values
for such penalized tokens, lowering their selection probabil-
ity. This discourages the model from generating previously
chosen tokens, guiding it toward a more appropriate response.
Iterative Refinement Entire process repeats iteratively, gen-
erating a new response, evaluating it, and penalizing tokens
until an adequate response is produced or the maximum iter-
ations are reached (Steps 2-19, Algorithm 1).
External Validation After the LLMs generate the final re-
sponse, it is evaluated by external validators. Following prior
research [Upadhyaya et al., 2023c; Choi and Ferrara, 2024;
Liu et al., 2024], we use the Perspective API [Hosseini et al.,
2017] to assess the toxicity score (0-1), a Huggingface-based
persuasiveness model [Pauli et al., 2024] that provides a score
between -3 to 3 to measure how persuasive the generated con-
tent is compared to the input, and the Google Fact-Check Ex-
plorer [Check, 2024] to determine the factual accuracy of the
response in terms of true, false, misleading, or undetermined
by analyzing the top 5 claims. These external tools help eval-
uate whether the LLM-produced content is toxic, persuasive,
and factually accurate. This evaluation is performed during
the testing phase to ensure transparency, however, we avoid
external validation during training to reduce latency. During
training, LLMs are guided by implicit token penalties, logits
processing, and mode penalties to refine the response genera-
tion process without ground-truth (Algorithm 1).

2.4 Loss Functions
Category Prediction Loss (Lc) As category prediction is a
multi-label classification, binary cross-entropy loss is used.
Contrastive Adversarial Loss (La) encourages the model
to differentiate between correct and incorrect climate cat-
egory predictions by adjusting the Euclidean distance be-
tween implicit (Ci) and explicit (Ce) context embeddings
[d = ∥Ci − Ce∥2]. For correct predictions, it increases the
distance between these embeddings, promoting adversarial
learning, while for incorrect predictions, it reduces the dis-
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tance, helping the model better align with the correct labels
(Eq. 8). This helps in training the model to distinguish be-
tween correct and incorrect predictions by manipulating the
embeddings in an adversarial and contrastive manner.

La =
1
N

∑N
i=1 (correcti · ReLU(margin − di) + (incorrecti) · (−di))

(8)
Mode Penalty Loss (Lp) improves the model’s category
prediction accuracy while ensuring that generated responses
align with the desired context, such as climate alignment. By
penalizing failed responses based on the climate mode (Sec-
tion 2.3), the model is guided to either stay aligned with or
intentionally diverge from the context. This encourages the
model to better categorize inputs into climate-specific cate-
gories and generate more contextually appropriate responses.
The penalty, as described in Section 2.3, is normalized over
the number of all failed responses of each input [Pmean =
1

Nfail

∑Nfail
k=1 penaltyk], which is then normalized over all in-

puts and linked with the category prediction loss Lc (Eq. 9).

Lp = Lc.
1

N

N∑
i=1

(Pmeani) (9)

Total loss: of our proposed approach is, L = Lc+Lp+pLa.

3 Experimental Setup
3.1 Dataset
(i) ClimateTweets (CT): is a benchmark dataset of 8, 881 cli-
mate tweets with believe, deny, and ambiguous views regard-
ing climate change [Upadhyaya et al., 2023b]. We randomly
select 2000 tweets for manual annotation for the climate cate-
gory task. (ii) ClimateArticles (CA): To assess the efficacy of
ClimaGuard across varying content lengths beyond tweets,
we collect the 50 most recent climate news articles from
22 publicly available newspapers [Efficiency, 2024], yielding
1100 articles dated between 2023-05-29 and 2024-06-29. (iii)
Climate & COVID Benchmark Datasets: To evaluate the
generalizability of our ClimaGuard for category prediction
task, we tested our model on different climate and COVID-
related category classification datasets [Duong et al., 2022;
Upadhyaya et al., 2024].
Climate Category Annotation To systematically define dis-
tinct climate-related categories, an interdisciplinary team
comprising researchers from diverse fields—including com-
puter science, biology, and science education—along with
educators from secondary schools and activists from the Fri-
days for Future movement, collaboratively developed a tax-
onomy of adaptation, resilience, and denial categories. This
categorization process of climate data is extensively reviewed
using the information published by the United Nations3, as
well as prior research identifying climate change mitiga-
tion efforts and denial narratives on social media platforms
[Duong et al., 2022; Upadhyaya et al., 2024; Gounaridis and

3https://unfccc.int/topics/adaptation-and-resilience/the-big-
picture/introduction#adaptation,https://climatepromise.undp.org/what-
we-do/areas-of-work/adaptation-and-
resilience,https://www.unep.org/topics/climate-action/adaptation

Category CT CA
Assess Impacts 25.80 65.55
Plan for Adaptation 10.70 25.27
Implement Adaptation 5.30 15.91
Evaluate Adaptation 0.10 3.45
Early Warning Systems 0.50 5.36
Emergency Preparedness 0.65 5.73
Slow Onset Events 2.05 29.45
Permanent Loss and Damage 2.40 17.45
Non-Economic Losses 2.00 18.36
Resilience of Communities 27.70 51.45
Denial of Human Impact 31.25 3.64
Resistance to Climate Action 32.50 10.73
Doubting Scientific Consensus 29.95 3.36
Spreading Information Pollution 30.15 2.64
None of these 4.55 6.18

Table 1: % distribution of different categories in CT & CA.

Newell, 2024]. Few examples of “adaptation”: plan for adap-
tation, implement adaptation measures, “resilience”: emer-
gency preparedness, early warning systems; “denial”: denial
of human impact, doubting scientific consensus. Manual An-
notation: A team of five trained annotators with interdisci-
plinary backgrounds was assigned to annotate CT and CA
datasets with the appropriate category labels according to the
above schemas (multi-label classification). We gave clear in-
structions to the annotators to avoid any inherent bias towards
the climate crisis and to annotate solely based on the meaning
conveyed in the textual content. We obtained Cohen Kappa
scores [Fleiss and Cohen, 1973] (inter-annotator agreement)
of 0.79 (CT) and 0.77 (CA). These denote that the quality of
annotations and the presented datasets are significantly pro-
ductive. Dataset statistics are shown in Table 1 for both CT
and CA datasets, where categories 1-4 represent adaptation,
5-10 resilience, 11-14 denial, and the last as none.
LLM-Generated Responses Evaluation (Content Moder-
ation) After several rounds of discussion, an interdisciplinary
team of five annotators (similar team who annotated climate
category task) established the following evaluation criteria for
the generated moderated response, based on recent research
[Wang et al., 2023] and other proposed parameters, which are
rated on a 5-point Likert scale [1: not; 5: very]: Informative-
ness (accuracy and relevance of climate change information),
Relevance to Prompt (focus on the specific climate-related
query), Responsible Communication (avoidance of climate
myths), and Evaluating Impact (clarity, feasibility, and nov-
elty of climate solutions). The annotation team then scored
the LLM-generated responses based on these parameters, as
no ground truth was available.

3.2 Implementation Details
Evaluation metrics, hyperparameters, baselines, and envi-
ronment details are covered in Appendix E.

4 Results
4.1 Climate Category Prediction
Comparison with Baselines
Table 2 shows that our ClimaGuard outperforms other base-
lines with an average weighted F1 score of 86.15 and 86.68,
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Model ClimateTweets ClimateArticles
Macro F1 Weightd F1 Macro F1 Weightd F1

Avg./Std.dev Avg./Std.dev Avg./Std.dev Avg./Std.dev
Large Language Models (LLMs)

Mistral[zero-shot](t) 54.08/2.01 60.83/2.11 57.05/1.69 63.39/1.55
Mistral[few-shot](t) 55.14/3.10 61.59/2.59 59.31/1.72 64.25/2.01
Mistral[fine-tune](t) 60.02/1.04 66.4/0.64 61.68/0.59 68.91/0.61
Mistral[fine-tune](t,p,u,s) 61.36/0.77 69.35/0.35 65.27/0.49 71.69/0.61
Llama 3.2[zero-shot](t) 63.01/0.79 69.6/0.76 65.06/0.53 69.55/0.48
Llama 3.2[few-shot](t) 65.44/1.05 72.07/1.16 67.19/0.66 71.09/0.68
Llama 3.2[fine-tune](t) 69.09/0.51 76.32/0.57 72.55/0.49 78.76/0.81
Llama 3.2[fine-tune](t,p,u,s) 72.62/1.13 79.05/0.91 75.63/0.45 81.14/0.42
ClimateGPT[zero-shot](t) 59.45/0.41 65.63/0.29 62.18/0.25 68.08/0.31
ClimateGPT[few-shot](t) 64.11/0.58 69.17/0.26 67.57/0.39 71.17/0.41
ClimateGPT[fine-tune](t) 68.37/0.18 75.08/0.35 72.61/1.01 79.49/1.06
ClimateGPT[fine-tune](t,p,u,s) 71.28/0.62 78.14/0.49 76.08/0.31 81.69/0.45

Small Language Models
BERT 55.26/2.04 60.15/2.10 56.15/1.31 61.57/1.69
RoBERTa 60.33/1.66 63.29/1.17 60.08/1.52 64.31/1.20
BERTweet 64.59/1.05 69.27/1.23 63.79/0.57 70.66/0.42
ClimateBERT 64.67/0.38 70.15/1.02 67.15/0.39 72.43/0.61

Our Proposed Variants
Text (t)+im.context(self-atten.) 66.95/1.13 74.67/0.48 74.94/1.11 80.49/1.16
Text+ex. context(p,u,s)(concat) 70.58/0.69 77.06/0.83 76.12/1.39 81.39/0.69
Text+ex.(p,u,s)(co-atten.) 73.05/1.25 79.30/0.67 78.56/1.01 83.64/0.75
Text+im.+ex.(concat) 75.15/0.37 81.13/1.05 79.00/1.23 84.70/1.18
Text+im.+ex.(dynamic) 78.6/1.01 84.96/0.42 80.87/0.51 86.19/0.65
Text+im.+ex.(dynamic)
+adv.+penalty (ClimaGuard) 79.86/0.47 86.15/0.51 81.04/0.23 86.68/0.38

Table 2: Results (Macro/Weighted F1) of baselines and Clima-
Guard.[ highlight :overall best; bold: best within category]

resulting in an average improvement of 15.89% and 12.89%
compared to the best LLM and small language model (SLM)
on CT and CA datasets for category prediction task. This
demonstrates the strength of our approach which efficiently
captures implicit and explicit contexts, enabling a richer, hi-
erarchical understanding of climate-related content to iden-
tify the nuanced categories. It is also evident from Table 2
that LLMs perform better when fine-tuned with the training
dataset. The addition of climate psychology values (p), inten-
tions (u), and impact on stakeholders (s) along with the text
further increases the performance of all LLMs with an aver-
age improvement of 3.91% and 3.27% in weighted F1 for CT
and CA respectively, signifying the usefulness of contextual
information for efficiently identifying multiple climate cate-
gories. Although Llama 3.2 achieves the highest weighted
F1 score (79.05) among the baselines for CT, ClimateGPT
performs comparably with 78.14 F1 for CT and better with
81.69 F1 for CA dataset, showcasing its effectiveness due
to fine-tuning on curated climate documents and instruction-
completion pairs by climate scientists, making it relevant for
climate-specific tasks. However, our ClimaGuard performs
better than these baselines, demonstrating its power of dy-
namically filtering and selecting the relevant fusion of im-
plicit and multifaceted explicit context captured by effective
learning of context embeddings in contrastive and adversarial
manner. Compared with baselines, results of ClimaGuard are
statistically significant (under t-tests (p<0.05).

Comparison with Different ClimaGuard Variants
Table 2 presents the different variants of our ClimaGuard.
Adding explicit context to the text improves the weighted
F1 by 3.20% for CT and 1.12% for CA datasets. This high-
lights the significance of external knowledge, particularly for
tweets, where the shorter text length may lack the hidden
cues. The concatenation of implicit and explicit context fur-
ther improves ClimaGuard’s performance. It is observed that
integrating the context using the dynamic gating mechanism

Model Impact Miti. P&P R.C. Oth. Mic.F1
LDA 0.13 0.32 0.26 0.02 0.17 0.22
GloVe-LSTM 0.50 0.38 0.27 0.05 0.30 0.38
GloVe-GRU 0.37 0.45 0.28 0.07 0.34 0.36
BERT-FC 0.79 0.64 0.68 0.45 0.61 0.67
Ours 0.85 0.71 0.73 0.61 0.68 0.76

Table 3: Results of ClimaGuard on benchmark category data

Variant Climate COVID
GPT-3.5(FS+C,E) 70.25 68.80
Mistral(FS+C,E) 74.23/0.11 65.32/0.51
BERT 67.98/0.41 68.49/0.47
RoBERTa 70.15/1.04 70.22/1.31
CLIMATEBERT 72.43/1.41 69.19/0.53
BERTweet 75.84/0.56 74.56/1.15
COVID-Twitter-BERT 69.45/1.62 78.24/1.39
VirtuAI 83.25/0.72 87.03/0.59
Ours 86.31/1.48 89.62/1.15

Table 4: Weighted F1 (Mean/Std. dev) of ClimaGuard on bench-
mark climate and COVID relevance detection task.

instead of concatenation enhances weighted F1 by 4.72% and
1.76% in CT and CA respectively, indicating the efficacy
of our proposed gated mechanism to leverage the comple-
mentary strengths of both context and input. The addition
of penalty and contrastive embedding loss functions further
guides our ClimaGuard to efficiently identify different cli-
mate categories in the text.

Visualization of Category-Wise Results

Figures 7 (a) and (b) [Appendix F] present the category-wise
precision, recall, and F1 score of our ClimaGuard for the best
round of results on CT and CA. ClimaGuard performs well
on both datasets across climate adaptation, resilience, and de-
nial categories, with the CA achieving more balance in recall
and F1 scores than CT due to better representation of cate-
gories within the CA dataset (Table 1). For adaptation cat-
egories (1–4), ClimaGuard on CA has a higher average F1
of 83.22 than on CT, which allows for better identification of
posts about impacts, planning, and evaluation of adaptation
measures; the categories that support resource allocation and
collective action. For resilience categories (5–10), both mod-
els show strong recall, especially for slow-onset events, loss
and damage, and community resilience categories. Clima-
Guard on CA also captures posts on emergency prepared-
ness more effectively, offering consistent performance across
these categories, which are helpful in disaster preparedness
and resource planning (Figure 7 (b)). For denial categories
(11–14), the models on both datasets show high precision,
with CT achieving higher F1 scores (Figure 7 (a)). How-
ever, ClimaGuard on CA compensates with a recall of 0.9091
by identifying false, misleading, or harmful information re-
lated to climate change (category 14) effectively. This capa-
bility is crucial for addressing misinformation patterns and
ensuring accurate public discourse on climate change. Over-
all, the models’ ability to classify these categories accurately
supports targeted predictions across adaptation, resilience,
and denial domains, enhancing communication strategies,
promoting community preparedness, and combating climate
misinformation effectively.
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LLM Input Informat. Rel. to Prompt Respons. Comm. Evaluate. Impact
CT CA CT CA CT CA CT CA

Llama 3.2 text only 3.3 3.02 2.83 2.65 3.51 3.52 2.66 3.01
text+context
+categories 4.15 3.91 3.91 3.66 4.27 4.16 4.35 4.29

ClimateGPT text only 2.87 3.17 3.16 2.74 3.04 3.32 3.16 3.10
text+context
+categories 3.84 4.04 4.03 3.5 4.05 4.03 3.81 4.06

Mistral text only 3.1 2.87 2.72 2.12 2.98 3.05 2.66 2.58
text+context
+categories 3.69 3.25 3.05 3.56 3.55 3.87 3.75 3.31

Table 5: Human evaluation of LLM-Responses for CT & CA

Evaluation Across Benchmark Climate and
COVID-Related Categories
Table 3 shows that our ClimaGuard outperforms baseline
methods with 0.76 Micro-F1 in classifying climate-related
tweets into five high-level categories: Root Cause, Impact,
Mitigation, Politics or Policy, and Others [Duong et al.,
2022]. Moreover, the superior performance of ClimaGuard
(Table 4) on the relevance detection task across climate and
COVID-related categories [Upadhyaya et al., 2024] high-
lights its robustness and adaptability by effectively capturing
relevant categories in diverse and critical scenarios, for in-
stance not only in climate but also in COVID. The results are
statistically significant under t-tests (p<0.05).

4.2 Climate Content Moderation
Human Evaluation
Table 5 summarize the human evaluation of responses gen-
erated by different base-LLMs, rated on a scale of 1 to 5
across predefined parameters (refer Section 3.1) for both CT
and CA datasets. The results indicate that responses gener-
ated by Llama are the most effective across most parameters,
while ClimateGPT performs comparably, excelling in rele-
vance to the prompt for CT and informativeness for CA. For
example, Llama and ClimateGPT responses usually consist
of sentences like: I understand your skepticism, but let’s take
a closer look..Great initiative!, wake-up call for us, let’s keep
the conversation respectful!. These findings suggest that both
models are well-suited as base-LLMs for generating climate-
appropriate responses. Furthermore, incorporating explicit
knowledge, predicted categories and modes significantly en-
hances the informativeness, relevance, and ethical soundness
of the generated climate responses compared to using text
alone. This highlights the importance of leveraging exter-
nal knowledge to provide LLMs with enriched context for
response generation. Thus, we consider Llama 3.2 as best
choice for base LLM to generate responses, and ClimateGPT
which is domain-specific, became the better option for judge
LLM in stage 2 (refer Section 4.2 [External Validation]).

External Validation
Figures 8 (a) and (b) and Figures 9 (a) and (b) [Appendix
G] represent the cumulative distribution functions of persua-
sive and toxicity scores for both CT and CA datasets re-
spectively. We conduct Kolmogorov-Smirnov [Hodges Jr,
1958] statistical method to compare the score distributions
of both ClimateGPT and Llama with external validation
tools by evaluating the maximum difference between their
cumulative distribution functions (D-statistic). For persua-
sive scores (Figure 8 [Appendix G]), ClimateGPT (D =
0.159[CT]; 0.123[CA]) is closer to the external validation dis-
tribution compared to Llama (D = 0.208[CT]; 0.422[CA]),

though both differences are statistically significant (p-values
< 0.0001). For toxic scores, both LLMs deviate more sub-
stantially from the external validation data, with ClimateGPT
(D = 0.367[CT]; 0.184[CA]) being closer than Llama (D
= 0.579[CT]; 0.569[CA]) (Figure 9 [Appendix G]). We
also perform the Jensen-Shannon Divergence statistical test
(scipy.spatial.distance.jensenshannon) to measure the simi-
larity between the factual categorical data of the two LLMs
and Google Fact-Check (Figures 10 (a) and (b) [Appendix
G]). For factual responses, ClimateGPT shows a lower JSD
(0.0753[CT]; 0.0549[CA]) compared to Llama (0.1085[CT];
0.0855[CA]) when evaluated against the external tool, sug-
gesting that GPT is more consistent with the external tool’s
categorization of factual responses than Llama. Overall, Cli-
mateGPT demonstrates better alignment with external valida-
tion data for persuasiveness, toxicity, and factual categorical
data validating that ClimateGPT is a better choice as judge-
LLM for evaluating base-LLM’s responses.

Qualitative Analysis
Table 1 (Appendix H) shows the Llama responses for a sam-
ple tweet and article from both datasets. As can be seen from
table, LLM-response quality improves significantly by incor-
porating context and category predictions. While a text-only
response tends to be neutral and passive, focusing mainly on
moderating tone, adding context allows the model to better
understand the user’s intent and psychological values, fram-
ing the conversation towards a more respectful and construc-
tive exchange. The full input— with predicted categories
and a divergence mode— allows the model to tackle mislead-
ing information proactively and provide both corrections and
guidance toward solutions. Ultimately, the addition of context
and predicted categories not only enhances the relevance and
impact of the response but also ensures that it is more focused
on promoting climate action, which is crucial for steering the
public discourse toward positive change.

5 Related Work
Due to space limitations, Appendix I includes literature
overview, research gaps, and motivation behind our approach.

6 Conclusion
In our work, we address the UN SDG 13-Climate Action (Tar-
gets 13.1 & 13.3) by proposing a novel multi-stage frame-
work where stage 1 focuses on identifying climate adaptation,
resilience, and denial categories, while stage 2 moderates on-
line climate posts to either improve or intervene with respect
to climate objectives and goals. We present a novel dataset
of online tweets and news articles that were categorized into
different climate categories with the help of a taxonomy de-
veloped by experts. Extensive experiments demonstrate the
generalizability of our stage 1 and relevance of our stage 2 in
the absence of ground-truth. Hence, our approach strengthens
credible and responsible climate discourse, fosters resilience,
enhances awareness, and thus empowers key stakeholders to
take informed action while combating misinformation.
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