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Abstract

Order dispatch systems play a vital role in ride-
hailing services, which directly influence operator
revenue, driver profit, and passenger experience.
Most existing work focuses on improving system
efficiency in terms of operator revenue, which may
cause a bad experience for both passengers and
drivers. Hence, in this work, we aim to design a
human-centered ride-hailing system by considering
both passenger fairness and driver preference with-
out compromising the overall system efficiency.
However, it is nontrivial to achieve this target due to
the potential conflicts between passenger fairness
and driver preference since optimizing one may
sacrifice the other. To address this challenge, we
design HCRide, a Human-Centered Ride-hailing
system based on a novel multi-agent reinforcement
learning algorithm called Harmonization-oriented
Actor-Bi-Critic (Habic), which includes three ma-
jor components (i.e., a multi-agent competition
mechanism, a dynamic Actor network, and a Bi-
Critic network) to optimize system efficiency and
passenger fairness with driver preference consider-
ation. We extensively evaluate our HCRide using
two real-world ride-hailing datasets from Shenzhen
and New York City. Experimental results show our
HCRide effectively improves system efficiency by
2.02%, fairness by 5.39%, and driver preference by
10.21% compared to state-of-the-art baselines.

1 Introduction

In recent years, ride-hailing services (e.g., Uber, Lyft, Ola
Cabs, and DiDi Chuxing) have become indispensable to our
daily transportation needs. By 2023, the global ride-hailing
market size was valued at $109.3 billion, and it is expected to
expand at a growth rate of 12.70% from 2024 to 2033 [RE-
SEARCH, 2023]. One of the most important components of
ride-hailing services is the order dispatch system, which di-
rectly impacts the revenue of platforms, the work experience
of drivers, and the user experience of passengers.

Due to its importance, order dispatch has attracted sig-
nificant attention from both industry and academia [Chen et
al., 2019; Yuan and Van Hentenryck, 2021; Xu et al., 2018;
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Wang et al., 2022b]. However, most existing works focus on
maximizing system revenue, which can potentially compro-
mise the driver and passenger experience. Although some re-
cent studies consider passenger fairness [Siihr et al., 2019;
Zhou et al., 2023; Nanda et al., 2020; Wang et al., 2021;
Wang et al., 2023a; Jiang et al., 2023], most adopt an ab-
solute fairness setting [Wang et al., 2022a], assuming all pas-
sengers should experience equal waiting times regardless of
location, which overlooks the dynamic nature of supply and
demand across regions. Furthermore, driver preferences are
frequently ignored, leading to poor experiences when drivers
are dispatched to unfamiliar or undesired areas.

Hence, in this work, we aim to design a human-centered
ride-hailing order dispatch system that harmonizes passenger
fairness and driver preference. However, it is nontrivial to
achieve this due to the following two reasons. (i) It is chal-
lenging to formally define passenger fairness and driver pref-
erence since they have highly spatial and temporal dynam-
ics. (i) Harmonizing passenger fairness and driver preference
is also challenging due to their potential conflicts since im-
proving passenger fairness may not align with drivers’ pref-
erences. For example, to ensure passenger fairness, drivers
might be dispatched to high-demand areas, which could be
distant from their preferred locations or lead to extended
working hours beyond their preferred schedules.

To address the above challenges, we propose a Human-
Centered Ride-hailing framework, called HCRide, which
aims to minimize total passenger waiting time and en-
hance fairness without compromising driver preferences. In
HCRide, we formulate the order dispatch problem as a Con-
strained Markov Decision Process (CMDP), where the pas-
senger fairness-aware reward serves as the optimization ob-
jective and the accumulated driver preference-based cost is
treated as a constraint. Passenger fairness is formally de-
fined based on the divergence of waiting times across differ-
ent spatial-temporal contexts, considering both inter-region
and intra-region levels. Driver preferences are modeled us-
ing each driver’s historical visitation frequency to various re-
gions, reflecting their working habits and regional familiar-
ity. To solve this CMDP, we develop a novel multi-agent re-
inforcement learning (RL) algorithm called Harmonization-
oriented Actor-Bi-Critic (Habic). Habic consists of three
key components. First, a multi-agent competition mechanism
transforms the large joint action space into smaller distributed
action spaces among a limited number of candidate agents.
This enables a micro-level decision process [Qin ef al., 2022]
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that helps manage competition among proximate heteroge-
neous drivers with varying preferences. Second, a Bi-Critic
module incorporates two evaluation networks: one estimates
the reward value reflecting system efficiency and passenger
fairness, while the other assesses the cost related to driver
preferences. Third, an Actor module utilizes the outputs of
the Bi-Critic networks to generate dispatch decisions that bal-
ance both passenger fairness and driver preferences.

The key contributions of this work are as follows:

1. To our knowledge, this is the first study on human-
centered ride-hailing order dispatch that considers both
passenger fairness and driver preference. Our design
is motivated by social studies and data-driven analysis,
from which we observe: (i) a notable discrepancy in
waiting times among passengers, both within and across
regions; (ii) drivers show distinct preferences for op-
erational regions—some favor smaller, confined areas,
while others are willing to cover broader locations.

2. Based on the data-driven findings, we design a human-
centered ride-hailing order dispatch system called
HCRide to improve passenger fairness without compro-
mising driver preferences. Spatio-temporal-aware fair-
ness and preference are defined. The core of HCRide is
a novel multi-agent RL algorithm called Habic, which
includes a multi-agent competition mechanism and an
Actor-Bi-Critic module to harmonize passenger fairness
and driver preference.

3. More importantly, we implement and extensively eval-
uate our HCRide based on two real-world ride-hailing
datasets. Experiment results show our HCRide effec-
tively improves system efficiency by 1.77% and 2.02%,
inter-region fairness by 5.29% and 5.28%, intra-region
fairness by 7.65% and 5.39%, and driver preference by
7.77% and 10.21% compared to baselines on the Shen-
zhen and NYC datasets, respectively. To verify our
work, we have the code available at GitHub .

2 Socially Informed Fairness and Preference
Formulation

2.1 Data-driven Findings

In our previous project, we conducted qualitative studies to
understand people’s perceptions of current ride-hailing ser-

"https://github.com/LinJiang18/HCRide
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Figure 2: A Visualization of Driver Preference

vices, focusing on their views on fairness and their personal
preferences [Wang et al., 2025]. In this paper, we also uti-
lize real-world data with over one million ride-hailing orders
to verify findings from a quantitative perspective, and finally,
we have the following conclusions:

1. There is strong demand among passengers for equitable
waiting times, particularly relative to others in close spatial-
temporal proximity. However, substantial disparities in wait-
ing times exist both within and across regions, driven by vari-
ous spatial-temporal factors. As shown in Fig. 1, we visualize
average passenger waiting times across 491 regions in Shen-
zhen during three periods: morning and evening rush hour,
and noon non-rush hour. The results show that (i) spatially,
significant differences exist between regions, such as between
the Central Business District (CBD) and suburban areas; and
(ii) temporally, even within the same region, average waiting
times vary considerably within and across time periods.

2. Drivers have also reported having individual preferences
for operating in specific areas at different times, such as loca-
tions near their homes, airports, or downtown districts. How-
ever, they are often assigned orders outside these preferred re-
gions or in unfamiliar areas, which can negatively affect their
satisfaction and operational efficiency. As shown in Fig. 2,
darker colors represent areas frequently visited by a given
driver. We observe that some drivers (e.g., Driver 1) tend
to operate within limited regions, while others (e.g., Driver 3)
cover a broader range. The preferred region entropy analysis
in the upper right of Fig. 2 further highlights the diversity in
drivers’ operational areas.

2.2 Design of Fairness and Preference

Passenger Fairness
Motivated by the above findings, we define passenger fairness
from both inter-region and intra-region perspectives, incorpo-
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rating spatial and temporal patterns. In particular, intra-region
fairness is defined as:

WT(pl | ’U/7’U) = WT(pQ | u, U) (1)

where WT'(-) denotes the passenger waiting time, and p; and
po are two passengers located in the same region u during
a specific time period v (e.g., 8:00-9:00). In this study, each
time period is set to one hour, implying that passengers within
the same region and period should experience comparable
waiting times. Depending on the application, the temporal
granularity can be adjusted. Under Eq. 1, fairness is achieved
when the waiting times for both passengers are equal.

For passengers in different regions, we define a fairness
benchmark, denoted as WT,.(u, v), representing the expected
average waiting time in region u during time period v. A pas-
senger’s waiting time in region u is considered fair if it aligns
closely with this benchmark W7, (u,v). Inspired by the con-
cept of Demographic Parity [Singh and Joachims, 2018], we
evaluate fairness across regions by comparing their respective
fairness benchmarks as follows:

WT.(u,v)  WT.(uz,v)
(& (€]

2

where |C;| = 5; X %, Npassenger 18 the historical average
number of passengers ilﬁﬂregion u during period v, Nyriver de-
notes the number of drivers who prefer to operate in region
u, and f3; is an adjustable hyperparameter. Under this setting,
the inter-region fairness benchmark WT,(u,v) is inversely
proportional to the supply-demand ratio. The underlying ra-
tionale is that the expected waiting time in a region should
decrease when driver supply exceeds passenger demand.

Driver Preference

To quantify driver preferences, we introduce the following
definitions: (i) U: the set of all regions in the city; (ii) ’H,j:
the set of regions that provide positive feedback when driver
k serves a passenger there; (iii) HY: the set of regions that
are neutral—i.e., do not yield positive feedback but are still
acceptable to driver k; (iv) H, : the set of regions that result
in negative feedback for driver k. The formal representations
of these sets are defined as follows:

H ={ueld|Vi(u)>d} 3)
HO = {ucU|dis(u,u1) < kVi(u1) Vug € 'H,j} 4)
Hy ={uel|ugH UH} ()

where Vi (u) denotes the historical visitation frequency of
driver k to region u. A region u is classified into the Pos-
itive region set ’H,j for driver k if the visitation frequency
Vi:(u) exceeds a threshold d. dis(u,u;) represents the dis-
tance between the region v and w1, which should be shorter
than xkV;(u1). Here, kKVj(u1) defines the radius of influ-
ence for a positive region u;. This means that if region u
falls within the influence radius of the positive region uy, it is
deemed acceptable for driver k to operate in.

In Fig. 2, we illustrate examples of the influence radius for
drivers 1 and 3. The negative region set H, comprises all
other regions that are not included in the positive region set
'H,,i' or the neutral region set HY.

3 HCRide System Design

In this part, we introduce the detailed design of the human-
centered ride-hailing order dispatch system HCRide, which
prioritizes passenger fairness and accommodates driver pref-
erences, considering various spatio-temporal factors.

3.1 Order Dispatch Problem Formulation

Formally, we model the fairness-oriented, preference-aware
ride-hailing order dispatch problem as a Constrained Markov
Decision Process (CMDP) G, defined as an 8-tuple: G =
{8, A,P,R,C, t1,¥r 7}, where S is the state space; A
the action space; P the transition probability function, P :
SxAxS — [0,1]; R the reward function; C the set of
cost functions; p : & — [0, 1] the initial state distribution;
and 7,., v, € (0, 1] are discount factors for future rewards and
costs. Let II denote the set of all stationary policies, and let
mg(a | s) € II be a policy parameterized by 6 that maps state
s to a distribution over actions a. We divide each day into
consecutive time slots (e.g., one minute per slot) and perform
state transitions from time slot ¢ to ¢ + 1. Dispatch decisions
are executed at the beginning of each slot. The detailed for-
mulation of CMDP G is presented below.

e Agent: In our problem, we define each driver as an
agent. An agent is marked as inactive while fulfilling
an order, which renders it temporarily unable to accept
new orders until the current one is completed. As a re-
sult, the number of active agents IV, varies across time
slots.

 State S: To support feasible order dispatch decisions,
we define the state S from three dimensions. The

state of agent k at time slot ¢ is defined as s¥ =

{STF,DVF, CON¥}, where STY is the spatial-temporal
state, including the current region r, time period p, and
coordinates. DViC represents the driver state, which

encodes the driver’s preferences. CONY is the con-
text state, capturing global supply-demand conditions,
weather, and traffic information.

* Action A: Agents in our system can perform one of
the three action types: accepting an order a,., moving to
complete an order a,,, or cruising a. (when the vehicle
is unoccupied) based on the driver’s preferences.

» Reward R: The reward R’ for order i includes both
passenger waiting time and fairness, denoted as:

r=— (1 —a)WT(i|u,v)

1 ©)
— (Kw ; (WT(k|lu,v) — WT.(u, v))Q)

The reward function in our system consists of two com-
ponents. The first term, WT' (i | u,v), reflects system
efficiency by representing the waiting time of order ¢ in
region u during period v. Shorter waiting times yield

Ku,v

et (WT(E |
u,v) — WT,(u,v))?, serves as a fairness regularization
term. Here, K, ,, denotes the total number of passengers

higher rewards. The second term, %
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in region u during period v. This term captures the vari-
ance between actual waiting times WT'(k | u,v) and
the dynamic fairness benchmark W7, (u,v), encourag-
ing equitable service across different contexts. To bal-
ance efficiency and fairness, we introduce a hyperparam-
eter a to modulate the weight between these two compo-
nents. In this framework, only the agent fulfilling order
i receives the reward r?.

e Cost C: In our setting, each agent k will be assigned a
positive region set 7, a neutral region set 4, and a
negative region set H, based on its historical operating
locations (i.e., preference). Drawing from the negativ-
ity effect principle [Rozin and Royzman, 2001], nega-
tive experiences often exert a stronger influence on our
psychological state than equally significant positive or
neutral ones. Hence, we impose a cost ¢! on agent k
when an order dispatch leads it to a destination within
its negative region set H, . The magnitude of this cost
c! is determined by the distance between the order’s des-
tination and the nearest preferred location within 7—[2,'.

The goal of the defined CMDP G is to optimize the long-
term cumulative reward J,(mg) while ensuring that the cu-
mulative cost J.(mp) remains below a predetermined thresh-
old £. Given the centralized nature of the order dispatch sys-
tem overseeing all agents, we adopt a strategy of centralized
training with decentralized execution [Sharma er al., 2021] to
reduce computational complexity. This strategy emphasizes
the cumulative reward and cost across all agents, rather than
focusing on the outcomes of individual agents. Therefore,
our long-term cumulative reward J,. (1) and cumulative cost
J¢(mg) can be represented as:

Tn(mo) = B Xy S [(n)'ri] )
Jo(mo) = B Sy S ()] @®

where T' denotes the total number of time slots within one
episode, and O, represents the total number of orders in time
slot ¢. During each slot, we dispatch order 7 to an agent ac-
cording to the strategy 7y, and the agent receives a corre-
sponding reward ¢ and cost c..

Our objective of maximizing the cumulative reward J,.(7g)
over an episode and ensuring that the cumulative cost J.(7y)
does not exceed a predetermined value & can be denoted as
Eq. 9. It indicates we aim to enhance system efficiency (i.e.,
reduce the total waiting time of all passengers) and improve
passenger fairness without disproportionately compromising
driver preferences.

max J.(mp) s.t.J.(mg) <& 9)

T Eell

3.2 Optimization Objective Conversion

Directly solving the constrained problem in an MDP is chal-
lenging, so we further convert Eq. 9 into the Lagrangian form:

L(0,A) = Jr(0) = A(Je(0) =€) (10)
meaxmgnL(H,)\) an

where the A € R™ is the Lagrange multiplier, which is a pos-
itive real number. The objective of the above Eq. 11 aims to
find the global optimal saddle point (6*, A*). Since 6* is the
optimal value, the 8* should satisfy L(6*, \*) > L(6,\*),
V6 € R. Similarly, \* should satisfy L(6*, \*) < L(6*,\),
VA € R*. Finally, V(0, \), we obtain:

L(6*,\) > L(6*,\*) > L(6, \*) (12)

However, optimizing the two parameters simultaneously is
computationally intractable, especially for 6 that is described
by a deep neural network. Therefore, we alternatively opti-
mize the two parameters by fixing one and updating the other
until convergence. We obtain the final §* and A\* when both
of them satisfy that:

H = {07, \)[ 10" =077 || <ex, []A" = A7 < ea} (13)

Where 8%~ and \*~ are the values of the previous values be-
fore achieving convergence. In the next part, we will show
how we solve this optimization problem with MARL.

3.3 Harmonization-oriented Actor-Bi-Critic

In this section, we design a new MARL algorithm called
Habic (i.e., Harmonization-oriented Actor-Bi-Critic) to solve
the above-defined problem. There are three key compo-
nents in the Habic: (i) A multi-agent competition mechanism,
which is designed to provide information for decision-making
by generating matching features between orders and drivers.
(i) A dynamic Actor network, which is designed to alter-
nately update the policy parameter 6 and the Lagrange param-
eter A based on the matching features to make decisions in the
multi-agent environment. (iii) A Bi-Critic network, which is
utilized to evaluate the values of accumulated reward .J,.(7y)
and accumulated cost value J..(mp) simultaneously. An over-
all framework of Habic is shown in Fig. 3.

Multi-agent Competition Mechanism

We consider drivers within a certain range of an order to com-
pete for it. The driver selected by the Actor will accept the
order, and other drivers will keep their original actions, i.e.,
staying or cruising. Since the number of drivers around an
order is dynamic, the candidate agent set and action space are
also dynamic. Each agent in the set generates a matching fea-
ture m¥ = {s¥,0i} to compete for the order, which includes
the state s of agent k and the state o} of order 4. The details
of s¥ = {STF, DVF CON"¥} can be seen in Sec. 3.1, and
oi = {OR;, DE;,u,v} describes order i’s information, in-
cluding the pickup location OR; and drop-off location DFE;
(represented by longitude and latitude), region u, and period
v. As shown in Fig. 3, n matching features are fed into the
Actor network to help make dispatch decisions.

Dynamic Actor Network for Decision

In this part, we will first introduce the decision process in
Actor, and then show how we update the parameter 6 for the
policy function 7y (als) and A for the Lagrange multiplier.
We regard the Actor to be equivalent to the policy function
7o (als) to make order dispatch decisions. Assuming there are
n candidate agents in the agent set and the matching feature
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setis M = {m},mZ ---  ml}, the probability of choosing
the kth agent can be represented as:
k
ro(ax]s) = newp(Q(mz ))j
> j—1exp(Q(my))
Where Q(mF) is the matching degree neural network to cal-
culate the matching degree between the order ¢ and the agent
k. mp(a¥|s) means the probability of selecting agent k from
the candidate agent set. After calculating the probability
of selecting each agent, we can obtain the policy function
mo(als) for the order dispatch decisions.

After executing our order dispatch strategy based on
the mg(a|s), we can collect the a set of transitions
((st, - ,s7%),af, ¥, ck, sk, ;) and use them as the training
data. Based on the gradient search procedure, we can obtain
the updating rules for 6 and A as follows:

Opy1 = On — 779V071(_L(9m /\n))
= 0, +19[Vo, J(m6) — MV, I (m0)]  (15)
Ant1 = maz (0, Ay + 1AV, (=L(0n, An)))
= max ((O, A — nAVAW(JC(ﬂ'g) — d))) (16)
Where 7y and 1), represent the update step sizes for parame-
ters § and A\. As we described in Sec. 3.2, the parameters 6
and A will be updated alternately until they reach the optimal
values 0* and \*. However, in Eq. 15 and Eq. 16, the values

of JE(mp) and J (7p) still remain unknown. Therefore, we
further design the Bi-Critic network to evaluate their values.

(14)

Bi-Critic Network for Evaluation

This section introduces how we evaluate the value of .J /()
and JC(mg). As shown in Eq. 7 and Eq. 8, the J%(my) and
JC(mp) share the same structure, so we will only show the
evaluation process for J(my), and the evaluation process of
JC(mp) is the same. According to [Schulman et al., 2017],
JE(mp) can be rewritten as:

mo(als)
mo— (als)

Where D™ (s) is the state visitation distribution, which can be
described as the average probability of the state s appearing

TR (m9) = Bypr(s)Earr,_ AR (s,a0)|  (17)

at each moment in the trajectory. my- is the old strategy in
the last cycle and 7y is the new strategy waiting to be up-
dated in this cycle, which means my— and my are equivalent
to g, and 7, ., in Eq. 15. A,’fﬂ (s, a) is the Advantage func-
tion, which can be considered as another version of Q-value
with lower variance by taking the state-value off as the base-
line. In Habic, we calculate A% (s,a) by utilizing the Gen-
eralized Advantage Estimation (GAE) method [Schulman et
al., 2015], which can be described as:

o0

Af(,(st, ag) = Z(%l/})l (Tt + ’YTVWIS(St) — %VWIE(StH))

1=0
(18)
Where 1 € [0,1] is a hyper-parameter in GAE, and V% (s;)
is the value function to describe the value of state s; when
following a policy .

In Eq. 17, we adopt the off-policy strategy [Brandfonbrener
et al., 2021] by using the old strategy my- to collect the data
and update the new strategy parameter 0, so the difference
between the new strategy and the old strategy will not be too
large. We also leverage the KL-divergence [Kullback, 1951]
to restrict the updating range of 6, which is shown in Eq. 19:

Espr(sy [Drr(mg-(-]8), ma(-]s))] <8 19)

By combining Eq. 17 and Eq. 19, we can obtain the final de-
scribe of J#(y) based on the PPO-Clip [Jayant and Bhatna-
gar, 2022]:

JB(m9) = E, {min (ﬂe(atst)Afg (8¢, at),

o (at|st) (20)
czzp(mv 1- €, 1+ G)Aﬁg (St; at)>:|

Where clip(z,a,b) = max(min(z,b),a), which means re-
stricting 2 within the range [a, b]. Using the Eq. 20, we can
estimate the value of J%(7y) based on the Advantage func-
tion AZ (s, a;), which can be represented by V. (s;) based
on Eq. 18. Therefore, we build the Reward Critic network
to calculate V,2(s;) with the parameter . We denote the

Reward Critic network as Vﬁ (s¢). Similarly, the Cost Critic
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network can be denoted as Vfc(st) with the parameter 1)..
The update rules for parameter ¢,. and 1) are:

Gr = P =1y, V X[re + 3 Vil (se41) = ViIE(se)] - 2D)
Vo e e — 0.V Elre+ 79V (5101) = VE (s0)] (22)

To summarize, we build a Reward Critic network V,lﬁ (st)
and a Cost Critic network VwC; (s¢) to estimate V.7 (s;) and
V.9 (sy), respectively. By updating ¢, and 1. using Eq. 21
and Eq. 22, we obtain the accumulated estimates. The values
of V.E(s;) and V. (s;) are then used to compute the accu-

mulated reward J¥(mp) and cost J(mg) based on Eq. 18
and Eq. 20. After obtaining these estimates, we use them
to update the parameters 6 and A\, where the converged 6*
serves as the optimal solution to our optimization objective in
Eq. 9, improving passenger fairness without disproportion-
ately compromising driver preferences.

4 Evaluation

4.1 Evaluation Methodology

Data: We evaluate our HCRide on two real-world ride-
hailing datasets from the Chinese City Shenzhen and New
York City (NYC). The Shenzhen dataset includes 1.07
million orders served by 1,200 ride-hailing vehicles from
0372021 to 06/2021. The NYC dataset includes 214k orders
served by 800 ride-hailing vehicles from 01/2024 to 02/2024.
Baselines: We compare our HCRide with five different cat-
egories of baselines: (1) Myopic dispatching method: M D
[Zhang et al., 2017]. This method aims to minimize the to-
tal waiting time for all the passengers in one slot without fu-
ture consideration. The method M D will be considered the
benchmark to be compared with all other methods in Table 1.
(2) Single-agent RL methods: DQND [Mnih et al., 2013],
AC-bgm [Wang er al., 2023b]. (3) Multi-agent RL meth-
ods: IPPO [De Witt et al., 2020], MAPPO [Yu et al., 2022].
(4) Constrained RL methods: CPO [Achiam et al., 20171,
Lag-TRPO [Ray er al., 2019]. Compared to the previous two
types of methods, the constrained RL methods introduce the
cost and constraint. (5) Variants of our HCRide considering
different fairness definitions: HCRide-AF with absolute fair-
ness [Siihr et al., 2019], HCRide-MMF with max-min fair-
ness [Sun et al., 2022].

Metrics: We define three categories of metrics to evaluate the
performance of system efficiency (Average Passenger Wait-
ing Time APWT), passenger fairness (inter-region fairness
PF}, e, and intra-region fairness P Fj,., based on the vari-
ance of passenger waiting time), and driver preference (Pref-
erence Violation Rate PV R), which evaluates the proportion
of orders assigned to non-preferred regions of drivers, i.e., the
negative region set I, .

4.2 Overall Performance
As shown in Table 1, we compare our HCRide with all eight

baselines on the two datasets.

System Efficiency
We evaluate the system efficiency using the Average Passen-
ger Waiting Time APWT. As shown in Table 1, our HCRide

outperforms all other baselines. Using the Shenzhen dataset
as an example, our HCRide reduces the average passenger
waiting time by 5.48% compared to the benchmark baseline
M D and outperforms the state-of-the-art method Lag-TRPO
by 1.77% = (5.48% — 3.78%) /(100% — 3.78%) in the whole
day and 1.53% in the morning rush hour. Compared to Lag-
TRPO, HCRide utilizes a more efficient updating method
PPO-clip [Jayant and Bhatnagar, 2022], thereby achieving
better convergence. HCRide-AF and HCRide-MMF are vari-
ants of HCRide with different fairness settings. Since there
are no changes to the efficiency settings, their efficiency per-
formances are similar. In particular, single-agent methods
DQND and AC-bgm can achieve better performance than
multi-agent methods IPPO and MAPPO. One possible rea-
son is that we use the discrete extension for the single-agent
RL methods, which incorporates our multi-agent competition
mechanism. This allows these methods to learn the value
of order-passenger pair from every discrete order dispatch
behavior, providing abundant training transactions to guide
learning the matching degree between orders and passengers.
However, multi-agent RL methods like IPPO and MAPPO
can learn from the operation trajectories of each driver. When
there are a large number of agents (e.g., over 1,000), it will
bring a high variance for training. Additionally, it is chal-
lenging for the Actor to learn the competition among different
drivers since they are trained independently.

Passenger Fairness

We evaluate passenger fairness from both inter-region and
intra-region levels with metrics D PFy,ter and DPFjp4rq. AS
shown in Table 1, our HCRide notably improves both met-
rics. For single-agent RL algorithms such as AC-bgm and
constrained RL algorithms like Lag-TRPO, although they uti-
lize the same fairness-based reward function as HCRide, they
are less effective due to poor exploration and update ability.
We also compare the performance of our spatio-temporal-
aware fairness definition with two other widely used fairness
definitions: absolute fairness [Zhou and Sethu, 2002] and
max-min fairness [Sun ef al., 2022]. The results show that
our HCRide can achieve better fairness performance com-
pared to HCRide-AF and HCRide-MMEF. A possible reason is
that our spatio-temporal-aware fairness definition focuses on
more fine-grained local information across different spatio-
temporal contexts. We also provide the visualization results
for inter-region fairness in Fig. 4, which shows the distribu-
tion of the average passenger waiting times of all regions on
each day during the training process. We find that the vari-
ance of average passenger waiting time between different re-
gions decreases during the training process, and the system
eventually converges to be close to the fairness benchmark.

Driver Preference

For driver preference, we focus on the percentage of dis-
patched orders that differ from driver preferences. Using the
Shenzhen dataset as an example, the driver preference vio-
lation rate reaches 18.21% for the benchmark M D. In this
experiment, we set a predetermined violation rate of 15% and
expect it to decrease during the training process, eventually
converging below this value. The predetermined violation
rate can also be set to other values based on operators’ goals.
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Cities Shenzhen NYC
Methods Efficiency Fairness Preference Efficiency Fairness Preference
DAPWT | DPFinter  DPFintra DPVR DAPWT | DPFinter  DPFintra DPVR

DQND 2.514£0.34 | 5.26£1.75  6.05£1.57 | 3.33+3.56 | 3.43+0.87 | 7.81£2.23  9.9242.41 4.254+3.29
AC-bgm 4.03£0.85 | 6.92+£1.17  7.73+1.34 | -2.254+3.31 | 4.77£1.52 | 10.21+£2.37 9.5442.11 2.53+3.11
IPPO -0.99£0.78 | 2.344+1.03  2.55£1.49 | 3.51£3.25 | -3.01£1.94 | 4.414+3.05 5.87£2.08 | -0.68+2.34
MAPPO 1.11+£0.94 | 347£1.94 4124098 | 3.114+3.37 | 2.26+£1.99 | 8.28+2.03  7.924+2.56 | -1.15£3.48
CPO 451+1.12 | 7.73£1.26  8524+1.94 | 7.75£2.95 | 4.72+1.03 | 9.88+1.88  12.73£2.47 | 12.194+5.38
Lag-TRPO 3.78£1.32 | 8.55£1.46  9.77£1.54 | 12.74£3.29 | 52442.17 | 10.38+2.69 15.42+3.02 | 15.814+4.42
HCRide-AF 531£145 | 7.00£1.82  7.254+1.69 | 19.23£3.68 | 7.01+1.98 | 10.014+2.77 10.86£2.98 | 22.45+4.01
HCRide-MMF | 542+1.17 | 9.98£1.68 11.36£1.92 | 19.79£3.03 | 7.124+2.08 | 13.254+3.01 14.34+£3.09 | 23.85+4.21
HCRide 5.48+1.13 | 13.39+1.71 16.67+1.46 | 19.52+3.87 | 7.15+2.03 | 15.11+£2.88 19.98+3.03 | 24.41+3.92

Table 1: Comparison of different methods in terms of various metrics. The symbol % is omitted in the table. DAPWT, DPFipter,
DPFintrqo and DPV R represent the Decreased ratios in Average Passenger Waiting Time APW T, inter-region Passenger Fairness P Finter,
intra-region Passenger Fairness P Fj,+r and Preference Violation Rate PV R, respectively. Lower values indicate better performance. All
values are based on comparison with the benchmark baseline M D [Zhang ef al., 2017]. The best performance is in bold.
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Figure 4: Average Waiting Time Distribution for All Regions

From Table 1, we find that HCRide achieves the best per-
formance on the two datasets. In contrast, baselines such as
DQND, AC-bgm, IPPO, and MAPPO, which fail to consider
driver performance in order dispatch decisions, show perfor-
mance similar to the myopic dispatch strategy. Constrained
RL baselines such as CPO and Lag-TRPO outperform other
non-constrained RL baselines but still fall short compared to
our HCRide. A key reason is that our HCRide has a multi-
agent competition mechanism to improve the sampling effi-
ciency and a Bi-Critic to provide direct reward value and cost
value estimation for the matching degree.

5 Related Work

We divide order dispatch work into efficiency-oriented order
dispatch and human-centered order dispatch.
Efficiency-oriented Order Dispatch: Most existing stud-
ies prioritize efficiency without considering human factors
such as fairness and preference. Xu et al. [Xu er al., 2018]
use the DRL to solve sequential dispatch problems by build-
ing the global Q-function for orders and passengers. Sadeghi
et al. [Sadeghi Eshkevari et al., 2022] propose a scalable
RL dispatching algorithm and conduct both offline evalua-
tion and online evaluation. Recently, some works have begun
to pay attention to the transferability of algorithm efficiency
across various platforms. Wang et al. [Wang er al., 2018]
use the transfer learning method to make DRL-based order
dispatch algorithms more adaptive in different cities. Wang

et al. [Wang et al., 2022b] propose a federated learning al-
gorithm to improve the reliability of dispatching data during
cross-platform processes.

Human-centered Order Dispatch: In recent years,
human-centered design has attracted much interest, and more
and more works focus on fairness. Siihr et al. [Siihr et al.,
2019] propose an order dispatch method considering two-
sided fairness for both driver and passenger. Lu et al. [Lu
et al., 2021] introduce the queueing theory to solve the long
waiting time problem for passengers and make a trade-off
between efficiency and fairness. There are also some other
works focusing on human preference. Carvalho et al. [de Car-
valho and Golpayegani, 2022] propose a multi-agent multi-
objective optimization approach to satisfy user preferences in
ridesharing services. Li et al. [Li er al., 2021] introduce the
mutual information-based approach to solve the preference-
aware group task assignment in spatial crowdsourcing.

To our knowledge, our HCRide is the first order dispatch
system that harmonizes both passenger fairness and driver
preference for human-centered ride-hailing services.

6 Conclusion

Motivated by insights from our previous qualitative study
and data-driven analysis, in this paper, we design a human-
centered ride-hailing order dispatch system called HCRide,
which aims to improve both system efficiency and passen-
ger fairness in terms of waiting time without compromis-
ing driver preferences. In HCRide, spatio-temporal-aware
fairness and preference are formally defined, and we design
a novel multi-agent reinforcement learning algorithm called
harmonization-oriented Actor-Bi-Critic, which includes a
multi-agent competition mechanism, a dynamic Actor net-
work, and a Bi-Critic network to optimize system efficiency
and passenger fairness with driver preferences as constraints.
Extensive evaluations on two datasets show our HCRide ef-
fectively improves system efficiency by 2.02%, inter-region
fairness by 5.28%, intra-region fairness by 5.39%, and driver
preference by 10.21% compared to baselines.
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