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Abstract
Large Language Models (LLMs) have shown
promising results across various tasks, yet their
reasoning capabilities remain a fundamental chal-
lenge. Developing AI systems with strong rea-
soning capabilities is regarded as a crucial mile-
stone in the pursuit of Artificial General Intel-
ligence (AGI) and has garnered considerable at-
tention from both academia and industry. Var-
ious techniques have been explored to enhance
the reasoning capabilities of LLMs, with neuro-
symbolic approaches being a particularly promis-
ing way. This paper comprehensively reviews re-
cent developments in neuro-symbolic approaches
for enhancing LLM reasoning. We first present
a formalization of reasoning tasks and give a
brief introduction to the neuro-symbolic learning
paradigm. Then, we discuss neuro-symbolic meth-
ods for improving the reasoning capabilities of
LLMs from three perspectives: Symbolic→LLM,
LLM→Symbolic, and LLM+Symbolic. Finally, we
discuss several key challenges and promising fu-
ture directions. We have also released a GitHub
repository including papers and resources related
to this survey: https://github.com/LAMDASZ-
ML/Awesome-LLM-Reasoning-with-NeSy.

1 Introduction
The development of artificial intelligence (AI) has evolved
through distinct phases, shaped by different paradigms. Sym-
bolic AI, focused on manipulating symbols, logic, rules, and
knowledge to mimic human problem-solving abilities, laid
the foundation for AI research before the 1990s. How-
ever, it encountered significant challenges, particularly re-
garding scalability and flexibility to real-world applications
with noisy raw sensory inputs. On the other hand, Con-
nectionist AI, centered on neural networks and achieved re-
markable success in data-driven machine learning. More re-
cently, building on the success of transformer models, LLMs
have demonstrated promising results in various tasks. How-
ever, many researchers have reported that LLMs struggle with
complex reasoning problems; they only attempt to replicate

reasoning steps in training data, and cannot really reason.
More efforts must be devoted to overcoming these bottle-
necks for developing strong reasoning models.

Building AI models with strong reasoning capabilities is
a crucial milestone toward achieving AGI. To this end, nu-
merous researchers have focused on enhancing the reason-
ing abilities of LLMs. Existing studies can be categorized
into three categories based on the different stages of the rea-
soning model construction: Data Construction, including
how to automatically generate/augment/annotate/select data
with reasoning paths; Fine-Tuning, including supervised fine-
tuning and reinforcement fine-tuning on reasoning special-
ized datasets, and Inference, including inference techniques
ranging from CoT to test-time scaling. Various large reason-
ing models have also been released, including OpenAI O1,
Qwen-QwQ, DeepSeek-R1, etc.

Among these explorations, Neuro-Symbolic (NeSy) meth-
ods demonstrate superior performance. NeSy aims to inte-
grate the strengths of symbolic AI, which excels in complex
reasoning, with neural networks, which are adept at learning
from large datasets [De Raedt et al., 2020]. By integrating
these approaches, we can build AI systems that not only learn
from large datasets but also handle complex reasoning tasks
in a human-like manner. NeSy AI aligns with the Dual Pro-
cess Theory in cognitive science, which posits that human
cognition consists of two systems: System 1, which is fast,
intuitive, and unconscious (neural networks), and System 2,
which is slower, more deliberate, and conscious, focusing on
logical reasoning and problem-solving (symbolic reasoning).
Therefore, NeSy is naturally a promising way to improve the
reasoning abilities of LLMs.

In this paper, we aim to give a brief introduction on how
to exploit NeSy methods to improve LLM reasoning. We
first give a formulation of reasoning tasks in LLMs (§2).
Next, we give an introduction about the basic NeSy paradigm
(§3). Then, we discuss how NeSy methods could improve
the reasoning abilities of LLMs from three perspectives,
Symbolic→LLM, LLM→Symbolic, LLM+Symbolic (§4). Fi-
nally, by examining these advancements, we discuss open
challenges in this field and outline potential future work (§7).
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2 What is Reasoning?
The general reasoning task can be characterized as a recur-
sive process in which each step builds upon the preceding
reasoning steps. Formally, the task is defined as follows:
given an input problem Q and background knowledge K,
the goal is to get the answer A, satisfying A = f(Q,K),
where f denotes the function mapping the problem and back-
ground knowledge to the answer. The Q and K can be repre-
sented in different forms, such as natural language or sym-
bolic. For the reasoning tasks, we also have a reasoning
path Z consists of a sequence of intermediate reasoning steps,
Z = {z1, z2, . . . , zn}, where zi represents the i-th step and
satisfies zi = gi(Q,K, z1, z2, ..., zi−1). Here, gi is a reason-
ing function of the i-th step that incorporates the input prob-
lem, the background knowledge, and the previous steps. The
final answer A corresponds to the result of the last step in the
reasoning path, i.e., A = zn.

The reasoning function g(·) plays a central role across
various reasoning scenarios, determining how new reason-
ing steps or conclusions are generated based on background
knowledge and prior reasoning steps. The specific interpre-
tations of the reasoning function g(·) vary across three pri-
mary reasoning types: deductive reasoning, inductive reason-
ing, and abductive reasoning.

• Deductive Reasoning: In deductive reasoning, the reason-
ing function g(·) applies rules in the knowledge base K to
the intermediate steps to generate new reasoning steps or
conclusions. Formally,

zi = ApplyLogicRules(Q,K, z1, z2, ..., zi−1)

where ApplyLogicRules(·) is an operation based on
formal logic.

• Inductive Reasoning: Inductive reasoning involves gener-
alizing patterns or rules from specific examples. The rea-
soning function g(·) extracts broader patterns from the in-
termediate steps. Formally,

zi = InducePattern(Q,K, z1, z2, ..., zi−1)

where InducePattern(·) is a pattern-discovery func-
tion, often relying on statistics, machine learning, or human
expertise.

• Abductive Reasoning: Abductive reasoning generates hy-
potheses to explain observed phenomena. The reasoning
function g(·) identifies the most possible hypothesis for the
previous reasoning steps. Formally,

zi = GenerateHypothesis(Q,K, z1, z2, ..., zi−1)

where GenerateHypothesis(·) is a hypothesis gener-
ation function that seeks to identify the most plausible hy-
pothesis to explain zi−1.

3 What is Neuro-Symbolic AI?
Neuro-symbolic AI seeks to combine the learning capabil-
ities of neural networks with the reasoning power of sym-
bolic AI. This integration enables the development of AI sys-
tems that can learn from extensive datasets while applying

knowledge, rules, and logical reasoning, allowing them to
tackle tasks that require both intuitive and deliberate think-
ing. Specifically, we categorize neuro-symbolic AI into three
types: Neuro helps Symbolic, Symbolic helps Neuro, and Hy-
brid Neuro-Symbolic Architecture. For a more fine-grained
categorization, please refer to Henry A. Kautz’s lecture in
AAAI 2020 [Kautz, 2022].

3.1 Neuro helps Symbolic
This branch predominantly relies on symbolic processing, yet
incorporates neural networks to address limitations of sym-
bolic systems. Pure symbolic AI faces some key limitations,
e.g., 1) large search spaces that hinder efficient problem-
solving; 2) dependence on precisely defined symbols, lim-
iting the representation of abstract real-world concepts; and
3) a rigid, deterministic reasoning process that struggles with
ambiguity and uncertainty. These challenges can be ad-
dressed by integrating neural components, leading to the pro-
posal of various NeSy approaches.

Exploiting neural networks to accelerate reasoning in sym-
bolic systems represents a classic technique, with a notable
example being AlphaGo [Silver et al., 2016]. AlphaGo inte-
grates neural networks into MCTS, employing reinforcement
learning on large-scale datasets to train policy and value net-
works. This integration provides heuristic acceleration for
symbolic search, significantly overcoming the limitation of
the pure symbolic system.

To overcome the limitations of symbolic systems in
grounding abstract symbolic concepts into sub-symbolic real-
world representations, neural networks can be exploited to
directly extract symbolic concepts from raw data. This is
a well-established and enduring research area [Taddeo and
Floridi, 2005]. One recent representative work is NS-CL
[Mao et al., 2019], which uses a convolutional neural net-
work to parse images and extract features, while symbolic
reasoning modules interpret these features to answer complex
questions about the images.

To address the limitations of symbolic systems in han-
dling ambiguity and uncertain reasoning, various studies have
focused on making the symbolic process differentiable. A
prime example is ∂ILP [Evans and Grefenstette, 2018], which
introduces the differentiable properties of neural networks
into inductive logic programming (ILP). These approaches
preserve symbolic logical reasoning while leveraging neural
networks to process uncertain and probabilistic information,
enabling the recognition of complex patterns.

3.2 Symbolic helps Neuro
This branch of studies predominantly relies on neural net-
works, yet incorporates symbolic components to facilitate
specialized features, such as logical reasoning, or improve
interpretability and trustworthiness. Predominantly, there are
two main methodologies to achieve this integration.

The first way is symbolic regularization approaches, which
treat symbolic knowledge and rules as optimization con-
straints in the learning objective to guide the training pro-
cess of neural networks, ensuring that the model’s predictions
align more closely with domain-specific knowledge. Repre-
sentative methods include Semantic Loss [Xu et al., 2018],
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Figure 1: Illustration of how symbolic methods can be exploited to provide reasoning data for LLMs.

which directly incorporates logical constraints into the train-
ing process as a penalization term, and Logic Tensor Net-
works (LTNs) [Badreddine et al., 2022], which combine first-
order logic with tensor-based computations, allowing neural
networks to learn representations that satisfy logical rules.

The second way is model-based approaches, which try to
modify the neural network by infusing symbolic knowledge
into its structure directly, rather than externally guiding the
training process of neural networks using constraints. This
can be achieved by designing specific layers or modules that
are informed by symbolic rules [Marra et al., 2020]. Com-
pared with regularization techniques, model-based methods
embed symbolic knowledge directly into the model’s struc-
ture and ensure the knowledge is always considered in both
the training and inference stages.

3.3 Hybrid Neuro-Symbolic Architecture
Different from previous categories that are “symbolic-heavy”
or “neural-heavy”, various studies seek to design new hy-
brid neuro-symbolic architecture to make symbolic and neu-
ral networks work simultaneously in a framework to better
exploit their strengths.

DeepProbLog [Manhaeve et al., 2019] and Abductive
Learning (ABL) [Zhou, 2019] are two representative meth-
ods. DeepProbLog [Manhaeve et al., 2019] integrates deep
learning and probabilistic logic, focusing on the interaction
between learning and reasoning. It extends probabilistic
programming by introducing neural predicates, which act
as a bridge between neural networks and symbolic reason-
ing. This allows the system to harness the strengths of
both paradigms: the pattern recognition capabilities of deep
learning and the structured reasoning of logic programming.
By enabling end-to-end training, DeepProbLog demonstrates
powerful abilities for tasks requiring both perception and log-
ical inference. Abductive learning [Zhou, 2019] offers a
framework that bridges machine learning and logical reason-
ing through inconsistency minimization, enabling the gener-
ation of pseudo-labels for intermediate symbolic concepts.
Unlike DeepProbLog, ABL does not aim to make the sym-
bolic system differentiable. Instead, it fully leverages the rea-
soning capabilities inherent in symbolic knowledge by em-

ploying abductive reasoning to sample pseudo-labels for in-
termediate symbols. Both methods are capable of concur-
rently updating neural networks and symbolic systems.

In this paper, we follow the above categorization and dis-
cuss neuro-symbolic AI for improving the reasoning abilities
of LLMs in a similar categorization, i.e., Symbolic→LLM,
LLM→Symbolic, and LLM+Symbolic. Given the breadth
of research in this area, we respectfully acknowledge that our
discussion is limited to a subset of representative works that
most effectively convey the key concepts.

4 Symbolic → LLM: Addressing the
Reasoning Data Scarcity

Creating large-scale reasoning datasets with high-quality rea-
soning paths is essential for enhancing the reasoning capa-
bilities of LLMs. However, constructing such datasets poses
significant challenges, as ensuring logical rigor and coher-
ence in step-by-step reasoning processes is inherently diffi-
cult. Moreover, data annotation, particularly step-wise anno-
tation, is highly resource-intensive, further complicating the
dataset development process. In contrast, symbolic methods
are characterized by their rigorous reasoning abilities, offer-
ing a promising way to investigate how they might compen-
sate for the lack of sufficient reasoning data.

In this section, we illustrate how to explore symbolic meth-
ods to help address the reasoning data scarcity problem.
Specifically, we explore this direction from two perspectives,
Symbolic Generation, LLM Imitation and LLM Formalize,
Symbolic Augment. The main ideas of these paradigms are
illustrated in Figure 1.

4.1 Symbolic Generation, LLM Imitation
For problems that can be solved using symbolic methods,
we can leverage these methods to generate logically rigor-
ous reasoning paths. Fine-tuning LLMs on such datasets en-
ables them to learn and potentially mimic the reasoning ca-
pabilities of symbolic methods. This idea is quite similar to
knowledge distillation, but instead of distilling data from a
stronger model, it distills data from symbolic methods. Rep-
resentative symbolic methods that can be applied to generate
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Figure 2: Illustration of how LLMs integrate symbolic solvers, programs, tools, or search algorithms to facilitate the reasoning process.

reasoning data, including but not limited to logical reason-
ing algorithms, logic solvers, constraint optimization, search
algorithms, etc.

Numerous efforts have been devoted to leveraging various
symbolic methods for generating reasoning data and fine-
tuning LLMs to be applied in different tasks. For example,
AlphaGeometry [Trinh et al., 2024] develops a symbolic de-
duction engine to obtain the reasoning solutions to geome-
try problems, and surpasses the performance of the average
IMO contestant in proving Euclidean plane geometry theo-
rems. LOGIPT [Feng et al., 2024] proposes to generate log-
ical reasoning processes via logical solvers and fine-tuning
LLMs to mimic the reasoning process of logical solvers, en-
abling LLMs to acquire similar abilities for tackling deduc-
tive reasoning tasks. Procedure Cloning [Yang et al., 2022],
DualFormer [Su et al., 2025], and SOS [Gandhi et al., 2024]
generate search traces with search algorithms, such as DFS,
BFS, A∗, MCTS, etc, and fine-tune LLMs to enable the model
to learn to search and backtrack in the reasoning procedure.
Planformer [Pallagani et al., 2022] generates plans for classi-
cal planning tasks with the FastDownward planner and con-
structs a PDDL-based dataset to fine-tune LLMs for plan-
ning tasks. The goal of these methods is to internalize the
abilities of the symbolic solvers into the LLMs by construct-
ing datasets for fine-tuning the model, thereby enhancing the
LLM’s reasoning abilities.

4.2 LLM Formalize, Symbolic Augment
Unlike previous studies that focus on generating reasoning
data with symbolic methods and fine-tuning LLMs to mimic
their capabilities, this line of research takes a different di-
rection that aims to augment data with symbolic methods.
The pipeline can typically be summarized as: firstly, we can
transform informal natural language data into a formalized
representation space; secondly, we employ symbolic rules
or solvers to help augment the data in the formalized space;
thirdly, we transform the symbolically represented data into
natural language. The help of symbolic rules or solvers en-
ables the automatic augmentation of reasoning data that is
both linguistically diverse and logically rigorous, compared
to data augmentation with LLMs solely.

There are also various studies in this direction. For exam-
ple, NSDG [Li et al., 2024] formalizes the language repre-
sented math problems into its symbolic version, represented
by the SMT-LIB language, and mutates the symbolic prob-
lem to create new variants for the data augmentation. Then,

the symbolic form is converted to the natural language ver-
sion. LLMs act as a bridge between symbolic and natural
language spaces in this process. AMR-DA [Shou et al., 2022]
converts the original language data into an abstract meaning
representation graph (AMR), a structured semantic represen-
tation that encapsulates the logical structure of the sentence,
upon which operations are performed to generate logically
modified AMR graphs. The modified AMR graphs are sub-
sequently converted back into text to create augmented data.
Similar ideas have also been adopted in the legal reason-
ing [Zhou et al., 2025], logical reasoning [Qi et al., 2025],
theorem proving [Ünsal et al., 2024], etc. Such methods excel
in ensuring the logical correctness of generated data through
symbolic reasoning and unlocking the potential for unlimited
data generation, as the complexity of symbolic spaces pro-
vides nearly infinite possibilities, greatly expanding the di-
versity and scale of available reasoning datasets.

5 LLM → Symbolic: Addressing the
Reasoning Function Error

From the formulation of reasoning tasks, it can be observed
that the reasoning function g(·) serves as the core compo-
nent in the reasoning process. LLMs typically employ auto-
regressive techniques to approximate this reasoning function.
However, this approach inherently introduces errors. Even
minor inaccuracies at each step can propagate and amplify
over successive steps, eventually causing the reasoning out-
comes to deviate substantially from the correct answers.

To address errors in reasoning functions, it is a promising
way to replace the auto-regressive style reasoning function
with external symbolic methods to enhance the rigor of in-
termediate reasoning steps. The underlying intuition is that
LLMs are inherently less adept at precise, long-chain reason-
ing. Therefore, enabling them to learn how to invoke exter-
nal modules provides a more effective approach to solving
complex reasoning problems. Formally, for given indices i
and j (j > i), this type of method can be expressed as:
zj = ExternalModules(zi). Here, the reasoning steps
are represented symbolically, serving as a prerequisite for ap-
plying such methods. The ExternalModules represents
an external module that processes the input zi and produces
the output zj directly. The commonly external modules in-
clude symbolic solvers, program interpreters, off-the-shelf
models, APIs, tools, search algorithms, etc. The main ideas
of these methods are illustrated in Figure 2.
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5.1 Symbolic Solver Aided Methods
The core idea of symbolic solver aided methods is to uti-
lize external symbolic solvers, such as logic programming,
SMT solvers, theorem provers, PDDL planners, constraint
optimization tools, etc, to replace multiple reasoning func-
tions performed internally. The pipeline of these methods
is straightforward: first, translate natural language problems
into a formalized representation that symbolic solvers can
process, then call the solver to derive the solution.

LogicLM [Pan et al., 2023] and LINC [Olausson et al.,
2023] are some of the earlier attempts at this approach.
These methods transform natural language problems into ex-
ecutable logical expressions and leverage logic solvers to ob-
tain results. There is also a branch of studies that focuses
on exploiting classical planning methods to deal with plan-
ning tasks such as classical planning or robotics. For ex-
ample, LLM+P [Liu et al., 2023] propose to incorporate a
PPDL-based symbolic planner. It leverages the semantic un-
derstanding abilities of LLM to translate informal language
into a formal PDDL language and then employs the Fast-
Downward solver for the planning process.

An important research direction related to these methods is
how to automatically translate natural language represented
data into a formalized symbolic representation. This is also
called AutoFormalization. Representative studies include aut-
oformalization of first-order logic, mathematical statements,
mathematical proofs, PDDL, symbolic world models, etc.
Key challenges lie in how to improve the consistency and the
efficiency of the autoformalization process.

5.2 Program-Aided Methods
Instead of exploiting symbolic solvers, there are also various
studies that aim to exploit the program interpreter to help im-
prove the accuracy of reasoning functions. The main pipeline
is similar to symbolic solver aided methods, with the key
difference being that these methods convert natural language
into a programming language and leverage a program execu-
tor to derive the solution.

PAL (Program-Aided Language Model) [Gao et al., 2023]
and PoT (Program of Thought) [Chen et al., 2023] are two
representative program-aided methods. Specifically, they
adopt LLMs to express the reasoning process as Python pro-
gramming languages, and the computation is relegated to an
external program executor. Except for the Python programs,
Binder [Cheng et al., 2023] converts the input problem to
SQL and executes the program interpreter to obtain the an-
swer. Instead of relying on the code interpreter solely, CoC
(Chain of Code) [Li et al., 2023] generates code or pseudo-
code and then executes the code with a code interpreter if
possible, and with an LMulator (language model emulating
code) otherwise. Related methods have been successfully ap-
plied to mathematical reasoning, code generation, robotics,
etc. These methods can be seen as augmenting the chain of
thought with external program interpreters to enable more ac-
curate and robust reasoning.

5.3 Tool-Aided Methods
Beyond symbolic solvers and program interpreters, numerous
other tools, APIs, and off-the-shelf models that have been de-

veloped for various tasks can also be exploited to enhance
the accuracy of reasoning functions. Examples include cal-
culators for numerical computations, web search engines for
common-sense reasoning, and pre-trained vision models for
visual reasoning.

Different from symbolic solver or program aided methods,
which translate the natural language problems into a formal-
ized language, and call the symbolic solver or program ex-
ecutor to obtain the solution directly, tool-aided methods are
more complex, since they typically require calling different
tools in different reasoning steps. Therefore, the pipeline can
be divided into four stages: task planning, tool selection, tool
calling, response generation.

For example, in the visual reasoning tasks, VisProg [Gupta
and Kembhavi, 2023] utilizes LLMs to generate a Python-like
API call program, integrating various tools, such as image
processing subroutines in OpenCV, and off-the-shelf vision
models, to perform complex visual reasoning tasks based on
natural language instructions. These ideas inspired various
subsequent studies such as ViperGPT [Surı́s et al., 2023],
Chameleon [Lu et al., 2024], VisualSkechpad [Hu et al.,
2024b], etc. For mathematical reasoning, Tora [Gou et al.,
2024] explores the integration of LLMs with the utilization
of external tools such as computation libraries and symbolic
solvers. The key differences among these methods lie in the
choice of tool libraries tailored to specific tasks and the strate-
gies used to equip LLMs with accurate tool-utilization capa-
bilities. These strategies include prompt techniques and fine-
tuning the model on a diverse set of collected tool-use trajec-
tories, such as SFT or RLFT.

5.4 Search Augmented Methods
The core process of traditional symbolic solvers, such as
SMT solvers or PDDL planners, can be abstractly modeled
as a search problem: finding solutions that satisfy given
constraints within a potentially vast or even infinite solution
space, and adopting various pruning strategies and optimiza-
tion techniques to accelerate the search process. To achieve
similar abilities to these symbolic methods, various methods
aim to directly combine the search algorithms with the decod-
ing procedure of LLMs to enhance the reasoning capabilities
of LLMs. Formally, at the i-th step of reasoning, T reason-
ing functions are expanded, producing T candidate reasoning
results: z

(t)
i = g

(t)
i (Q,K, z1, z2, . . . , zi−1), t = 1, 2, ..., T ,

where g
(t)
i represents the t-th reasoning function, and this

can be realized by using the sampling mechanism of a lan-
guage model. Consequently, the reasoning process can be
transformed into a search problem, allowing the incorpora-
tion of various search algorithms.

For example, DBS [Zhu et al., 2024] proposes a decod-
ing algorithm that integrates self-evaluation guidance via
the beam search. SPaR [Cheng et al., 2025] proposes a
self-play framework integrating BFS and DFS to refine the
response and improve the instruction-following abilities of
LLMs. ChinaTravel [Shao et al., 2024] exploits BFS and
DFS to improve the travel planning abilities of LLMs. Neuro-
logicA* [Lu et al., 2022] incorporates heuristic estimates of
future cost in the decoding process, like the A* search algo-
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Figure 3: Illustration of the main ideas of end-to-end LLM+symbolic reasoning, including symbolic formatted reasoning, differential sym-
bolic modules, and symbolic feedback.

rithms. Moreover, building on the advantages of MCTS in Al-
phaGo and AlphaZero, numerous studies have been devoted
to exploring the integration of MCTS in the LLMs’ inference
stage to extend reasoning chains and improve reasoning accu-
racy. The difference in this line of research mainly lies in the
choice of search algorithms and their intended role, whether
to guide more effective exploration in the reasoning process
or to refine reward estimation through simulation. However,
these methods have clear limitations, since more exploration
leads to a huge computation cost in the inference time.

6 Symbolic + LLMs: End-to-End Reasoning
In the previous two branches of research, LLMs and sym-
bolic methods operate separately. For example, for the
symbolic→LLMs paradigm, symbolic AI methods are re-
sponsible for generating or augmenting data, after which the
LLMs are fine-tuned on these datasets. For LLMs→symbolic
paradigm, the LLMs call symbolic solvers, which then de-
rive the answer. A holy-grail problem for neuro-symbolic AI
is designing mechanisms that enable symbolic methods and
neural networks to work in a more hybrid or end-to-end fash-
ion. Specifically, we review efforts about Symbolic+LLMs
in this direction from three perspectives, i.e., symbolic for-
matted reasoning, differential symbolic module, and sym-
bolic feedback. The main ideas are illustrated in Figure 3.

6.1 Symbolic Formatted Reasoning
For the reasoning process in LLMs, the reasoning path Z can
be represented in various forms, such as natural language or
latent embedding. In certain reasoning tasks, these represen-
tations may be prone to inaccuracies. Such representational
errors can accumulate progressively as the reasoning chain
lengthens, ultimately leading to significant deviations from
the correct reasoning solutions.

To mitigate potential representation errors in reasoning
chains, we may adopt formally symbolic representations to
describe intermediate reasoning states, instead of relying
solely on natural language descriptions or latent embedding.
This symbolic representation offers significant advantages by
providing more explicit and precise semantic expressions,
thereby avoiding errors caused by the ambiguity of natural
language or the vagueness of latent embedding. Formally,

∀i ̸= n, zi ∈ L, where L denotes a symbolic language de-
fined over a predetermined alphabet. The final answer, A, is
derived from this sequence of intermediate symbolic repre-
sentations.

Symbolic formatted reasoning is particularly suitable for
tasks that can be precisely symbolized, such as mathematical
reasoning. For example, NaturalPrompt [Ling et al., 2023]
enables LLMs to generate deductive reasoning chains using a
proposed natural program format, Chain-of-Symbol prompt-
ing [Hu et al., 2024a] prompts LLMs to convert natural lan-
guage into concise symbolic representations, enhancing their
performance on spatial tasks while significantly reducing to-
ken consumption. LogicGuide [Poesia et al., 2024] intro-
duces a general logical reasoning system to assist the LLM.
It formalizes the reasoning process within LogicGuide, en-
suring that step-by-step reasoning remains sound and reli-
able. There are also some methods that use programming lan-
guages like Python as the symbolic language for intermedi-
ate representations [Weir et al., 2024]. Unlike program-aided
methods, the Python code is not executed but rather serves
solely as a structured prompt to guide the model toward the fi-
nal answer. These methods leverage symbolic representations
to mitigate potential representation error accumulation inher-
ent in natural language representations during the reasoning
process. Alongside natural language and latent embedding
representation reasoning, they form the three primary reason-
ing formations.

6.2 Differential Symbolic Module
Unlike machine learning, which relies on continuous nu-
merical optimization, symbolic AI methods are typically
grounded in discrete symbolic reduction. Consequently, de-
signing a unified optimization framework that allows machine
learning and symbolic reasoning to be jointly optimized re-
mains a fundamental challenge. A promising direction is to
develop differential symbolic modules to enable the symbolic
reasoning systems to work with the machine learning models.

In classical NeSy studies, many efforts have been devoted
to this direction. More recently, studies have emerged to de-
velop differentiable symbolic modules that can seamlessly in-
tegrate with LLMs. For example, DiLA [Zhang et al., 2024]
leverages LLMs to parse natural language represented prob-
lem into a SAT problem which consists of a set of logical
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formulas, then LLM generates an initial solution based on
its natural language understanding, next the relaxed variable
and extracted constraints are offloaded to a differential logic
layer, checking the constraint satisfiability, and updating the
solution until all constraints are met. Oreoml [Hu et al., 2022]
propose to integrate knowledge graph reasoning of symbolic
logic and neural networks, enabling the LLMs to work to-
gether with a differentiable knowledge graph reasoning mod-
ule through the knowledge interaction layers embedded in the
LLMs. NSVQA [Amizadeh et al., 2020] leverages predi-
cates as symbolic representations linked to neural modules
that process visual elements, disentangle visual representa-
tion learning from the inference mechanism, and propose a
differentiable first-order logic formalism based on fuzzy logic
for compositional visual reasoning. AutoCoNN [Weng et al.,
2024] proposes a framework that synergistically integrates
compiled neural networks (CoNNs) into the standard trans-
former architecture. CoNNs are neural modules designed
to explicitly encode rules through artificially generated at-
tention weights. By incorporating CoNN modules, the neu-
ral comprehension framework enables LLMs to execute rule-
intensive symbolic tasks.

These methods represent initial attempts to enable joint op-
timization of logical reasoning and LLM fine-tuning. How-
ever, they still face significant challenges, such as open con-
cepts, optimization efficiency, generality, etc. More efforts
are needed to improve the efficiency, scalability, and robust-
ness of these methods.

6.3 Symbolic Feedback
Supervised fine-tuning and reinforcement fine-tuning are two
main learning paradigms for enhancing the reasoning capabil-
ities of pre-trained LLMs. Both rely on supervisory signals,
such as the supervised loss and the reward function, to guide
the learning process. Symbolic methods offer more precise
and interpretable verification capabilities. Therefore, explor-
ing how to leverage them as regularization terms in the loss
function for supervised fine-tuning or reward signals in rein-
forcement fine-tuning represents a promising and important
research direction.

For supervised fine-tuning, [Premsri and Kordjamshidi,
2025] proposes to fine-tune LLMs by exploiting the spa-
tial logical rules as constraints, providing additional super-
vision to improve spatial reasoning. For reinforcement fine-
tuning, SyreLM [Dutta et al., 2024] adopts a small frozen
LM, equipped with an adapter, to translate natural language
problems into formal language expressions, and adopts rein-
forcement learning to train the adapted LM, informed by the
non-differentiable symbolic solver. RBR [Mu et al., 2024]
proposes rule-based rewards to improve the safety of LLMs.
RLSF [Jha et al., 2024] exploits various reasoning or domain
knowledge tools (e.g., symbolic solvers, theorem provers, or
knowledge bases) to provide feedback to the LLMs. Similar
ideas have also been adopted by LLM-Modulo [Kambham-
pati et al., 2024] for planning tasks, Cotran [Jana et al., 2024]
for code generation tasks, etc. This line of research is related
to neuro-symbolic reinforcement learning. The advantages
of these methods lie in that it does not require the symbolic
methods to be differentiable.

7 Challenges & Open Research Directions
Despite the promising advances in NeSy approaches for en-
hancing reasoning capabilities in LLMs, several challenges
persist. This section discusses key challenges and proposes
open research directions to address them.

Multi-Modal Reasoning Previous studies mainly focus on
reasoning in language modality. Various real-world applica-
tions require multi-modal reasoning, such as VQA, embodied
AI, spatial intelligence, etc. How to effectively exploit sym-
bolic systems that are integrated with multi-modal language
models remains an open problem. Moreover, existing multi-
modal reasoning is mainly conducted on the language modal-
ities. In contrast, human reasoning often involves the simulta-
neous processing of multiple modalities. For example, when
solving geometry problems, humans may draw auxiliary lines
on diagrams to support their reasoning. This highlights a sig-
nificant gap between current approaches and human manner
multi-modal reasoning.

Advanced Hybrid Architectures Though LLMs achieve
promising results across various tasks, they remain data-
driven machine learning models that rely on statistical pattern
recognition rather than formal logical reasoning. To construct
AI systems with both abilities to exploit big data and perform
rigorous reasoning, it is important to develop more advanced
hybrid neuro-symbolic architectures that seamlessly integrate
LLMs and symbolic reasoning components. More advanced
optimization techniques are also required to improve the scal-
ability and efficiency of these architectures.

Theoretical Understanding The theoretical understanding
of how symbolic methods enhance the reasoning abilities of
LLMs is crucial for guiding the design of more effective al-
gorithms. However, efforts towards this direction remain lim-
ited. For example, the generalization performance with sym-
bolic methods, optimization theory for the LLMs fine-tuning
with symbolic feedback, analysis on the reasoning shortcuts,
the relationship between scaling laws and the integration of
symbolic methods, etc. Further efforts are needed to estab-
lish solid theoretical foundations for LLMs’ reasoning.

8 Conclusion
Improving the reasoning capabilities of AI models is a key
milestone towards AGI. This paper explores the role of neuro-
symbolic methods in enhancing reasoning in LLMs. We give
a formulation of reasoning tasks and introduce the main ideas
from three perspectives, Symbolic → LLM, LLM → Sym-
bolic, and LLM + Symbolic, to explore how symbolic meth-
ods can be exploited to address critical challenges in LLMs’
reasoning, including reasoning data scarcity, reasoning func-
tion errors, representation errors, etc. Open challenges and
opportunities are also discussed.

Given the rapid development of this field and the vast num-
ber of publications, it is not feasible to cover all papers com-
prehensively. Instead, we focus on presenting the key ideas
and technical approaches. We aim for this paper to provide
an up-to-date summary of recent advancements and inspire
new insights into the integration of symbolic AI methods with
LLMs for the development of strong reasoning models.
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