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Abstract
Tandem mass spectrometry (MS/MS) has revolu-
tionized the field of proteomics, enabling the high-
throughput identification of proteins. However,
one of the central challenges in mass spectrometry-
based proteomics remains peptide identification, es-
pecially in the absence of a comprehensive peptide
database. While traditional database search methods
compare observed mass spectra to pre-existing pro-
tein databases, they are limited by the availability
and completeness of these databases. De novo pep-
tide sequencing, which derives peptide sequences
directly from mass spectra, has emerged as a cru-
cial approach in such cases. In recent years, deep
learning has made significant strides in this domain.
These methods train deep neural networks for trans-
lating mass spectra into peptide sequences without
relying on any pre-constructed databases. Despite
significant progress, this field still lacks a compre-
hensive and systematic review. In this paper, we pro-
vide the first review of deep learning-based de novo
peptide sequencing techniques from the perspec-
tives of data types, model architectures, decoding
strategies, applications and evaluation metrics. We
also identify key challenges and highlight promis-
ing avenues for future research, providing a valuable
resource for the AI and scientific communities.

1 Introduction
Peptide identification through tandem mass spectrometry is
a cornerstone of modern proteomics research [Aebersold
and Mann, 2003]. The analysis of peptide fragmentation
patterns allows for the determination of peptide sequences,
which in turn facilitates protein characterization and quan-
tification. As shown in Fig. 1(a), traditional peptide identifi-
cation has been performed through database search methods,
which rely on comparing observed mass spectra to pre-existing
databases [Yates III, 1998]. While database search can achieve
high precision in many cases, these methods are inherently
limited by the completeness and relevance of the available
databases. The absence of a suitable database or the pres-
ence of novel or uncharacterized peptides requires alternative

Figure 1: Schematic diagram and comparison of database search and
de novo peptide sequencing (adapted from our previous work [Xia et
al., 2025]).

approaches to peptide identification [VanDuijn et al., 2017;
Mayer and Impens, 2021], specifically, de novo peptide se-
quencing shown in Fig. 1(b).

De novo peptide sequencing directly infers the peptide se-
quence from mass spectrometry data without relying on a
reference database, akin to machine translation in Natural Lan-
guage Processing (NLP) research [Stahlberg, 2020], where
the source language is directly translated into the target lan-
guage. This approach has become increasingly important in
the analysis of complex samples, where unknown peptides
may be present, or when studying species with incomplete or
unannotated genomes [Nesvizhskii, 2007]. In recent years,
deep learning techniques have brought remarkable advance-
ments in the domain of de novo peptide sequencing. These
methods hold great promise for enhancing sequence accuracy
and throughput. The DeepNovo algorithm [Tran et al., 2017],
introduced in 2017, was among the pioneering deep learning
approaches that significantly improved the performance of de
novo sequencing. Subsequently, PointNovo [Qiao et al., 2021]
innovatively treats mass spectrum data as point clouds and uti-
lizes an order-invariant neural network for peptide sequencing
from high-resolution mass spectrometry data. More recently,
inspired by the resounding success of the transformer [Vaswani
et al., 2017] in natural language processing and computer vi-
sion, Casanovo [Yilmaz et al., 2022] was the first to apply a
transformer encoder-decoder architecture to predict peptide
sequences from observed mass spectra. Following the lead
of Casanovo’s transformer-based architecture, recent research
efforts have been increasingly focused on devising more effec-
tive training strategies. For example, ContraNovo [Jin et al.,
2024] adopts contrastive learning to extract the subtle correla-
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Figure 2: The standard workflow for protein identification in proteomics (adapted from our previous work [Xia et al., 2025]).

tions between spectra and peptides and integrates mass infor-
mation into the peptide decoding process. AdaNovo [Xia et
al., 2024] puts forward conditional mutual information-based
re-weighting methods, which are instrumental in identifying
amin acids with Post Translational Modifications (PTMs) [Ra-
mazi and Zahiri, 2021]. Furthermore, SearchNovo [Xia et
al., 2025] and ReNovo [Chen et al., 2025] leverage database
search to enhance de novo peptide sequencing, thus enjoying
the advantages of both paradigms.

Although deep learning-based de novo peptide sequencing
methods have achieved overwhelming success in protein iden-
tification, this rapidly expanding field still lacks a systematic
review. Also, we focus solely on deep learning methods, as
previous reviews have adequately covered earlier work based
on traditional methods in this field [Vitorino et al., 2020;
Ng et al., 2023]. In this paper, we present the first review
to assist audiences of diverse backgrounds in understanding,
using, and developing de novo peptide sequencing tools or
methods for various practical tasks.

The contributions of this work can be summarized from the
following four aspects.
(1) A structured taxonomy. A broad overview of the field
is presented with a structured taxonomy that categorizes ex-
isting works from 5 perspectives (Fig. 3): data type, model
architectures, decoding strategies, applications, and evaluation
metrics.
(2) Thorough review of the current progress. Based on the tax-
onomy, the current research progress of deep learning-based
de novo peptide sequencing is systematically delineated.
(3) Abundant additional resources. Abundant resources are
collected and can be found at https://github.com/jingbo02/
Awesome-Denovo-Peptide-Sequencing. These resources will
be continuously updated on a regular basis.
(4) Discussion of future directions. The limitations of existing
works are discussed and several promising research directions
are highlighted.

2 Background

To help the AI community better understand mass spectrome-
try data and the task of de novo peptide sequencing, we first
provide a brief overview of the workflow of mass spectrometry-
based protein identification. As shown in Fig. 2, a standard pro-
tein identification workflow in shotgun proteomics [Zhang et
al., 2013] begins with enzymatic digestion of proteins, produc-
ing a mixture of peptides. These peptides are then separated
using liquid chromatography before being introduced into a
mass spectrometer. The first scan (MS1) records the mass-to-
charge (m/z) ratios of intact peptides. Subsequently, peptides
undergo fragmentation in the mass spectrometer based on dif-
ferent precursor ion selection strategies, generating second
scan (MS2) spectra, which consist of multiple peaks. In Data-
Dependent Acquisition (DDA) [Bateman et al., 2014], the
instrument selects the most intense precursor ions from the
MS1 scan for fragmentation, resulting in high-quality MS2
spectra but potentially missing low-abundance peptides. In
contrast, Data-Independent Acquisition (DIA) [Doerr, 2015]
fragments all precursor ions within a predefined m/z range,
ensuring comprehensive peptide coverage at the cost of in-
creased spectral complexity. Each peak in an MS2 spectrum
is represented as a tuple containing an m/z value and an associ-
ated intensity. MS2 spectral data can thus be categorized into
two types based on the acquisition strategy: DDA and DIA. A
detailed discussion of data types is provided in Section 3. The
core of this workflow is peptide sequencing, where we aim to
predict the peptide sequence using the observed MS2 spectrum
and the corresponding precursor information (mass and charge
of the intact peptide). However, accurate sequencing is compli-
cated by challenges such as incomplete fragmentation, noisy
spectra, and the presence of post-translational modifications
(PTMs). To overcome these issues, computational methods
leverage database search strategies or deep learning-based de
novo sequencing approaches to improve sequence prediction
accuracy. Finally, the entire protein sequence can be inferred
using assembly tools [Liu et al., 2015].
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Data Types (§3)
Data-Dependent Acquisition (DDA) DeepNovo [Tran et al., 2017], Casanovo [Yilmaz et al., 2022]

Data-Independent Acquisition (DIA) DeepNovo-DIA [Tran et al., 2019], Cascadia [Sanders et al., 2024]

Model
Architectures (§4)

CNN-RNN Architecture SMSNet [Karunratanakul et al., 2019], DeepNovo [Tran et al., 2017]

GDL Architecture GraphNovo [Mao et al., 2023], Denovo-GCN [Wu et al., 2023]

Transformer Architecture Casanovo [Yilmaz et al., 2022], InstaNovo [Eloff et al., 2023]

Hybrid Architecture SeqNovo [Wang et al., 2023], SearchNovo [Xia et al., 2025]

Decoding
Strategies (§5)

Autoregressive PointNovo [Qiao et al., 2021], ReNovo [Chen et al., 2025]

Non-autoregressive InstaNovo+ [Eloff et al., 2023], π-PrimeNovo [Zhang et al., 2025a]

Applications (§6)

Immunopeptidomics Casanovo V2 [Yilmaz et al., 2024]

Antibody Sequencing InstaNovo(+) [Eloff et al., 2023]

Venomics SMSNet [Karunratanakul et al., 2019]

Metaproteomics π-HelixNovo [Yang et al., 2024], π-PrimeNovo [Zhang et al., 2025a]

Evaluation
Metrics (§7)

Peptide-level Metrics

Peptide-level Precision and Recall DeepNovo [Tran et al., 2017]

Peptide Confidence Score NovoBench [Zhou et al., 2024]

The Area Under the Precision-Recall Curve Casanovo [Yilmaz et al., 2022]

Amino Acid-level Metrics
Amino Acid-level Precision and Recall π-PrimeNovo [Zhang et al., 2025a]

PTM-level Precision and Recall AdaNovo [Xia et al., 2024]

Figure 3: A taxonomy of De novo peptide sequencing with representative examples.

3 Mass Spectrometry Data Type
In mass spectrometry-based proteomics, two main data acqui-
sition strategies are employed: Data-Dependent Acquisition
(DDA) [Bateman et al., 2014] and Data-Independent Acquisi-
tion (DIA) [Doerr, 2015]. These techniques determine how the
mass spectrometer collects and processes ion fragmentation
data, which directly influences the peptide identification and
quantification process.

3.1 Data-Dependent Acquisition (DDA)
Data-Dependent Acquisition (DDA) is a traditional approach
in mass spectrometry where the instrument first performs a
full survey scan to detect the total ion spectrum (precursor ion
spectrum) across a wide m/z range. Based on the intensity of
the detected peaks in MS1, the most abundant ions are selected
for fragmentation in subsequent scans (MS2). The selection
of precursor ions for fragmentation is dynamic, meaning that
only the strongest ions are chosen for analysis. This process
is repeated multiple times, with different precursor ions being
targeted in each cycle. DDA is highly effective for identifying
peptides that are abundant in the sample, making it well-suited
for discovery-based proteomics. However, because it focuses
on the most abundant ions, DDA may miss low-abundance
peptides and thus offer incomplete proteome coverage. As
shown in Table 1, most de novo sequencing methods currently
focus on DDA data, as it is more widely available and easier
to process.

3.2 Data-Independent Acquisition (DIA)
Data-Independent Acquisition (DIA) is a more advanced and
systematic approach that differs from DDA by fragmenting
all precursor ions within predefined m/z windows, regardless

of their intensity. Rather than dynamically selecting precur-
sor ions based on their intensity, DIA fragments ions across
the entire m/z range in a non-discriminatory manner. This
ensures that even low-abundance peptides, which might be
overlooked in DDA, are included in the analysis. DIA provides
a more comprehensive and reproducible dataset, making it par-
ticularly useful for quantitative proteomics and large-scale
studies. While it offers better proteome coverage and is less
biased toward high-abundance peptides, DIA fragments all
precursor ions within a given mass range, resulting in highly
complex and overlapping spectra. This makes it harder for
deep learning models to correctly associate fragment ions with
their corresponding precursor peptides compared to DDA. Ad-
ditionally, since all ions are fragmented simultaneously, the
sensitivity for individual peptides may be slightly reduced
compared to DDA, but the method’s overall coverage and con-
sistency make it ideal for more in-depth analyses of complex
biological samples. As shown in Table 1, de novo peptide se-
quencing methods for DIA data are relatively fewer compared
to DDA, primarily due to the lack of large and well-annotated
DIA datasets for model training.

4 Model Architectures

Numerous powerful model architectures have been adopted
in the field of de novo peptide sequencing. Specifically,
the model architectures of current methods fall into four
categories: CNN-RNN architecture, Transformer architec-
ture [Vaswani et al., 2017], Geometric Deep Learning (GDL)
architecture [Cao et al., 2022], and Hybrid architecture.
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Model Data Type Model Architecture Decoding Strategy Code Link
DeepNovo [Tran et al., 2017] DDA CNN-RNN AR Link
DeepNovo-DIA [Tran et al., 2019] DIA CNN-RNN AR Link
SMSNet [Karunratanakul et al., 2019] DDA CNN-RNN AR Link
RANovo [Liu and Zhao, 2020] DDA CNN-RNN AR Unavailable
PointNovo [Qiao et al., 2021] DDA GDL AR Link
Casanovo [Yilmaz et al., 2022] DDA Transformer AR Link
DPST [Yang et al., 2022] DDA Transformer AR Link
DEPS [Ge et al., 2022] DDA CNN-RNN AR Unavailable
PepNet [Liu et al., 2023] DDA/DIA CNN-RNN NAR Link
BiATNovo [Yang et al., 2023] DDA/DIA CNN-RNN AR Link
GraphNovo [Mao et al., 2023] DDA GDL NAR Link
PGPointNovo [Xu et al., 2023] DDA GDL AR Link
Denovo-GCN [Wu et al., 2023] DDA GDL AR Unavailable
SeqNovo [Wang et al., 2023] DDA Hybrid AR Unavailable
InstaNovo [Eloff et al., 2023] DDA Transformer AR Link
InstaNovo+ [Eloff et al., 2023] DDA Transformer NAR Link
π-HelixNovo [Yang et al., 2024] DDA Transformer AR Link
ContraNovo [Jin et al., 2024] DDA Transformer NAR Link
NovoB [Lee and Kim, 2024] DDA Transformer AR Link
AdaNovo [Xia et al., 2024] DDA Transformer AR Link
Transformer-DIA [Ebrahimi and Guo, 2024] DIA Transformer AR Link
Cascadia [Sanders et al., 2024] DIA Transformer AR Link
Spectralis [Klaproth-Andrade et al., 2024] DDA CNN-RNN AR Link
PowerNovo [Petrovskiy et al., 2024] DDA Hybrid AR Link
CrossNovo [Zhang et al., 2025b] DDA Transformer AR Link
SearchNovo [Xia et al., 2025] DDA Hybrid AR Link
RankNovo [Qiu et al., 2025] DDA Transformer AR Link
ReNovo [Chen et al., 2025] DDA Hybrid AR Link
π-PrimeNovo [Zhang et al., 2025a] DDA Transformer NAR Link

Table 1: A summary of representative de novo peptide sequencing methods in literature.

4.1 CNN-RNN Architecture

The application of CNN-RNN architectures in de novo peptide
sequencing methods has revolutionized the field of proteomics
by enhancing the accuracy and efficiency of peptide identi-
fication from tandem mass spectra. DeepNovo [Tran et al.,
2017] utilizes a hybrid architecture that combines convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs) to learn complex features from mass spectra, allow-
ing it to predict peptide sequences with significant improve-
ments in accuracy compared to traditional methods. This
model iteratively predicts amino acids and integrates local
dynamic programming to optimize the sequencing process,
achieving high coverage and accuracy for antibody sequences
without reliance on existing databases. DeepNovo-DIA [Tran
et al., 2019] extends this concept to data-independent acquisi-
tion (DIA) mass spectrometry, employing neural networks to
capture relationships across multiple dimensions of spectral
data, thus addressing challenges posed by multiplexed spectra.
DePS [Ge et al., 2022] first processes the input mass spec-
trometry data through a CNN in the feature extraction module
to extract important features. Then, the LSTM captures the
sequential dependencies in the peptide sequence, effectively
modeling the relationships between amino acids. This dual ap-
proach allows DePS to maintain good performance even under
challenging conditions, such as missing signal peaks and ex-
cessive noise. SMSNet [Karunratanakul et al., 2019] adopts a
similar architecture but emphasizes the identification of novel
peptides, achieving over 95% amino acid accuracy while main-
taining good coverage. It employs an excitation mechanism to
discern important pairwise relationships among input features,

enabling it to discover previously uncharacterized peptides
effectively. PepNet [Liu et al., 2023], on the other hand, is a
fully convolutional network that processes high-dimensional
input spectra through a series of residual dilated convolution
blocks and a residual Transformer block. This design cap-
tures both local and global sequence information, significantly
outperforming existing algorithms in peptide-level accuracy
and processing speed. Lastly, BiATNovo [Yang et al., 2023]
introduces an attention-based bidirectional framework that en-
hances prediction accuracy for longer peptides by effectively
capturing relationships between mass spectra and fragment
ions through a two-phase training strategy. Its post-processing
module further refines predictions by mitigating biases com-
monly observed in sequence prediction. Above methods have
small parameter sizes and fast running speeds; however, their
model expressiveness is limited.

4.2 Geometric Deep Learning Architecture
The application of geometric deep learning architectures in
de novo peptide sequencing has gained significant attention
due to their ability to effectively model complex relationships
between mass spectrometry peaks, which is important for pep-
tide sequence generation. Among the prominent methods,
GraphNovo [Mao et al., 2023] employs a two-stage graph-
based approach using graph neural networks (GNNs) [Wu
et al., 2020], where the first stage identifies optimal paths in
spectrum graphs through a Graphormer [Ying et al., 2021]
encoder, while the second stage resolves unknown mass tags
using transformer decoders to address missing fragmentation
issues. Denovo-GCN [Wu et al., 2023] combines graph con-
volutional networks (GCN) [Kipf and Welling, 2017] with
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convolutional neural networks, constructing undirected spec-
trum graphs where nodes represent spectral peaks and edges
encode mass relationships, enabling robust feature extraction
through hybrid architectures. PointNovo [Qiao et al., 2021]
utilizes an order-invariant neural network that directly pro-
cesses raw peak sets through a novel T-Net structure, achiev-
ing instrument-resolution independence by avoiding spectral
discretization while maintaining constant computational com-
plexity. PGPointNovo [Xu et al., 2023] extends PointNovo’s
architecture through PyTorch-based data parallelization, im-
plementing gradient synchronization across multiple GPUs
and advanced optimization techniques like Rectified Adam
to enable large-scale processing without sacrificing precision-
recall performance.

4.3 Transformer Architecture

Transformer [Vaswani et al., 2017] architectures have revolu-
tionized de novo peptide sequencing by enabling end-to-end
learning from mass spectrometry (MS) data while handling
variable-length input spectra and output peptide sequences.
These models typically employ encoder-decoder frameworks
with attention mechanisms to map spectral peaks to amino
acid sequences, often incorporating specialized components
for spectral processing, precursor mass integration, and itera-
tive refinement. Casanovo [Yilmaz et al., 2022] pioneered the
transformer-based approach with a vanilla encoder-decoder
architecture that processes raw MS/MS spectra without m/z
binning, using sinusoidal embeddings for peak features and
precursor information. Its encoder contextualizes spectral
peaks through self-attention, while the decoder autoregres-
sively predicts amino acids using cross-attention to encoded
spectra. InstaNovo [Eloff et al., 2023] enhanced this paradigm
with multi-scale sinusoidal embeddings for peak resolution
adaptation and introduced InstaNovo+ [Eloff et al., 2023], a
diffusion model that iteratively refines predictions through
multinomial denoising. DPST [Yang et al., 2022] introduced
amino-acid-aware attention through a confidence value aggre-
gation encoder that prioritizes spectral peaks based on local
amino acid connectivity, coupled with a global-local fusion
decoder integrating both contextualized spectrum representa-
tions and amino acid priors. π-HelixNovo [Yang et al., 2024]
processes complementary synthetic spectra alongside exper-
imental data through dual encoders to address missing ion
challenges, while π-PrimeNovo [Zhang et al., 2025a] em-
ploys non-autoregressive decoding with parallel amino acid
prediction and mass constraint verification for 69x faster in-
ference. NovoB [Lee and Kim, 2024] introduced bidirec-
tional decoding via twin decoders that predict sequences
from N- to C-terminus and vice versa, leveraging comple-
mentary ion series information. For data-independent acqui-
sition (DIA) spectra, Transformer-DIA [Ebrahimi and Guo,
2024] extends Casanovo with hybrid encoders integrating
MS1/MS2/precursor features, and Cascadia [Sanders et al.,
2024] implements transformer-based multiplexed spectrum in-
terpretation specifically optimized for DIA workflows, demon-
strating improved variant peptide detection through learned
attention patterns across co-fragmented precursors.

4.4 Hybrid Architecture
Recent advancements in de novo peptide sequencing have
introduced hybrid architectures that integrate diverse com-
putational strategies to address longstanding challenges like
post-translational modification identification, spectral noise,
and missing peaks. These methods combine machine learning
paradigms, retrieval mechanisms, and mass spectrometry data
fusion to enhance accuracy and robustness. AdaNovo [Xia et
al., 2024] employs conditional mutual information (CMI) to
adaptively weigh spectral-peptide relationships during train-
ing, prioritizing informative amino acids and PTMs while
down-weighting noisy data. Its architecture uses CMI to dy-
namically adjust loss functions, improving PTM detection
in low-frequency training scenarios. ContraNovo [Jin et al.,
2024] leverages contrastive learning to model pairwise spectra-
peptide interactions and uniquely incorporates prefix/suffix
mass data during decoding. By embedding mass compatibility
checks into its transformer-based framework, it refines amino
acid predictions at each step. ReNovo [Chen et al., 2025]
introduces a retrieval-augmented approach, building a datas-
tore of training-derived spectral-peptide pairs to guide infer-
ence. This hybridizes database search principles with de novo
flexibility, enabling novel peptide identification while leverag-
ing retrieved contextual patterns. PowerNovo [Petrovskiy et
al., 2024] combines Transformer-based sequence-to-sequence
learning with a BERT-inspired evaluator, forming an ensem-
ble that corrects sequencing errors and assesses detectability.
Finally, SeqNovo [Wang et al., 2023] integrates multilayer
perceptrons (MLPs) with attention mechanisms to emphasize
critical spectral features.

5 Decoding Strategies
In the field of machine learning, two primary methodolo-
gies for sequence generation are autoregressive (AR) mod-
els and non-autoregressive (NAR) models. Autoregressive
models are particularly effective in scenarios that demand
high accuracy and the modeling of dependencies, whereas
non-autoregressive models are favored for their efficiency and
rapid performance in real-time applications. This distinction
also applies to de novo peptide sequencing, where models
can be categorized into AR and NAR types based on their
sequence generation patterns.

AR models are a class of generative models that rely on
previously generated peptide sequences to iteratively predict
the next amino acid identity iteratively. The fundamental
concept of AR model is that the generation of the next amino
acid identity is contingent upon the peptide sequence that
have been previously predicted. Specifically, the AR de novo
peptide sequencing models are designed to predict the peptide
y = {yi}Ni=1 = (y1, y2, . . . , yN ) given MS2 data s, precursor
p, and model parameter θ:

P (y | s,p; θ) =
N∏
t=1

p(yt | y1:t−1, s,p; θ) (1)

Non-autoregressive (NAR) models are designed to enhance
the efficiency of peptide sequence generation by generating
the entire amino acid sequence in parallel and reduce reliance
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on previous outputs. Although NAR models offer superior
efficiency in sequence generation compared to AR models,
they often fall short in their ability to capture the dependencies
within amino acid sequences.

6 Applications
De novo peptide sequencing has been widely applied in various
fields where reference databases are incomplete or unavail-
able. Its ability to directly infer peptide sequences from mass
spectrometry data makes it particularly valuable in immunol-
ogy, antibody research, venomics, and metaproteomics studies.
Below, we highlight some of its key applications.

6.1 Immunopeptidomics
One of the most common applications of de novo peptide
sequencing is the identification of neoantigens and non-
canonical antigens, which play crucial roles in cancer im-
munotherapy and autoimmune disease research. Neoantigens
are tumor-specific peptides arising from somatic mutations,
making them promising targets for personalized cancer vac-
cines. Noncanonical antigens, including those derived from
alternative splicing, post-translational modifications, or cryp-
tic translation, expand the repertoire of potential immuno-
genic peptides. Previous methods including DeepNovo and
pNovo 3 have been employed to discover novel peptides
without relying on a reference database [Tran et al., 2020;
Li et al., 2023], making them particularly valuable for im-
munopeptidomics studies.

6.2 Antibody Sequencing
Antibody sequencing is another key area where de novo pep-
tide sequencing is widely used. Unlike DNA-based sequenc-
ing, which requires prior knowledge of antibody genes, de
novo sequencing directly reconstructs the amino acid sequence
from mass spectrometry data. This approach is particularly
useful for characterizing monoclonal antibodies [Singh et al.,
2018], studying immune repertoire diversity, and guiding ther-
apeutic antibody development. By overcoming limitations
posed by somatic hypermutation and sequence variability, de
novo sequencing ensures accurate and high-throughput anal-
ysis of antibody sequences. Many de novo sequencing tools,
such as DeepNovo, Casanovo, InstaNovo and PointNovo, have
been widely used in antibody protein sequencing [Beslic et al.,
2023].

6.3 Venomics
The study of venom proteins and peptides, known as venomics,
benefits significantly from de novo peptide sequencing, as
many venomous species lack well-annotated genomes. Venom
peptides exhibit diverse bioactive properties, including antimi-
crobial, neurotoxic, and anticoagulant effects, making them
valuable for drug discovery and biomedical applications. De
novo sequencing methods allows researchers to identify and
characterize novel venom peptides from various species, fa-
cilitating evolutionary studies and the development of venom-
derived therapeutics [Saethang et al., 2022].

6.4 Metaproteomics
In metaproteomics, peptides are extracted from, e.g., environ-
mental samples or a gut microbiome, constructing a relevant
peptide database is challenging. De novo peptide sequenc-
ing is thus essential for identifying peptides in the absence of
complete reference genomes. This approach is particularly
useful in microbiome research, enabling the discovery of novel
functional peptides and proteins in environmental, gut, and
clinical microbiomes. By bypassing the need for pre-existing
protein databases, de novo sequencing enhances the ability
to study microbial diversity, host-microbe interactions, and
ecosystem dynamics at the proteomic level. Many previous
works leveage powerful de novo peptide sequencing tools such
as π-HelixNovo, Casanovo, and SMSNet to conduct sequenc-
ing in metaproteomics [Kleikamp et al., 2021] or detect giant
genes in bacteria from metaproteomics data [West-Roberts et
al., 2023].

7 Evaluation Metrics
Evaluation metrics are crucial for assessing the performance
of the de novo peptide sequencing models. These metrics
help quantify various aspects of the model’s effectiveness,
reliability, and efficiency. The following are key metrics that
are typically used in this evaluation.

7.1 Amino Acid-level Metrics
Amino Acid-level Precision and Recall. The number of
matched amino acid predictions, Naa

match, is usually defined as
the predicted amino acids that exhibit a mass difference of less
than 0.1 Da from the ground truth amino acids. Additionally,
these predictions must have either a prefix or a suffix with a
mass difference of no more than 0.5 Da from the corresponding
ground truth amino acid sequence in the ground truth peptide.
Amino acid-level precision is then defined as:

Amino Acid-level Precision =
Naa

match

Naa
pred

, (2)

where Naa
pred represents the number of predicted amino acids in

the predicted peptide sequences. Similarly, amino acid-level
recall is defined as:

Amino Acid-level Recall =
Naa

match

Naa
truth

, (3)

where Naa
truth represents the number of amino acids in the

ground truth peptide sequences.
PTM Precision and Recall. Amino acids with PTMs are
specialized amino acids that play a crucial role in biology as
these modifications can significantly impact protein structure,
activity, and interactions. Accurately identifying PTMs is es-
sential for drug development and biomarker discovery. Similar
to amino acid-level metrics, post-translational modifications
(PTMs) identification precision and recall can be defined as:

PTM Precision =
Nptm

match

Nptm
pred

, PTM Recall =
Nptm

match

Nptm
truth

, (4)

where Nptm
match denotes the number of matched PTMs, Nptm

pred
represents the number of predicted amino acids with PTMs,
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and Nptm
truth refers to the number of PTMs in the ground truth

peptide sequence. These metrics provide a detailed evaluation
of model performance at the individual amino acid level.

7.2 Peptide-level Metrics
Since the fundamental objective of de novo peptide sequencing
model is to assign a complete peptide sequence to each spec-
trum, peptide-level performance serve as the primary quan-
tifier for evaluating the effectiveness of the de novo peptide
sequencing model. The peptide-level metrics are summarized
as follows.
Peptide-level Precision and Recall. A predicted peptide
is considered a correct match only if all of its amino acids
are matched based on the criteria mentioned in the previous
paragraph. In a collection of N peptide

truth spectra, if a model makes
predictions for N peptide

pred of these spectra and accurately predicts

N peptide
match peptides, the peptide-level precision and recall are:

Peptide-level Precision =
N peptide

match

N peptide
pred

, (5)

Peptide-level Recall =
N peptide

match

N peptide
truth

. (6)

Peptide Confidence Score. The confidence score is a metric
used to evaluate the reliability of predicted peptide sequences
when the ground-truth sequence is unavailable. It is computed
as the average softmax probability of each predicted amino
acid type in the sequence, representing the model’s overall
confidence in its predictions [Zhou et al., 2024].
Peptide AUC-PR. Given the peptide-level recall, precision,
and confidence scores, one effective way to evaluate de novo
sequencing accuracy is by plotting precision-recall curves and
calculating the area under the curve (AUC-PR). This is done
by first ranking the predictions from each model based on
their confidence scores, from highest to lowest. Starting with
the most confident prediction, we accumulate the model’s
recall and precision values. These accumulated values are
then used to plot the precision-recall curve, where precision is
represented on the y-axis and recall on the x-axis. The AUC-
PR of this curve provides a thorough evaluation of the model’s
performance across various confidence levels.

8 Conclusions and Future Outlooks
In conclusion, this paper provides a comprehensive overview
of de novo peptide sequencing methods. We start by review-
ing the mass spectral data types, then present or compare
the representative models from the perspectives of decoding
strategies and model architectures. We also showcase various
successful applications of de novo peptide sequencing tools in
biology. Despite the fruitful progress, there are several areas
of improvement and emerging trends that hold promise for the
next generation methods. In this section, we discuss potential
future directions for research and development in the field.

8.1 Improved Handling of Low-Quality Data
Mass spectrometry data can often be noisy, incomplete, or of
low resolution, particularly when analyzing samples with low

abundance or complex matrices. Current deep learning models
may struggle with such data, leading to inaccurate or incom-
plete peptide identifications. Future models should incorporate
more robust preprocessing and noise-filtering techniques, or
perhaps even develop models that are explicitly designed to
handle low-quality or noisy spectra. Approaches like data aug-
mentation or self-supervised pre-training could help improve
model robustness in such challenging conditions.

8.2 Integration with Other Omics Data
De novo peptide sequencing can benefit from integration with
other types of omics data. For example, combining de novo
peptide sequencing results with transcriptomics data could pro-
vide additional context for interpreting peptide sequences, par-
ticularly in the case of novel or poorly characterized proteins.
Similarly, integrating with metabolic profiling could help iden-
tify post-translational modifications (PTMs) or peptide vari-
ants that might be difficult to detect from mass spectrometry
data alone. Future research should focus on developing multi-
modal learning frameworks that integrate these various data
types to provide more holistic insights into proteomics.

8.3 Real-Time Peptide Sequencing
Currently, deep learning-based de novo peptide sequencing
typically requires batch processing, which means the peptide
identification process happens after the mass spectrometry
experiment is complete. For applications in real-time analysis,
such as in clinical settings or during live experiments, there is
a need for faster, more efficient models capable of delivering
peptide sequences in real time. Developing models that can
handle streaming data and provide rapid feedback would have
significant implications for the pace of scientific discovery and
clinical decision-making.

8.4 Exploring Post-Translational Modifications
Post-translational modifications (PTMs) are a critical aspect
of proteomics, as they influence protein function, interactions,
and localization. De novo peptide sequencing, when coupled
with deep learning methods, offers the potential to identify and
map PTMs directly from mass spectrometry data. However,
the complexity of PTM identification remains a significant
challenge, as modifications can occur at multiple sites and
vary in their fragmentation patterns. Future research will
likely focus on developing specialized models that can detect
and interpret PTMs alongside peptide sequences, potentially
leading to a more comprehensive understanding of protein
regulation and function.
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