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Abstract

Internet of Things (IoT) sensors are ubiquitous
technologies deployed across smart cities, indus-
trial sites, and healthcare systems. They con-
tinuously generate time series data that enable
advanced analytics and automation in industries.
However, challenges such as the loss or ambiguity
of sensor metadata, heterogeneity in data sources,
varying sampling frequencies, inconsistent units of
measurement, and irregular timestamps make raw
IoT time series data difficult to interpret, undermin-
ing the effectiveness of smart systems. To address
these challenges, we propose a novel deep learning
model, DeepFeatloT, which integrates learned lo-
cal and global features with non-learned random-
ized convolutional kernel-based features and fea-
tures from large language models (LLMs). This
straightforward yet unique fusion of diverse learned
and non-learned features significantly enhances [oT
time series sensor data classification, even in sce-
narios with limited labeled data. Our model’s ef-
fectiveness is demonstrated through its consistent
and generalized performance across multiple real-
world IoT sensor datasets from diverse critical ap-
plication domains, outperforming state-of-the-art
benchmark models. These results highlight Deep-
FeatloT’s potential to drive significant advance-
ments in [oT analytics and support the development
of next-generation smart systems.

1 Introduction

In the era of Industry 4.0, the world around us is surrounded
by a vast number of IoT sensors capturing data from di-
verse real-world environments, enabling smart automated ac-
tions or decision-making across various critical sectors, in-
cluding smart cities, smart buildings, smart agriculture, and
smart healthcare. These sensors record a wide range of
real-world observations such as temperature, humidity, traffic
flow, snow height, visibility, and more [Montori et al., 2023;
Georgakopoulos er al., 2020]. A recent report from De-
mandSage! predicts that the number of connected IoT de-
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vices will reach 40 billion by 2030. The vast amount of
time series sensor data generated from these devices fuels es-
sential smart industrial applications, such as automated traf-
fic monitoring in cities, environmental monitoring for sus-
tainability, smart building management, airport operations,
and precision agriculture. These advancements are driven
by the advanced automatic analysis of historical time se-
ries sensor data [Wajgi ef al., 2023; Manoharan er al., 2021;
Rajak and Selot, 2021].

With the growing number of connected IoT devices, meta-
data loss, which refers to the supporting textual data that de-
scribes sensors and their observations, has become a com-
mon issue [Culi¢ Gambiroza et al., 2023]. This can re-
sult from network communication failures, battery deple-
tion, a lack of standardized data storage and sharing sys-
tems [Culi¢ Gambiroza et al., 2023; Montori ef al., 2023;
Inan et al., 2023], or, in some cases, metadata may not be
stored at all due to security concerns [Stoyanova et al., 2020].
The absence of accurate metadata poses significant chal-
lenges for researchers and developers, rendering large vol-
umes of historical IoT time series sensor data uninterpretable
[Culi¢ Gambiroza et al., 2023; Inan et al., 2023]. This, in
turn, undermines automated data analysis and smart decision-
making processes, which are essential for a wide range of
critical industrial applications. In such cases, we are left with
only time series sensor readings from IoT devices. Before
conducting any data analysis, we must first determine the spe-
cific type of IoT sensor (e.g., temperature, humidity, traffic
flow) to which each time series data stream corresponds. This
necessity gives rise to the challenge of IoT time series sensor
data classification. Furthermore, classifying IoT time series
sensor data is highly challenging due to its inherent complex-
ity, which arises from sensors generating data from heteroge-
neous sources, various geographic locations, different sam-
pling frequencies, and irregular timestamps [Montori ef al.,
2023; Culi¢ GambiroZa et al., 2023]. Additionally, manual,
human-involved IoT data annotation or classification is time-
consuming, labor-intensive, and often financially infeasible
due to its high costs [Montori et al., 2023].

To address these issues, several artificial intelligence (AI)
researchers have developed state-of-the-art machine learning
[Montori et al., 2023; Culi¢ Gambiroza et al., 2023] and deep
learning algorithms [Inan er al., 2023] for the effective classi-
fication of IoT time series sensor data. Previously, an ensem-
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ble of multiple machine learning methods, using improved
model selection and class filtering strategies, was found to
outperform traditional time series classification methods for
IoT sensor data [Montori et al., 2023]. Although ensemble
machine learning showed promising performance, it strug-
gled to fully capture the heterogeneity in time series patterns
(a mixture of local sub-patterns and global patterns) due to
its reliance on pre-computed statistical properties from IoT
time series data. More recently, deep learning algorithms
[Inan er al., 2023] have been introduced to learn complex
local and global features directly from raw IoT time series
data to facilitate classification. However, these models still
face challenges in generalizing well when labeled data is
limited in heterogeneous IoT sensor datasets. This limita-
tion arises because deep learning algorithms typically require
large amounts of training data, which is not always readily
available in IoT sensor data classification.

Inspired by the recent success of large language mod-
els (LLMs) like GPT (Generative Pretrained Transformer) in
Natural Language Processing [Min et al., 2023] and Com-
puter Vision [Khan et al., 2022], as well as the effectiveness
of randomized convolutions in capturing diverse time series
patterns [Dempster et al., 2020; Tan et al., 2022], we pro-
pose a novel deep learning model for IoT time series sen-
sor classification. Our approach unifies learned multi-scale
convolutional and recurrent representations with non-learned
randomized convolutional features and pre-trained LLM fea-
tures to enhance model generalization across heterogeneous
IoT sensor datasets. The main contributions of this work are
summarized as follows:

* We propose a novel deep learning model, DeepFeatloT,
which uniquely integrates learned, randomized, and pre-
trained LLM features to enhance classification perfor-
mance across various IoT sensor datasets, even in sce-
narios with limited labeled data.

* We employ a uniform dense feature transformation mod-
ule to fuse feature representations of different scales,
ensuring balanced feature contributions. Through this
module, our randomized convolutional features and pre-
trained LLM features (e.g., from GPT-2 [Radford er al.,
2019]) are effectively incorporated.

e We establish a comprehensive benchmark through rig-
orous empirical evaluations against state-of-the-art deep
learning models across multiple real-world IoT sensor
datasets, highlighting the importance of feature diversity
for improved classification.

To the best of our knowledge, we are the first to effec-
tively fuse a range of learned and non-learned features within
a deep learning model for classifying heterogeneous IoT sen-
sor types, supporting critical applications in smart industries.

2 Related Works

This section is organized into two subsections: IoT Time Se-
ries Sensor Data Classification and Fundamental Time Series
Classification. The first subsection reviews state-of-the-art
methods specifically designed for [oT time series sensor data,

while the second highlights recent algorithmic advancements
in general time series classification.

2.1 IoT Time Series Sensor Data Classification

IoT time series sensor data are often noisy, with highly corre-
lated patterns across class labels, overlapping sub-patterns,
and inherent heterogeneity due to variations in timestamp
ranges, sampling ratios, frequencies, or units of measure-
ment. This makes the classification of IoT sensors from time
series data a challenging task. Additionally, irregularities in
time series intervals, unlike traditional time series classifi-
cation problems where data is equally spaced in time, fur-
ther complicate the process. Due to the popularity of statis-
tical transformation and data mining methods in the time se-
ries classification domain, researchers previously developed a
probabilistic data mining approach [Calbimonte et al., 2012]
that incorporated slope distribution computation via linear ap-
proximation of IoT time series sequences for heterogeneous
IoT sensor data classification. Postol et al. [Postol et al.,
2019] later proposed a topological data analysis-based strat-
egy for noisy IoT sensor data classification, while Borges et
al. [Borges et al., 2022] introduced a transformation-based
classification strategy that converts raw sensor data into ordi-
nal patterns, improving feature representation and class sep-
arability. However, statistical transformation methods often
struggle due to their assumptions about data distribution, es-
pecially with the variability and non-linearity of time series
patterns, which may involve a mix of local and global pat-
terns. Although these methods may work well for specific
datasets, recent studies have found them to be ineffective
across a variety of heterogeneous IoT sensor data classifi-
cation scenarios [Montori et al., 2023]. Recently, ensemble
machine learning has outperformed statistical transformation
and data mining methods, offering better generalizability, as
demonstrated by Montori et al. [Montori et al., 2023] and
Gambiroza et al. [Culi¢ Gambiroza et al., 2023]. However,
despite their success, ensemble machine learning methods of-
ten suffer from overfitting in many use cases. Very recently,
deep learning has emerged as a promising approach, leverag-
ing the ability to learn global and local patterns in parallel to
improve classification performance [Inan et al., 2023]. Deep
learning algorithms, however, require specific pre-processing
or augmentations in cases where the number of samples is
limited, particularly when there is class imbalance. This
could potentially lead to adding bias or cause data-leakage.

2.2 Fundamental Time Series Classification

In fundamental time series classification problems, data
points are typically equally spaced over time, and the dataset
generally contains time series from the same or similar do-
mains or applications, which is often different in the case
of ToT time series [Bagnall er al., 2017, Culi¢ Gambiroza
et al., 2023]. Over the years, fundamental time series clas-
sification methods have seen significant growth and advance-
ment. It began with classical distance-based methods like Dy-
namic Time Warping (DTW) [Bagnall ez al., 2017] and has
evolved to more recent methods, such as the Large Language
Model-based approach GPT4TS [Zhou et al., 2024]. Deep
learning in time series classification gained attention when
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Ismail et al.[Ismail Fawaz et al., 2020] introduced the state-
of-the-art convolutional architecture InceptionTime, inspired
by AlexNet [Krizhevsky ef al., 2012]. Recently, randomized
convolutions became popular in the time series classification
space with the introduction of scalable random convolutional
kernel-based methods like ROCKET [Dempster et al., 2020]
and its extension MultiROCKET [Tan et al., 2022]. Self-
attention-based transformer architectures have also shown
promising performance, particularly with the introduction of
the patching concept for time series, proving the effective-
ness of dividing a time series sequence into 64 patches for use
in the transformer architecture named PatchTST [Nie ef al.,
2022]. Later, the researchers of PatchTSMixer [Ekambaram
et al., 2023] developed a Multi-Layer Perceptron (MLP)-
based approach using the patching concept over time series
sequences, making it more lightweight and faster than pre-
vious self-attention-dominant methods like PatchTST [Nie et
al., 2022]. The growing popularity of large language mod-
els (LLM) has also inspired Al researchers in the time se-
ries domain to develop a Generative Pre-trained Transformer
(GPT)-based method, GPT4TS [Zhou et al., 2024], which has
achieved competitive performance in fundamental time series
tasks.

While these methods perform well in fundamental time
series classification problems, due to the unique nature of
JIoT time series data, similar methods have been found to
struggle or be ineffective in a wide range of heterogeneous
IoT time series classification problems [Inan et al., 2023;
Montori et al., 2023]. Although there have been recent devel-
opments in deep learning algorithms specifically designed for
IoT time series data classification, as previously discussed,
they still suffer from overfitting when faced with a limited
number of labelled samples along with class imbalance [Inan
etal., 2023]. Thus, a research gap remains in advancing state-
of-the-art methods for improved feature extraction to support
the classification of IoT time series sensor data, despite the
limited labelled data challenges present in the data.

3 Method: DeepFeatloT

In this section, we delineate the details of our proposed deep
learning model, DeepFeatloT. An overview of DeepFeatloT
is illustrated in Figure 1. DeepFeatloT takes raw IoT time
series sensor data as input (without any preprocessing) and
extracts deep-learned local and global features, randomized
convolutional features, and pre-trained LLM features. These
four diverse sets of latent feature representations are then
combined through an optimized dense feature transformation
(DFT) module, leading to improved classification of IoT time
series sensor data. The following subsections provide a de-
tailed methodology of the proposed DeepFeatloT model.

3.1 Preliminaries

An individual sample of IoT sensor data from the whole
dataset is essentially a vector containing a sequence of real
numbers, denoted as X; = (x1, 2, x3, . . ., T,), with ¢ index-
ing the ¢-th sample from the dataset and n representing the
number of timestamps. Each x; denotes a numerical value
of sensor reading at the jth timestamp. Then the task of [oT

sensor data classification can be formulated as determining
the value of y;, which is the designated class label (e.g., tem-
perature, humidity, light sensor, etc.) for the ith sample X;
(time series sequence) from the dataset.

3.2 Learned Local and Global Features

As IoT sensor data generates from heterogeneous sources and
the datasets contain sensors from diverse domains, it is im-
portant to extract both global pattern and local sub-pattern
from IoT time series for better feature representation. In this
regard, we adopted a learned feature extraction strategy pro-
posed in a previous study [Inan ef al., 2023] with some minor
modification. In our proposed model, we incorporated a stack
of bi-directional gated recurrent units (Bi-GRU) layers to ex-
tract deep learned global features and a stack of learned non-
dilated convolutional (conv) kernels (conv layers with differ-
ent kernel sizes) to extract deep learned local features. More-
over, in the learned global feature extraction process, to mit-
igate the vanishing gradient problem in recurrent neural net-
works [Liu et al., 2021], we applied the ReLU (Rectified Lin-
ear Unit) transformation to clip negative values in the global
learned latent feature representation. This learned feature ex-
traction process can be mathematically represented as,

Fy = 0(G(Xi)), (D

where X; is the raw IoT time series sequence as describe
earlier, G is the function for computing global feature us-
ing Bi-GRU layers and o is the ReLU activation, then the
resultant is global learned feature vector F4. On the other
hand, features from multi-scale convolutional blocks is con-
catenated along the depth dimension, which can be similarly
represented mathematically as:

Fe = Ka(X3) |5 (X3) |7 (X3) [ K11 (X)), 2

where /C; represents function with stack of convolutional lay-
ers of kernel size 7 and F. represents latent feature vector
comprising of deep learned local features.

3.3 Randomized Features

Randomized non-learned convolutional kernels based feature
transform of input time series were proven to effective for
capturing discriminating features for fundamental time se-
ries classification by several previous studies [Dempster er
al., 2020; Jiménez and Raj, 2019]. Large amount of random-
ized convolutional kernel transformation can produce variety
of diverse non-linear features that could be effectively used
for further classification task. This method is scalable and
works well for small time series datasets with limited sample
and labels, effecitvely avoiding overffiting due to its unsu-
pervised nature in feature extraction stage [Dempster et al.,
2020]. In this regard, considering the randomness in tem-
poral pattern for IoT time series sensor data due to inherent
heterogeneity, noise and data sparsity issue, randomized con-
volutional kernels could be a scalable solution to capture di-
verse features with different aspects. So, we incorporate ten
thousand randomized convolutional kernel over raw IoT time
series sequence (X;) inspired by the works of [Dempster et
al., 2020] with modified and improved parameter configura-
tions. In our proposed model, for extraction of randomized
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Figure 1: Illustration of the proposed deep learning model DeepFeatloT.

features, the kernel weights (w;) of the randomized kernels
(C;) were drawn from the normal distribution of A/ (0,0.05).
The length (k;) of all kernels was set to 9. Unlike from pre-
vious work [Dempster et al., 20201, we set the bias (b;) term
to zero and use a fixed dilation (d;) size 4. These determinis-
tic modifications of parameter values were made to make the
model more generalized across IoT time series sensor data.
This process can be represented as:

-FT = Z Ci{Wi’kiab’iad’i}(Xi)7

i=1

3

where F, represents latent feature vector of randomized con-
volution kernels (the number of kernels m = 10000) aggre-
gated via global max pooling and proportion of positive value
pooling. The updated parameter configuration is also more
scalable due to its fixed dilation and padding, while the sta-
tistical distribution of weights has been reduced to a standard
deviation of 0.05.

3.4 Pre-trained LLM Features

Pre-trained LLMs designed for solving natural language pro-
cessing tasks, have already proven effective at capturing long-
term sequential patterns from complex data and can be used
to solve a variety of challenging problems [Yang ez al., 2024].
Especially, when there is limited availability of data and la-
bels in downstream tasks. Time series data has a similar
structure to textual data [Gruver et al., 2024], as both text
and time series data exhibit sequential nature and correla-
tion. The main difference is that, in time series data, the
elements of a sequence are real-valued numbers, whereas in

the text domain it is generally sequence of words in natu-
ral language [Gruver et al., 2024]. Inspired by the works of
[Zhou er al., 2024], to utilize the benefit of pre-trained LLM
features in the context of IoT time series sensor data, we in-
corporate pre-trained GPT2 [Radford ez al., 2019] in our pro-
posed model for extracting LLM based sequential contextual
features from raw IoT time series sequence. Unlike the pre-
vious work [Zhou er al., 2024], in the proposed model, we
do not do any re-programming or transformation of raw IoT
time series, instead, a IoT time series sequence X;, is tok-
enized as textual sentence (numbers treated as sequence of
characters or words) where each element or value, x; at indi-
vidual timestamp is separated by special characters to make
up a text sequence and fed as input to the GPT2 [Radford et
al., 2019] model after tokenization. We incorporate all the
12 layers (transformer blocks) of GPT2 in it’s original form.
This would help the model to take benefit of pre-training on
text data and extract sequential correlation in IoT time series
without any transformation or re-programming. This can be
mathematically represented as

Fi = poola,g(GPT2({X;})) . 4)
Here, a two-dimensional feature vector is generated as out-
put by the GPT2 model which goes through a Global Aver-
age Pooling layer (pool,.4) to produce one-dimensional la-
tent features space vector J;, that represents our proposed

pre-trained LLM features capturing sequential contextual cor-
relation in raw [oT time series data.

3.5 Dense Feature Transformation

After extracting the learned latent feature vectors F, and F,
along with the randomized features F,. and pre-trained LLM
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features F;, the next step is to optimally combine these four
diverse features into a single latent space to facilitate the clas-
sification step. These feature vectors vary in dimensionality
or feature space size. For instance, the dimensionality of F,.
and Fj are F, € R20000x1 and F; € R768%1 which are much
larger compared to the dimensionalities of F,; and F., which
are F, € R128%1 and F. € R?°6*! respectively.

At this stage, directly concatenating these feature vec-
tors with varying dimensions as input to the next fully con-
nected feed-forward layer (FCN) would result in bias where
the larger and sparser feature vectors would dominate over
smaller feature vectors in terms of dimensions. This could
lead to overfitting, poor generalization, and suffering from
the curse of dimensionality. To mitigate these issues, we
designed the Dense Feature Transformation (DFT) module,
a simple yet effective method for transforming each feature
vector into a dense vector space with reduced dimensionality.
This acts as an indirect step for the selection and scaling of
features within the neural network. The DFT module trans-
forms the four different feature vectors into separate dense
vector spaces of equal size (64 dimensions), addressing the
issues mentioned above. It can be represented in simplified
mathematical form as:

Fa = oWl FgDlleWAF oW A{F-Dlle(Wi{ F}), (5)
where o represents the non-linear activation function, which
in this case is ReLU, and Wy, W,, W,., W, are the weight ma-
trices applied respectively to Fy, F., F,, F;. Among these,
W,, W, and W, are dense layers with a size of R4, while
W, consists of a stack of two dense layers with sizes R10%4
and R%4, respectively. Each dense fully connected layer is
followed by a layer normalization operation. The output of
DFT module is F; a combined feature vector containing all
4 types features represented in a single latent space. After
that, as illustrated in Figure 1, the combined feature vector
is fed into an MLP head, which consists of a stack of two
feed-forward neural network layers with 128 and 64 neu-
rons, respectively. Each layer is followed by layer normal-
ization and a dropout of 50%. Finally, the output from the
last hidden layer is passed through a softmax layer for the
classification task.. Algorithm 1 presents the pseudo-code of
the proposed DeepFeatloT algorithm, aligning with the brief
description of the individual modules outlined above. The
proposed DeepFeatloT model incorporates a wide range of
learned and non-learned features to capture diverse contextual
aspects from raw IoT time series, enhancing generalizabil-
ity across various IoT sensor data domains, even in scenarios
with limited data and label availability, without requiring any
data pre-processing. The DeepFeatloT model is trained for
200 epochs, and the best weights, based on testing accuracy
scores, are used for the final experimental evaluation. The
training is conducted using the popular Adam optimizer with
an initial learning rate of 0.001, combined with inverse time
decay every 100 steps, and categorical focal cross-entropy
loss.

4 Experimental Results

This section discusses the experimental designs and valida-
tions of our proposed model across IoT sensor datasets con-

Algorithm 1 DeepFeatloT Algorithmic Pseudo-code

Input: X; represents a particular IoT time series sequence
from the IoT sensor dataset, which can be mapped to a par-
ticular class label y;. So, a IoT sensor dataset can be repre-
sented as D = {(X;,yi),.--,...,(Xn,yn)}. For a classifi-
cation problem, the model is going be trained iterating over
every ith instance in the dataset, D (n represents number of
samples/instances in the dataset).

1: for Each epoch in Epochs do

2:  For each ¢ th instance (X;) compute learned features
F4 and F, using accordingly equations (1) and (2).

3:  Similarly, compute randomized convolutional kernel
feature F,. using equation (3) and extract pre-trained
LLM features, F;, from LLM using equation (4).

4:  Combine features Fg, F., F,, F; into a single feature
vector space J using (5).

5:  JFq goes into MLP Head and through softmax layer
and generate probability distribution to determine the
value of y;.

6:  Compute errors in prediction after each batch and up-
date weights.

7: end for

Output: A trained deep learning model

taining time series sensor data serving various critical appli-
cations and domains. It also presents a benchmark analy-
sis against previous state-of-the-art studies. Each IoT sen-
sor dataset was resampled (stratified) into a training and test-
ing ratio of 70:30 (random seed 100) [Montori et al., 2023].
The detailed programming or source code implementation of
this research can be found at the following GitHub repository:
https://github.com/skinan/DeepFeatloT-1JCAI-2025
Furthermore, to establish robust benchmark performance
comparison baselines, we include state-of-the-art IoT sen-
sor classification models such as MACE [Montori et al.,
2023] and DeepHeteroloT [Inan et al., 2023], as well
as advanced time series classification models, includ-
ing convolution-based InceptionTime [Ismail Fawaz et al.,
2020], and H-InceptionTime [Ismail-Fawaz et al., 2022],
transformer-based PatchTST [Nie et al., 2022], MLP-mixer-
based PatchTSMixer [Ekambaram et al., 2023], LLM-based
GPTATS [Zhou et al., 2024], randomized convolution based
ROCKET [Dempster et al., 2020] and MultiROCKET [Tan
et al., 2022] in the evaluation stage. As evaluation metrics,
we consider two popular and standard evaluation metrics Ac-
curacy and macro-average F1 score. For the fair comparison
of performance evaluation, all the deep learning models are

Dataset Length Samples Classes Domain
Swiss 445 346 11 Smart City
Urban 864 1065 16 Smart City

Iowa 168 1000 8 Smart Airport
SBAS 168 255 5 Smart Buildings

Table 1: A summary of IoT time series datasets and respective criti-
cal industrial application domains
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Swiss Urban Iowa SBAS Average

Acc Fl1 Acc F1 Acc Fl Acc F1 Acc F1
InceptionTime 67.31 5893 90.31 80.76 96.67 96.70 9740 9742 8792 8345
H-InceptionTime 75.00 62.66 90.94 81.01 96.67 96.70 9740 97.41 90.00 84.45
PatchTST 62.50 56.86 85.63 7454 8799 8796 89.62 89.50 81.44 77.22
PatchTSMixer 71.15 57.41 9031 84.80 92.00 92.02 100.00 100.00 88.37 83.56
GPT4TS 70.19 62.54 86.56 80.98 88.33 88.22 100.00 100.00 86.27 82.94
ROCKET 75.00 72.13 90.31 82.81 91.00 91.02 9740 9748 88.43 85.86
MultiROCKET 84.62 82.76 96.56 95.23 95.00 9496 98.70 98.74 93.72 9292
MACE 86.54 84.01 9225 88.74 91.01 91.04 9740 9749 91.80 90.32
DeepHeteroloT 86.54 8292 96.88 94.44 96.01 96.05 100.00 100.00 94.86 93.35
DeepFeatloT 91.35 9098 97.19 94.79 99.33 99.33 100.00 100.00 96.97 96.28

Table 2: Comparison of classification accuracy (acc) and macro-average F1 (F1) score of proposed model against state-of-the art models
across 10T Sensor datasets. Bold: best results, Underline: second best results

trained for 200 epochs with a learning rate of 0.001.

The IoT sensor datasets utilized in this study are: Swiss Ex-
periment (Swiss) [Montori et al., 20231, Urban Observatory?
(Urban) [Montori et al., 2023], Iowa ASOS? (Iowa) [Inan
et al., 2023], Smart Building Automation System (SBAS)
[Hong et al., 2017]. Among all these datasets, the Swiss
dataset contains a high level of noise and heterogeneity
along with the issue of class imbalance and a very lim-
ited number of labelled samples [Calbimonte et al., 2012;
Montori et al., 2023]. The Urban dataset contains highly cor-
related IoT sensor data.

On the other hand, Iowa and SBAS datasets are balanced
in terms of number of samples per class. Table 1 summarizes
key information about sensor data sets, including the length
of time series, the number of samples, the number of classes,
and the domain of critical industrial applications.

4.1 Classification Performance

Table 2 summarizes the classification Accuracy (Acc) and
the corresponding macro-average F1 (F1) scores of our pro-
posed model, DeepFeatloT, compared with several state-of-
the-art baselines evaluated on diverse IoT sensor datasets.
The table reports the best results obtained from 10 indepen-
dent runs for each model. Notably, DeepFeatloT achieves a
maximum accuracy of 96.97% and an average F1 score of
96.28%, thereby surpassing the second-best model, Deep-
HeteroloT [Inan et al., 2023], by more than 2%. Overall,
when considering both metrics, the top five ranked models
are: DeepFeatloT (proposed), DeepHeteroloT [Inan et al.,
2023], MultiROCKET [Tan et al., 2022], MACE [Montori et
al., 2023], and H-InceptionTime [Ismail-Fawaz et al., 2022],
with average accuracies close to 90% or higher.
DeepFeatloT consistently outperforms all benchmark
models in accuracy on an individual dataset basis. For in-
stance, on the heterogeneous Swiss dataset, DeepFeatloT
attains an F1 score of 90.98, which is approximately 6%
higher than that of MACE [Montori ef al., 2023] and about
8% higher than those of both MultiROCKET [Tan et al.,
2022] and DeepHeteroloT [Inan et al., 2023]. In the Urban

2http://newcastle.urbanobservatory.ac.uk/
3https://mesonet.agron.iastate.edu/ASOS/

dataset, although MultiROCKET [Tan et al., 2022] achieves
a marginally higher F1 score, DeepFeatloT slightly outper-
forms it in accuracy. Notably, DeepHeteroloT [Inan e al.,
2023] also exhibits competitive performance on the Urban
dataset, ranking second in accuracy and third in F1 score,
which indicates a close competition among these models.

In the Iowa dataset, DeepFeatloT achieves an excep-
tional accuracy and F1 score of 99.33, outperforming the
second-best models (InceptionTime [Ismail Fawaz et al.,
2020] and H-InceptionTime [Ismail-Fawaz er al., 2022]) by
nearly 2.6%. It is worth emphasizing that while ensembles
of convolution-based architectures (e.g., InceptionTime [Is-
mail Fawaz er al., 2020] and H-InceptionTime [Ismail-Fawaz
et al., 2022]) can yield impressive results on well-balanced
datasets, their performance often deteriorates on datasets with
imbalanced class distributions (e.g., Swiss).

In summary, our experimental results indicate that Deep-
FeatloT is the most effective model when evaluated across
four diverse IoT sensor datasets, as evidenced by its supe-
rior average accuracy and F1 scores. To assess efficiency,
the average runtime (training and testing) of DeepFeatloT
across all datasets is approximately 10.8 minutes, which
is commendable given its intricate architecture combining
learned and non-learned feature extractors, yet remaining fea-
sible for real-world use. Benchmark models such as Deep-
HeteroloT [Inan et al., 2023] and MultiROCKET [Tan et al.,
2022] are the next best alternatives in terms of consistency,
while the previous state-of-the-art ensemble ML benchmark,
MACE [Montori et al., 2023], demonstrates competitive per-
formance with an average accuracy of 91.80% and a F1

Swiss Urban Towa SBAS
RF 78.1+04 87.3+04 83.3+1.2 97.440.0
PF 78.6+£1.1 90.84+0.5 88.6+0.4 99.9+0.1
RF & PF 78.8+0.8 86.2+0.5 88.2+1.5 98.7+0.0
DC 774412 90.34+1.3 83.2+3.3 98.74+0.0
Ours 89.7+09 96.5+0.3 98.7+0.4 98.940.5

Table 3: Ablation analysis of our proposed model based on mean
and standard deviation of accuracy scores
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Swiss Urban Towa SBAS
RF 719404 81.2+09 82.7+1.1 97.440.0
PF 72.64+2.4 81.1+£2.0 87.840.9 99.94+0.1
RF&PF 73.4+15 755+29 882+1.5 98.7+£0.0
DC 71.1+1.8 82.3£3.2 82.843.9 98.74+0.0
Ours 88.7+1.2 93.9+04 98.7£04 98.94+0.5

Table 4: Ablation analysis of our proposed model based on mean
and standard deviation of macro-average F1 scores

score of 90.32%. In contrast, transformer-based models like
PatchTST [Nie er al., 2022] perform poorly in the IoT time
series classification domain, with average scores of 81.44%
accuracy and 77.22% F1. Nevertheless, larger transformer
architectures (e.g., GPT4TS [Zhou et al., 2024]) that bene-
fit from pre-training, exhibit promising potential by achiev-
ing perfect scores on the SBAS dataset and competitive over-
all averages. Moreover, DeepFeatloT, PatchTSMixer [Ekam-
baram et al., 2023], and DeepHeteroloT [Inan et al., 2023]
all achieve perfect scores (100%) in both accuracy and F1 on
the SBAS dataset.

4.2 Ablation Study

In this section, we present a detailed ablation study for major
components of our proposed DeepFeatloT model, to validate
the effectiveness of our proposed deep learning model across
datasets. Tables 3 and 4 respectively delineate the mean =+
standard deviation of accuracy and F1 scores over 10 runs.
In both tables, the ablation of the proposed model is broken
down into four parts: using only randomized features (RF),
using only pre-trained LLM features (PF), using both ran-
domized features and pre-trained LLM features (RF & PF),
and finally, the results of direct concatenation (DC), which in-
cludes all learned and non-learned features but excludes our
designed DFT module for improved feature transformation
to scale the concatenation of dense features before the MLP
classifier head.

It is evident from the mean accuracy and F1 scores pre-
sented in Tables 3 and 4 that our final proposed model which
is an optimized unification of learned and non-learned fea-
tures outperforms all other configurations.However, exclud-
ing the DFT module causes a significant drop in generaliz-
ability, as indicated by lower accuracy and F1 scores on three
out of the four datasets. While configurations using only RF
or only PF yield competitive performance, they do not con-
sistently achieve superior results across all datasets. Further-
more, the combination of RF & PF, when employed without
the inclusion of learned local and global features and the DFT
module, fails to deliver competitive performance.

To statistically quantify the practical significance of our
model’s improvements, we computed Cohen’s d statistics*
[Cohen, 2013] for mean accuracy and F1 score comparisons.
The results indicate strong effect sizes across all ablation

*Following Cohen’s guidelines [Cohen, 20131, effect sizes are
interpreted as: Cohen’s d statistic > 0.8 (large, substantial improve-
ment), indicating strong practical relevance of the observed perfor-
mance gains.

variants, with values exceeding 1.0 in all cases, reinforcing
the substantial performance gains achieved by our proposed
model. Specifically, DeepFeatloT demonstrates a signifi-
cantly higher generalization capability, with Cohen’s d values
reaching 1.44 (acc) and 1.43 (F1) against the RF-only vari-
ant, and consistently exceeding 1.0 across all comparisons.
Overall, the computed Cohen’s d effect sizes for mean ac-
curacy indicate substantial performance differences: Ours vs
RF (1.443), Ours vs PF (0.939), Ours vs RF & PF (1.216),
and Ours vs DC (1.191). Likewise, the effect sizes for F1
scores further reinforce this trend, with values of Ours vs RF
(1.433), Ours vs PF (1.098), Ours vs RF & PF (1.231), and
Ours vs DC (1.299), highlighting the significant impact of our
model’s unified feature representation.

Furthermore, these results validate that the unified repre-
sentation of features of our model - particularly the unifica-
tion of learned local and global features with randomized and
pre-trained LLM features - plays a critical role in improv-
ing classification performance in diverse IoT sensor datasets.
Furthermore, the large effect sizes (Cohen’s d > 0.8) con-
firm that the observed performance gains are not only sta-
tistically significant but also practically meaningful for real-
world IoT sensor classification. Additionally, our experimen-
tal observations and analysis also suggest that state-of-the-
art pre-trained LLM architectures originally designed for text
generation, such as GPT2 [Radford et al., 2019], can be effec-
tively incorporated for feature extraction from raw IoT time
series even without domain-specific adapter blocks like pre-
vious studies [Zhou et al., 2024] or re-programming [Nie et
al., 2022] or transformation (e.g., frequency domain conver-
sion) of raw time series, paving the way for future research in
heterogeneous IoT sensor data classification for critical appli-
cation domains.

5 Conclusion

While previous state-of-the-art models often struggle with
generalization or overfitting, particularly due to challenges
like limited labelled data and class imbalance, our proposed
deep learning model effectively addresses these issues with-
out requiring additional data preprocessing or augmentation,
even for smaller IoT sensor datasets (e.g., Swiss). The au-
tomated classification of IoT sensor data eliminates the need
for manual annotation from heterogeneous sources, paving
the way for smarter critical applications across various indus-
tries. If deployed in real-world industrial settings, the pro-
posed model would significantly reduce manual labor while
saving both financial costs and valuable time across multi-
ple critical sectors. Ultimately, this approach promotes the
reusability of vast amounts of meaningful IoT sensor data,
enabling advancements in critical technologies.
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