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Abstract

Machine learning has rapidly progressed, resulting
in a vast repository of both general and special-
ized models that address diverse practical needs.
Reusing pre-trained models (PTMs) from public
model zoos has emerged as an effective strategy,
leveraging rich model resources and reshaping tra-
ditional machine learning workflows. These PTMs
encapsulate valuable inductive biases beneficial for
downstream tasks. Well-designed reuse strategies
enable models to be adapted beyond their original
scope, enhancing both performance and efficiency in
target machine learning systems. This survey offers
a unifying perspective on model reuse, establishing
connections across various domains and presenting
anovel taxonomy that encompasses the full lifecycle
of PTM utilization—including selection from model
zoos, adaptation techniques, and related areas such
as model representation learning. We delve into the
similarities and distinctions between reusing special-
ized and general PTMs, providing insights into their
respective advantages and limitations. Furthermore,
we discuss key challenges, emerging trends, and
future directions in model reuse, aiming to guide
research and practice in the era of large-scale pre-
trained models. A comprehensive list of papers
about model reuse is available at https://github.com/
LAMDA-Model-Reuse/Awesome-Model-Reuse.

1 Introduction

Recent years have witnessed the rapid advancement of ma-
chine learning, achieving competitive performance across
various real-world applications. A typical machine learning
pipeline consists of two core steps: collecting data and training
a model [Mitchell, 1997], as illustrated in Figure 1 (top). This
data-centric paradigm heavily relies on the quantity and qual-
ity of training data to ensure strong generalization. However,
in resource-constrained settings, acquiring high-quality data
at scale poses significant challenges, limiting the effectiveness
of traditional machine learning approaches.

To this end, researchers are exploring how to reduce the
cost by reusing existing knowledge. In this way, reusing Pre-
Trained Models (PTMs) rather than training models from
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Figure 1: Comparison between typical machine learning (top) and
learning via model reuse (bottom). In the typical paradigm, machine
learning relies on collecting task-specific data and training models
from scratch. In contrast, the model reuse paradigm leverages a
repository of Pre-Trained Models (PTMs), known as a model zoo,
where models are selected and adapted for new tasks. The model
zoo also supports the management and maintenance of these reusable
PTMs. Models within the zoo are organized in a key-value structure,
where each model is indexed by a key (e.g., a specification).

scratch—has emerged as a promising solution for knowledge
transfer, especially with the growing availability of PTMs
across diverse domains [Wolf, 2019]. This paradigm leverages
a vast array of PTMs that encapsulate valuable inductive biases,
making them highly beneficial for various downstream tasks.
With well-designed reuse strategies, knowledge from these
PTM:s can be efficiently extracted and extended beyond their
original scope, facilitating numerous applications [Zhou, 2016;
Zhou and Tan, 2024; Tan et al., 2025; Lei et al., 2024].

The idea of reusing PTMs dates back to the 1990s when
researchers explored the use of pre-trained neural networks
as feature extractors for tasks such as waveform and hand-
written character recognition [Guo and Gelfand, 1992]. As
PTMs have grown more powerful—especially those trained on
large-scale datasets—model reuse has emerged as a resource-
efficient and performance-competitive alternative to training
models from scratch. The concept of model reuse was for-
mally introduced in [Zhou, 20161, highlighting the reusable
property of machine learning models. Early implementations
of model reuse include vanilla fine-tuning [Yosinski et al.,
2014] and biased regularization [Kuzborskij and Orabona,
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2017]. However, to address task-specific challenges such as
distribution shifts and sample scarcity [Zheng et al., 2023;
Zhuang et al., 2020], more advanced model reuse techniques
have been developed across various areas [Kundu et al., 2020;
Hinton et al., 2015; Chen et al., 2022].

With the rapid expansion of machine learning, an increas-
ing number of PTMs are being developed and organized into
public PTM repositories [Wolf, 2019; Tan et al., 2024], en-
abling the next evolution of model reuse based on a model
zoo. The diversity of PTMs within a model zoo—ranging
from small specialized PTMs tailored for domains such as
medicine, finance, and education [Luo ef al., 2024], to large
foundation models with strong zero-shot capabilities [Bom-
masani ef al., 2021]—introduces new challenges and oppor-
tunities. As shown in Figure 1 (bottom), a more advanced
model reuse paradigm with a model zoo involves several key
steps [Zhou, 2016; Zhou and Tan, 2024], e.g., (1) selecting
appropriate PTMs from the model zoo, (2) leveraging the se-
lected PTMs to help the learning of the target task, and (3)
managing and improving the model zoo for easier selection
and enhanced overall performance.

Despite the success of model reuse, two key challenges
remain in comprehensively exploring its core principles. First,
as model reuse becomes a natural choice in various applica-
tions, a holistic and task-agnostic perspective is needed to
unify fragmented research efforts across different fields. Es-
tablishing a big-picture view of model reuse can bridge the
gaps between specialized subfields and promote broader ap-
plicability. Second, with the emergence of large PTMs such
as foundation models [Bommasani ef al., 2021], reusing such
models involves both shared principles and diverse implemen-
tations. Integrating model reuse across both small and large
PTMs can help connect diverse methodologies and inspire the
design of novel model reuse strategies.

To tackle these existing challenges, this survey provides a
unifying perspective on model reuse by categorizing research
efforts based on two fundamental steps: model selection
and adaptation. We introduce a novel taxonomy to organize
existing approaches. Model selection methods are categorized
based on the selection mechanism, namely, semantic/rule-
based, metric-based, and learning-based strategies. Model
adaptation methods are classified according to the role of
PTMSs in the learning process, including leveraging PTMs for
data preparation, model training, and inference.

Additionally, we distinguish between small and large PTMs,
recognizing that while there is no strict threshold, we de-
fine small PTMs as relatively compact, specialized models,
whereas large PTMs refer to general-purpose models trained
on diverse data with strong zero-shot generalization across do-
mains. By analyzing both their commonalities and differences,
we highlight the advantages, challenges, and broader impact
of model reuse across the machine learning pipeline.

The main contributions of this survey include:

* A unifying framework for model reuse, categorizing re-
search based on PTM selection and adaptation strategies.
* A comprehensive review covering both small and large

PTMs, highlighting their commonalities and differences.

* We summarize insights into emerging trends and challenges
in the future of model reuse.

2 Preliminaries

2.1 Reusing PTMs from a Model Zoo

We illustrate the model reuse process using classification as
an example, though the methodology can be extended to other
tasks with different types of PTMs. In standard machine
learning, a C-class classification task consists of a training
set D = {(x;,y;)}, with N examples, where each instance
x; € R? and its corresponding label y; € [C] = {1,...,C}.
The goal is to construct a classifier fg : R — R with
parameters € that maps an input instance to C'-dimensional
confidence scores. Typically, f represents a neural network,
and 6@ corresponds to its weights, which are learned through
empirical risk minimization.

Reusing a Single PTM. Instead of training fg from scratch, a
well-trained model gg is often available and can be leveraged
to facilitate the training of fy. Here, ge is pre-trained on a
dataset D' = {(w;,y;)}j\;ll with instances z’; € R? and la-
bels y; € [C']. To reuse the expert knowledge in ge, an adap-
tation strategy is applied fo = Adapt(fy, | D, ge), where 0
is the initial state of the model before adaptation. Since the
PTM ge may differ from fp in various aspects—such as model
architecture (f # g), data distribution (Pr(D) # Pr(D")), fea-
ture dimension (d # d’), or label space (C' # C’)—the adap-
tation function Adapt(-) must address these heterogeneities.

Reusing Multiple PTMs from a Model Zoo. With the pro-
liferation of PTMs across different domains, model zoos, de-
noted as M = {g&. ..., g }, have emerged as valuable re-
sources. These PTMs encode diverse inductive biases, making
them highly beneficial for a wide range of target tasks. To
effectively utilize these rich model repositories, [Zhou, 2016;
Zhou and Tan, 2024] summarizes and highlights the impor-
tance of a “select-then-adapt” workflow. For simplicity, con-
sider selecting a single PTM, and scenarios selecting multiple
PTMs could be easily extended. In the model selection stage,
a selection mechanism ranks the PTMs in M based on their
relevance to the target task D and outputs the index of the
most appropriate PTM:

m = argmax,, 5 Select(D, fo | M) . (1)

fo in Eq. 1 indicates the selection process also depends on
the required architecture f over the target task. The workflow
steps into the model adaptation stage once a PTM is selected,
which is applied as follows:

fo = Adapt(fq, | D, 9&) - 2

Model selection ensures the most relevant PTM is identified,
while adaptation efficiently bridges the gap between the PTM
and the target task. The adaptation could be applied to the
selected model itself (i.e., adapt g¢) or to the target model fg
where the selected g¢g provides auxiliary expert knowledge.

2.2 Small and Large PTMs

Model zoos often contain PTMs of varying types, including
those pre-trained on diverse domains such as finance, edu-
cation, and scientific research. These PTMs also differ in
functionality, covering tasks such as classification, regression,
object detection, image/text recognition, text generation, and
reinforcement learning.
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Figure 2: A taxonomy of model reuse.

The emergence of large PTMs has significantly impacted the
model reuse workflow, as computational costs have become a
crucial factor, and there are diverse strategies for extracting ex-
pert knowledge from these models. While reusing both small
and large PTMs shares fundamental principles, the differences
in scale introduce distinct challenges and opportunities. This
survey connects the reuse of both types of PTMs, highlighting
their commonalities and differences to provide deeper insights
into model reuse methodologies.

Since PTM size is relative, there is no strict boundary be-
tween small and large PTMs. Generally, we define small PTMs
as models based on classical architectures and pre-trained for
specialized tasks, such as ResNet for image classification [He
et al., 2016]. In contrast, large PTMs typically contain billions
of parameters, are general-purpose, and possess zero-shot ca-
pabilities across various tasks. For example, a large language
model (LLM) can handle text generation, classification, and
reasoning without explicit task-specific fine-tuning, adapting
dynamically to new queries [Zhao er al., 2023].

2.3 Advantages and Goals

Model reuse facilitates knowledge transfer by leveraging pre-
trained models to improve generalization and reduce depen-
dence on large labeled datasets. It also enables knowledge
aggregation, where combining multiple PTMs enhances ro-
bustness, accuracy, and adaptability. By building on existing
models, reuse accelerates training, lowers computational and
data costs, and mitigates catastrophic forgetting in dynamic
or continually evolving environments. Overall, model reuse
improves scalability and efficiency while extending the appli-
cability of machine learning across diverse tasks and domains.

3 Taxonomy

Model reuse consists of two core steps: model selection and
model adaptation. Accordingly, we systematically categorize
existing approaches into these two components, as illustrated
in Figure 2. The objective of model selection is to identify
relevant PTMs from the model zoo, which hinges on defining
an appropriate retrieval metric. Based on how this matching
is determined, we classify model selection methods into three
categories: (i) semantic/rule-based methods, (ii) metric-based
methods, and (iii) learning-based methods. These approaches
differ in how they quantify model-task relevance. Once a PTM
is selected, model adaptation ensures its effective integration
into the target task. We categorize adaptation methods based
on their application stage: (i) PTMs for data preparation, (ii)
PTMs for model training, and (iii) PTMs for model inference.
Since model reuse is a broad topic within machine learning,
some related areas extend beyond the selection-adaptation
paradigm. Therefore, we discuss model collaboration, com-
pression, and representation learning, which contribute to the
broader landscape of model reuse.

3.1 Model Selection

The target of model selection is to choose one or multiple
related models from the model zoo that are suitable for the
related dataset. This is a typical retrieval process, where the
core problem is to rank all models in the model zoo correctly.
Hence, we need to design a metric that measures the match-
ing degree between models and the downstream tasks. For
this perspective, we divide current approaches into three cat-
egories, each highlighting a different perspective to calcu-
late the matching degree, i.e., semantic/rule-based methods,
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Figure 3: The pipeline of semantic/rule-based model selection. Mod-
els are organized with specifications, and users provide their requests
regarding the dataset to retrieve the related model.

metric-based methods, and learning-based methods. Specifi-
cally, semantic/rule-based methods are designed to utilize the
semantic information (e.g., natural language descriptions) or
manually designed rules to find related models. Metric-based
methods rely on defining the matching degree between the
model’s output and the corresponding dataset, while learning-
based methods directly learn the similarity between data and
models. This topic is also regarded as measuring the transfer-
ability score of a PTM [Xue erf al., 2024].

Semantic/rule-based methods

For small models. Before the prosperity of large models,
typical works rely on semantic information to choose proper
models from the model zoo. This semantic information is
commonly represented by natural languages, expressing the
capability of models and the upstream training data. For exam-
ple, [Zhou and Tan, 2024] proposes a typical model selection
paradigm, where models in the model zoo are accompanied
by descriptions (known as “semantic specification”). The se-
mantic specification contains descriptive information related
to the model, including the target task (e.g., classification or
regression), the kind of machine learning applications (e.g.,
natural language processing or image recognition), the model
structure (e.g., SVM, CNN, or Decision Tree), etc. Hence,
we can form a key containing all this related information as
s = {s1, 82, -+, Sk }, Where s; represents a dimension to de-
scribe the model. Hence, facing a new task, the users are only
required to describe their requirements as a new query and
search within the model zoo. Similar ideas are also explored
in Taskonomy [Zamir er al., 2018], where neural networks are
adopted to find transfer learning dependencies among a wide
array of tasks, leading to a structured approach that reduces
the need for labeled data in training new tasks.

For large Models. Semantic specifications are manually de-
scribed by the model owners, costing extra effort and domain
knowledge. To this end, the prosperity of large models helps
get rid of the manual description. HuggingGPT [Shen er al.,
2024] utilizes GPT to manage millions of models on Hugging-
Face [Wolf, 2019]. Similarly, natural language is utilized as
the interface to align all models. Facing the user’s new require-
ment, it plans out the necessary sub-tasks, and selects proper
models from HuggingFace. Similar ideas have also been ex-
plored in automatically selecting and combining computer
vision models [Gupta and Kembhavi, 2023].

Pros & Cons: We visualize the pipeline of semantic/rule-
based methods in Figure 3. These methods provide a naive
idea to manage models in the model zoo since natural language

is a common tool for description. They can easily adapt to
various domains and tasks by simply tagging models with ap-
propriate semantic labels. This flexibility makes them suitable
for dynamic environments where new types of tasks frequently
emerge. However, there are also some drawbacks. The effec-
tiveness of these methods heavily relies on the accuracy and
comprehensiveness of the semantic specifications provided.
Inaccurate or vague descriptions can lead to poor model selec-
tion, affecting overall performance. Besides, manual semantic
tagging becomes impractical as the number of models grows.
This is particularly challenging in environments where new
models are constantly added [Wolf, 2019].

Metric-based methods

For small models. Apart from manually designing the spec-
ification, there are also works aiming to define the metric
to represent the fitness between models and datasets. Corre-
spondingly, metric-based methods determine whether a PTM
is suitable for the target task by evaluating various proxy fit-
ness metrics. There are various ways to design the metric,
e.g., using feature statistics [Pandy et al., 2022], joint distri-
bution of the source and target data [Nguyen et al., 2020],
mutual information-based transferability [Tran et al., 2019],
and gradients with few updates [Song ez al., 2019].
Specifically, we can utilize the pre-trained model to encode
the downstream task’s data, and evaluate the separability of
per-class instances considering inter-class and intra-class in-
formation [Pandy et al., 2022]. Other works seek to jointly
model the upstream and downstream data. LEEP [Nguyen
et al., 2020] applies the PTM to the downstream dataset to
estimate the label distribution for each input. Then, it assesses
how well the predictions from the model align with the ac-
tual distribution of ground truth labels. The metric is based
on the alignment of the model’s predictions with the target
task’s requirements. NCE [Tran er al., 2019] uses the condi-
tional entropy between label sequences of source and target
tasks as a metric. This measure reflects the information re-
quired to predict labels of one task based on the knowledge
of another, thereby providing an estimate of task transferabil-
ity and hardness. The aforementioned works only require
the simple forward pass of the related dataset. However, if
the computational resources are sufficient and can support
backpropagation, we can also utilize the matching degree of
attribution maps to define the metric [Song er al., 2019]. This
line of work is very similar to transferability estimation, and
we refer readers to [Xue et al., 2024] for more details.
For large models. In the era of large models, the cost of
evaluating transferability becomes a critical factor due to the
high computational expense involved in even simple opera-
tions like the forward pass. To address these challenges, recent
developments focus on reducing the computational demands
of metric-based evaluations. To this end, recent work focuses
on designing surrogate tasks to approximate the behaviors of
larger models without needing to operate them directly, thus
speeding up the evaluation process. For example, LOVM [Zo-
har et al., 2023] defines the vision-language model selection
paradigm based solely on textual descriptions of tasks, without
needing access to specific datasets. SWAB [Yi et al., 2024]
enhances the selection performance by bridging the modality
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gap between the textual descriptions and the visual model.

Pros & Cons. Metric-based methods provide a quantitative
measure of suitability, making comparisons between models
straightforward and reducing subjective bias in model selec-
tion. Besides, they adapt well to different types of data and
tasks by adjusting the metrics to reflect the specific needs of
the target task. However, the effectiveness of metric-based
methods heavily relies on the appropriateness and robustness
of the chosen metric. Poorly designed metrics can lead to
suboptimal model selection. Some metrics, especially those
involving backpropagation or complex statistical analyses, can
be computationally intensive, limiting their use in resource-
constrained environments.

Learning-based methods

For small models. Apart from manually describing the mod-
els’ behaviors, there are also works on automatically learning
the specifications. This line of work aims to project models, as
well as datasets, into the same embedding space, where the re-
trieval process can be easily done by distance calculation in the
unified space. A representative work, i.e., Task2Vec [Achille
et al., 2019] involves passing data through a probe network to
generate a task-specific embedding that captures the complex-
ity and characteristics of the task. Recent papers in this area
also involve learning the specifications of PTMs and tasks
from data. By training an encoder on known tasks and PTMs,
these methods enable the generalization of the ability to repre-
sent both datasets and PTMs to unseen tasks and PTMs [Ding
et al., 2022]. Model Spider [Zhang et al., 2023] learns model
representations through vast historical performance.

For large models. Learning-based methods enable LLM
selection with adaptive characteristics [Guha er al., 2024;
Mugeeth er al., 2024]. A representative work is mixture
of experts (MoE) [Jacobs er al., 19911, where multiple ex-
perts are constructed for diverse tasks. The training stage
will adaptively assign the weight of each expert for the ag-
gregated prediction to identify the best fit for each piece
of reused tasks. Recent advancements in LLM selection
have focused on learning effective routers for multiple pre-
trained LLMs [Pfeiffer et al., 2020; Zhang et al., 2023;
Ong et al., 2025; Wu et al., 2024; Jitkrittum et al., 2025;
Frick et al., 20251, e.g., Zooter [Lu et al., 2024] employs a
reward model to score query-output pairs for routing decision-
making, while [Mohammadshahi e al., 2024] uses self-play in
reinforcement learning to create query-response-score triplets.
Model-SAT [Zhang et al., 2025] further utilizes an extra foun-
dation model as the model selector.

Pros & Cons. Learning-based methods automate the speci-
fication learning process, enabling scalability by adapting to
new models and tasks in an end-to-end manner. However,
their effectiveness heavily depends on the quality and diver-
sity of the training data. Inadequate or biased data can lead
to poor performance. Besides, the generalization ability of
these works is also highly dependent on the scale of training
tasks. Finally, the process of training and deploying these sys-
tems, especially for large models, can be resource-intensive,
requiring substantial computational power and time.

3.2 Adapting PTMs

After selecting models from the model zoo, we then discuss
how the selected model can help obtain better performance
in the target task. In the following section, we will explore
how PTMs can be effectively integrated into different learning
phases, namely, target data preparation, target model training,
and target model inference.

Adapt PTMs during target data preparation

For small models. PTMs serve as experts capable of gen-
erating enriched data for the target task, enabling the target
model to achieve better generalization ability. For example,
generative PTMs model the distribution of pretext tasks, and
utilizing them to generate related datasets can help the training
process of resource-constrained scenarios [Smith ef al., 2023]:

fg = Adapt(fg(, ‘ Du Dga gg) ) (3)

where D is generated by the selected model gg. The en-
riched data can also emerge in other forms, e.g., the dataset
statistics can help calibrate the distribution of downstream
tasks [Wu et al., 2019]. The output of PTM can also be ap-
plied to tackle black-box source-free adaptation [Liang et al.,
2022] via knowledge adaptation.

For large models. The advancement of large language models
offers a new insight into the zero-shot ability, which can be
further utilized for data preparation. Some recent methods also
treat the pre-trained LLMs as a knowledge base and retrieve
the common knowledge in the text form [Menon and Vondrick,
2023; Pratt et al., 2023]. In this case, the word-level labels
are further refined into the semantic level (e.g., “hen” — “two
legs”, “red, brown, or white feathers”, “a small body”, “a
small head”, etc.) to further facilitate recognition.

Pros & Cons. With the help of PTMs, we can improve the
diversity and quality of datasets, which is crucial for training
robust models. The enriched data help models learn more
generalized features, potentially improving performance on
unseen data. However, there are also some drawbacks. The ef-
fectiveness of the data preparation heavily relies on the quality
of the PTMs used. If the PTMs are biased or trained on non-
representative data, this can adversely affect the quality of the
prepared data. Besides, there is a risk that models may overfit
the characteristics of data generated or modified by PTMs,
especially if the diversity of the synthetic data is limited or too
closely mirrors the training scenarios of the PTMs.

Adapt PTMs during target model training

For small models. With the selected pre-trained model, an
intuitive way to apply it to downstream tasks is fine-tuning.
PTMs, when related to the target task, offer a strong foundation
upon which the target model can be built:

fo = Adapt(fq, | D,g9g) with fo, =95 . (4)

In Eq. 4, the selected PTM is directly applied as the initial-
ization of the target model. Fine-tuning these PTMs often
leads to significant improvements in the target model’s perfor-
mance [ Yosinski et al., 2014].

Since PTMs have been extensively trained on the pretext
task, directly fine-tuning will ruin the existing knowledge
contained in the PTM. Hence, there are some works with
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Figure 4: The illustrations of adapting PTMs during target model
training. PTMs can serve as the initialization, providing weight
regularization and output supervision to help target tasks.

regularization to regularize PTM adaptation. Hypothesis trans-
fer serves as a regularization technique that encourages the
weights of the target model to resemble those of the PTM.

argﬂgnﬁ(feo | D, 9&) + AR(fo,98) » (5)

where R(fp, g&) denotes the regularization term on the sim-
ilarity between (fg, g&). This is achieved by defining simi-
larity measures in weight space, effectively guiding the target
model to be close to the PTM. Various norm-based methods,
such as the Frobenius Norm, ¢5-norm [Li et al., 2018], and
spectral norm [Miyato et al., 2018] are employed to quantify
the similarity between the weights. When dealing with weight
spaces of diverse shapes, additional mapping and attention
layers [Ye et al., 2021] are applied to facilitate alignment.

Another line of work considers utilizing PTMs as the exter-
nal supervision signal. Knowledge distillation was thought to
be proposed by [Hinton ef al., 2015], while ten years earlier a
similar idea has already been published by [Zhou and Jiang,
2004]. These approaches match the PTM and the target model
in the prediction space, i.e., the output predictions of both
models should be similar:

argmin £(fo, | D, 9&) = A zepSim(fo(x), 96 (x)) , (6)

where Sim(+, -) measures the similarity between the model out-
puts. While KL-divergence and JS divergence are commonly
used for this purpose, they are constrained to comparing mod-
els within the same label space. When the PTM and target
model possess non-overlapping class sets, alternative tech-
niques that consider statistics of hidden layers [Romero et al.,
2015], as well as the relationships between instances [Park et
al., 20191, prove to be powerful tools for achieving alignment.
For large models. Fine-tuning, hypothesis transfer, and
knowledge distillation have been proven effective in adapt-
ing PTMs for small models. Correspondingly, similar ideas
are also applied for large models, e.g., distilling large LLMs
into smaller scale [Gu et al., 2024], reprogramming the model
with extra mapping layers [Chen, 2024], applying lightweight
tuning techniques for LLM [Hu et al., 2022]. Additionally,
when facing diverse modalities, reusing multiple large models
of different modalities for unified recognition becomes pop-
ular in the field. For example, LLaVA [Liu er al., 2023] and
BLIP [Li et al., 2023] build multi-modal LLMs by learning
the projection between frozen visual and textual features.

Pros & Cons. We visualize the steps to reuse PTMs dur-
ing model training in Figure 4. By leveraging PTMs, the

training time is significantly reduced, as the complex founda-
tional learning has already been accomplished. Furthermore,
PTMs often lead to improved model performance, especially
when fine-tuned for specific tasks, because they have been
pre-trained on extensive and diverse datasets. However, po-
tential risks include overfitting the PTM’s data characteristics,
especially if the target task differs significantly from the tasks
the PTM was originally trained on. Finally, the success of the
adapted model heavily depends on the quality of the PTM. If
the PTM has biases or was trained on non-representative data,
these issues can propagate to the adapted model.

Adapt PTMs during model inference

For small models. The advantages of PTMs extend to the
model inference stage of the target model. One straightforward
approach involves constructing an embedding space using the
PTM, resulting in more discriminative features. This enriched
space facilitates the creation of linear classifiers and nearest
class mean classifier [Mensink et al., 2013], simplifying the
process of obtaining the target model. Some recent methods
also learn to concatenate middle layers’ features [Evci er al.,
2022] or learn to weight features from different PTMs [Tu et
al., 2023] to enhance the generalization of the features.

Furthermore, model merging methods have been developed
to fuse PTMs together. This technique has the potential to
flatten the optimization space and increase the likelihood of
converging towards an optimal solution [Matena and Raffel,
2022]. Various methods have emerged in this domain, in-
cluding those emphasizing partial channels during the model
merging process [Wortsman e al., 2022]. Some other methods
address the model heterogeneity. These approaches involve
learning a mapping matrix to rectify the weights of different
layers [Singh and Jaggi, 2020], accommodating the diverse
characteristics of the models being merged.

For large models. The idea of model merging is also proven
effective in LLM inference to enhance its general capabil-
ity [Yang er al., 2024; Kim et al., 2024; Dang et al., 2025].
Besides, Retrieval-Augmented Generation (RAG) [Lewis et
al., 2020] utilizes the external database for retrieval. Facing a
new input, it fetches relevant documents from the database and
produces responses based on the retrieved information. When
an external database is unavailable, methods also explore the
LLMs’ reasoning ability to self-guide the inference [Brown er
al., 2020] by reasoning “step by step”.

Pros & Cons. Leveraging PTMs during inference can reduce
the need for expensive model retraining, thus saving compu-
tational resources and time. However, there are also some
drawbacks. While PTMs can be powerful, integrating them
effectively with the target model can be challenging, especially
when concatenating or combining features from different lay-
ers. This may require careful fine-tuning and architecture
adjustments. Besides, although PTMs can simplify some as-
pects of inference, the added complexity of using intermediate
layer features or constructing chain of thoughts may introduce
additional computation, potentially increasing inference time
compared to simpler models.
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3.3 Other Topics

Apart from the above topics in model reuse, there are also
related fields focusing on other aspects of model reuse. These
topics are not fully independent of model selection and adap-
tation, which partially share the same goal.

Model Assembly. Rather than treating each PTM as a whole,
model reuse can operate at a finer granularity by assembling
models from components such as network blocks [Yang et
al., 2022; Pfeiffer et al., 2024; Guo et al., 2023] or parameter-
efficient tuning modules [Hu et al., 2024]. This approach
enables fine-grained model selection targets, where reusable
parts are identified and recombined to build models tailored
to specific tasks. Some methods also modularize networks
or extract key functional units to improve interpretability and
flexibility [Wang er al., 2022; Shi et al., 2024].

Model Representation Learning [Schiirholt e al., 2022;
Unterthiner et al., 2020] vectorizes PTMs to encode their char-
acteristics, forming hyper-representations that allow model
selection without direct access to the original model parame-
ters. These representations can be learned based on intrinsic
permutation-invariant properties of a PTM and can even be
decoded back into model weights [Schiirholt et al., 2024].
Learned model representations serve multiple purposes: they
act as model specifications within a model zoo, assist in ef-
ficient retrieval, and serve as auxiliary modalities during the
adaptation process [Zhou er al., 2024].

Model Compression. Given the computational demands
of large PTMs, model compression aims to reduce model
size while preserving functionality. Techniques such as prun-
ing [Cheng et al., 2024] and quantization [Zhou et al., 2018]
are used to transform large PTMs into compact versions that
maintain performance while reducing inference costs.

Model Repair and Editing. Model repair corrects erroneous
behaviors in a PTM without retraining from scratch [Luo
et al., 2023], often through targeted weight modifications,
counterfactual learning, or fine-grained intervention. Model
editing [Mitchell er al., 2022; Fang er al., 2024], on the other
hand, involves modifying a model’s knowledge base or deci-
sion boundaries to reflect new information or correct biases.
Unlike standard fine-tuning, model editing aims to localize
changes while maintaining overall model consistency.
Managing LLMs. Managing model repositories such as
“LLM Market” requires dynamic specification of model
traits, rapid adaptation to new data, and efficient fusion
and configuration of multiple models [Shen et al., 2024,
Prabhu et al., 2024; Zhou et al., 2025; Zhang et al., 2024].
Methods have been developed to learn representations of
model characteristics and add semantic specifications to guide
model selection. Efficient evaluation frameworks assess
language understanding, reasoning, and task proficiency of
LLMs, facilitating benchmarking and optimization for real-
world deployment [Polo er al., 2024; Zhong et al., 2025;
Saranathan et al., 2024].

Model Relationship Discovery. PTM relationship discov-
ery aims to trace the relationship between models, providing
helpful information in model zoo management. Neural Lin-
eage [Yu and Wang, 2024] predicts which parent model a child
model has been fine-tuned from, and [Horwitz et al., 2025]
formulates this task in an unsupervised manner.

4 Future Directions

Coupling of Selection and Adaptation. The generalization

ability of an adapted model depends not only on the selected

PTM but also on the adaptation strategy employed. Thus, PTM

selection and adaptation are inherently coupled [Arango er al.,
2024]. While some methods, such as transferability estimation,
attempt to improve selection, they often fail to account for the

mismatches between fine-tuning and advanced adaptation tech-
niques. Future research should focus on joint optimization of

selection and adaptation to enhance end-to-end performance.

Diversity and Strength of the Model Zoo. The success of

model reuse depends on the quality, diversity, and general-
ization of PTMs in the model zoo. A well-curated collection

improves the chance of selecting suitable models—even at fine-
grained levels such as instances or tokens. Therefore, improv-
ing the curation and management of model zoos is essential

for maximizing the impact and utility of model reuse [Castafio

et al., 2023; Dong et al., 2023].

Universal Adaptation Methods. Adaptation methods must

bridge heterogeneity between the target task and the selected

PTM while remaining universally applicable across different

models and tasks. However, most adaptation techniques are

task-specific and require extensive hyper-parameter tuning,

making them difficult to generalize. Developing standard-
ized, flexible, and efficient adaptation strategies is essential

for improving model reuse in diverse settings.

Model Collaboration. Instead of selecting a single PTM,

aggregating multiple PTMs to collaborate in parallel or se-
quentially can enhance model robustness and accuracy [Feng

et al., 2025]. In this way, complex target tasks can often be

decomposed into multiple sub-tasks, each handled by a dif-
ferent PTM with distinct expertise. There are several ways to

achieve this goal. Firstly, models can collaborate sequentially—
small models can tackle easy tasks, while large models can

tackle what small models cannot handle. Furthermore, some

tasks can be decomposed into sub-tasks, where different PTMs

handle each step sequentially. Optimizing the order and de-
pendencies of PTMs is crucial, considering task complex-
ity, computational cost, and adaptation requirements [Chen

and Varoquaux, 2024]. Secondly, multiple models can col-
laborate in a parallel manner, where multiple PTMs con-
tribute jointly to task performance through techniques such as

weighted averaging or model merging [Wortsman e al., 2022;

Stoica et al., 2023]. However, effectively combining PTMs

with varying strengths remains a challenge, requiring proper

ensemble strategies [Fu et al., 2025]. Lastly, modules of differ-
ent PTMs can also collaborate together to enhance prediction

robustness [Wang et al., 2024; Li et al., 2025].

Model Market and Dock System Construction. As model

reuse continues to gain traction, the seamless deployment of

reusable models requires a robust, containerized system. Sys-
tems like Learnware [Zhou, 2016; Zhou and Tan, 2024] and

Beimingwu [Tan er al., 2024] have paved the way for efficient

model reuse, offering quick and easy application. However,

beyond containerization, several critical topics in the context

of the model market remain underexplored. For instance, man-
aging the model zoo to facilitate smoother model reuse, as

well as determining appropriate pricing strategies for models,
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are areas that warrant further research and development.
Privacy-Preserving and Robust PTM Representations. The
effectiveness of PTM selection and adaptation often relies
on access to large, labeled datasets, which may not always
be feasible due to privacy concerns or data scarcity. Future
work should explore privacy-preserving PTM representations
and methods that require minimal task-specific data [Lei et
al., 2024]. 1In particular, large PTMs may produce nearly
identical outputs on few-shot samples, making it difficult to
distinguish their capabilities. Developing task-aware probing
mechanisms that can effectively differentiate PTMs under low-
data conditions is an important research direction.
Multi-Objective Model Reuse. In the real world, apart from
vanilla measuring the performance on target tasks, there are
other important targets, e.g., adapting efficiency [Houlsby
et al., 2019] that require fast model reuse and carbon emis-
sion [Lacoste et al., 2019] that recurring low computation cost.
These multiple objects may also evolve in the learning process,
posing more challenging targets to model reuse.

5 Conclusions

Model reuse has become a common paradigm in modern ma-
chine learning, enabling the efficient utilization of PTMs to
enhance performance while reducing computational and data
requirements. This survey provides a unifying perspective
on model reuse, categorizing methods based on PTM selec-
tion and adaptation, and exploring its applications across both
small specialized PTMs and large foundation models. By out-
lining a comprehensive taxonomy, discussing emerging trends,
and identifying open research questions, this survey aims to
provide valuable insights to drive future research and foster
the adoption of model-centric Al development.
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