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Abstract

3D spatial understanding is essential in real-world
applications such as robotics, autonomous vehicles,
virtual reality, and medical imaging. Recently, Large
Language Models (LLMs), having demonstrated
remarkable success across various domains, have
been leveraged to enhance 3D understanding tasks,
showing potential to surpass traditional computer
vision methods. In this survey, we present a com-
prehensive review of methods integrating LLMs
with 3D spatial understanding. We propose a tax-
onomy that categorizes existing methods into three
branches: image-based methods deriving 3D un-
derstanding from 2D visual data, point cloud-based
methods working directly with 3D representations,
and hybrid modality-based methods combining mul-
tiple data streams. We systematically review rep-
resentative methods along these categories, cover-
ing data representations, architectural modifications,
and training strategies that bridge textual and 3D
modalities. Finally, we discuss current limitations,
including dataset scarcity and computational chal-
lenges, while highlighting promising research direc-
tions in spatial perception, multi-modal fusion, and
real-world applications.

1 Introduction

Large Language Models (LLMs) have evolved from basic
neural networks to advanced transformer models, originally
excelling at language tasks by learning from vast text datasets.
Recent advancements, however, have extended these models
beyond pure linguistic processing to encompass multimodal
ability. Their ability to capture complex patterns and rela-
tionships [Chen et al., 2024a] now holds promise for spatial
reasoning tasks [Ma er al., 2024b]. By applying these en-
hanced models to challenges such as understanding 3D object
relationships and spatial navigation, we open up new opportu-
nities for advancing fields like robotics, computer vision, and
augmented reality [Gao er al., 2024].

At the same time, 3D data and 3D modeling techniques
have seen significant developments [Ma et al., 2024c], find-
ing extensive applications in virtual and augmented reality,
robotics, autonomous vehicles, gaming, medical imaging, and
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Figure 1: Large Language Models can acquire 3D spatial reasoning
capabilities through various input sources including multi-view im-
ages, RGB-D images, point clouds, and hybrid modalities, enabling
the processing and understanding of three-dimensional information.

more. Unlike traditional two-dimensional images, 3D data
provides a richer view of objects and environments, capturing
essential spatial relationships and geometry. Such information
is critical for tasks like scene reconstruction, object manipu-
lation, and autonomous navigation, where merely text-based
descriptions or 2D representations may fall short of conveying
the necessary depth or spatial context.

LLMs help Spatial Understanding. Integrating the powerful
language comprehension of LLMs with the spatial realism of
3D data creates the potential for highly capable, context-aware
systems. From a linguistic perspective, real-world descrip-
tions often reference physical arrangement, orientation, or
manipulations of objects in space. Text alone can be imprecise
or ambiguous about size, shape, or relative positioning un-
less one can integrate a robust spatial or visual understanding.
Consequently, there is growing interest in enhancing LLMs
with a “3D capacity” that enables them to interpret, reason,
and even generate three-dimensional representations based
on natural language prompts. Such an integrated approach
opens up exciting prospects: robots that can follow language
instructions more effectively by grounding their commands in
3D context, architects who quickly prototype 3D layouts from
textual descriptions, game designers who generate immersive
environments for narrative-based experiences, and many other
creative applications yet to be envisioned.

Motivation. Although LLMs have been increasingly applied
in 3D-related tasks, and [Ma et al., 2024b] provided a system-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

atic overview of this field, the rapid advancement of this do-
main has led to numerous new developments in recent months,
necessitating an up-to-date survey that captures these recent
breakthroughs. Integrating 3D capacity into LLMs faces sev-
eral key challenges: (1) the scarcity of high-quality 3D datasets
compared to abundant text corpora; (2) the fundamental mis-
match between sequential text data and continuous 3D spatial
structures, requiring specialized architectural adaptations; and
(3) the intensive computational requirements for processing
3D data at scale. While early attempts at combining language
and 3D have shown promise, current approaches often remain
limited in scope, scalability, and generalization capability.
Most existing solutions are domain-specific and lack the broad
applicability characteristic of text-based LLMs.

Contribution. The contributions of this work are summarized
in the following three aspects: (1) A structured taxonomy.
We provide a timely and comprehensive survey that distin-
guishes itself from [Ma et al., 2024b] by presenting a novel
perspective on LLM applications in 3D-related tasks: our
work constructs a structured taxonomy that categorizes exist-
ing research into three primary groups (Figure 2) and offers a
forward-looking analysis of the latest breakthroughs, thereby
underscoring our unique contributions and the significance
of our approach in advancing the field. (2) A comprehensive
review. Building on the proposed taxonomy, we systemati-
cally review the current research progress on LLMs for spatial
reasoning tasks. (3) Future directions. We highlight the re-
maining limitations of existing works and suggest potential
directions for future research.

2 Preliminary

2.1 Large Language Models

Large Language Models (LLMs) have evolved from early
word embeddings to context-aware models. Generative trans-
formers like GPT series have further advanced text generation
and few-shot learning. However, these models often struggle
with spatial reasoning due to their focus on textual patterns,
prompting efforts to integrate external spatial knowledge [Fu
et al., 2024].

Vision-Language Models (VLMs) extend LLMs by aligning
visual data with text. Some early works leverage co-attentional
architectures and contrastive learning, while later models such
as BLIP [Li er al., 2022] refine these techniques with larger
datasets. Yet, most VLMs process only 2D data, limiting their
ability to capture detailed 3D spatial configurations. Integrat-
ing 3D context via depth maps, point clouds, or voxels remains
challenging, motivating ongoing research toward more robust
spatial intelligence.

2.2 3D Data Structures

3D data has different structures, which are essential for under-
standing the three-dimensional world, and common methods
include point clouds, voxel grids, polygonal meshes, neu-
ral fields, hybrid representations, and 3D Gaussian splatting.
Point clouds represent shapes using discrete points, typically
denoted as

P={p;eR?®|i=1,.,N},

which are storage-efficient but lack surface topology. Voxel
grids partition space into uniform cubes, with each voxel
V' (i, 7, k) storing occupancy or distance values, providing de-
tailed structure at the expense of increased memory usage
at higher resolutions. Polygonal meshes compactly encode
complex geometries through a set of vertices {v; } and faces
{F};}, though their unstructured and non-differentiable nature
poses challenges for integration with neural networks. Neural
fields offer an implicit approach by modeling 3D shapes as
continuous and differentiable functions, such as

fo :R3 = (c,0),

which maps spatial coordinates to color ¢ and density o. Hy-
brid representations combine these neural fields with tradi-
tional volumetric methods (e.g., integrating fp with voxel
grids) to achieve high-quality, real-time rendering. Mean-
while, 3D Gaussian splatting enhances point clouds by asso-
ciating each point p; with a covariance matrix 3; and color
¢;, efficiently encoding radiance information for rendering.
Each method has its unique strengths and trade-offs, making
them suitable for various applications in 3D understanding
and generation.

2.3 Proposed taxonomy

We propose a taxonomy that classifies 3D-LLM research into
three main categories based on input modalities and integration
strategies, as shown in Figure 1: Image-based spatial reason-
ing encompasses approaches that derive 3D understanding
from 2D images. This includes multi-view methods that re-
construct 3D scenes, RGB-D images providing explicit depth
information, monocular 3D perception inferring depth from
single views, and medical imaging applications. While these
approaches benefit from readily available image data and exist-
ing vision models, they may struggle with occlusions and view-
point limitations. Point cloud-based spatial reasoning works
directly with 3D point cloud data through three alignment
strategies: (1) Direct alignment that immediately connects
point features with language embeddings, (2) Step-by-step
alignment that follows sequential stages to bridge modali-
ties, and (3) Task-specific alignment customized for particular
spatial reasoning requirements. These methods maintain ge-
ometric fidelity but face challenges in handling unstructured
3D data. Hybrid modality-based spatial reasoning combines
multiple data streams through either tightly or loosely coupled
architectures. Tightly coupled approaches integrate modali-
ties through shared embeddings or end-to-end training, while
loosely coupled methods maintain modular components with
defined interfaces between them. This enables leveraging
complementary strengths across modalities but increases ar-
chitectural complexity.

This taxonomy provides a structured framework for under-
standing the diverse technical approaches in the field while
highlighting the distinct challenges and trade-offs each branch
must address. Figure 2 presents a detailed breakdown of rep-
resentative works in each category.
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Figure 2: A Taxonomy of Models for Spatial Reasoning with LLMs: Image-based, Point Cloud-based, and Hybrid Modality-based Approaches

and Their Subdivisions.
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Figure 3: An overview of image-based approaches.

3 Recent Advances of Spatial Reasoning in
LLM

3.1 Image-based Spatial Reasoning

Image-based spatial reasoning methods can be categorized
based on their input modalities: multi-view images, monoc-
ular images, RGB-D images, and 3D medical images shown
in Figure 3. Each modality offers unique advantages for en-
hancing 3D understanding in Large Language Models (LLMs).
Multi-view images provide spatial data from different perspec-
tives, monocular images extract 3D insights from a single
view, RGB-D images incorporate depth information, and 3D
medical images address domain-specific challenges in health-
care. These categories highlight the strengths and challenges
of each approach in improving spatial reasoning capabilities.

Multi-view Images as input. Some real-world scenarios
can support the collection of multi-view images, such as multi-
UAV systems [Chen er al., 2024d]. Several studies explore

multi-view images to enhance LLMs’ spatial understanding.
LLaVA-3D [Zhu er al., 2024b] leverages multi-view images
and 3D positional embeddings to create 3D Patches, achieving
state-of-the-art 3D spatial understanding while maintaining 2D
image understanding capabilities. Agent3D-Zero [Zhang et
al., 2024] utilizes multiple images from different viewpoints,
enabling VLMs to perform robust reasoning and understand
spatial relationships, achieving zero-shot scene understanding.
ShapeLLM [Qi et al., 2024a] also uses multi-view image
input, with robustness to occlusions. Scene-LLM [Fu er al.,
2024] uses multi-view images to build 3D feature representa-
tions, incorporating scene-level and egocentric 3D informa-
tion to support interactive planning. SpatialPIN [Ma et al.,
2024a] enhances VLM’s spatial reasoning by decomposing,
understanding and reconstructing explicit 3D representations
from multi-view images and generalizes to various 3D tasks.
LLMI3D [Yang et al., 2024] extracts spatially enhanced local
features from high-resolution images using CNNs and a depth
predictor and uses ViT to obtain tokens from low-resolution
images. It employs a spatially enhanced cross-branch atten-
tion mechanism to effectively mine spatial local features of
objects and uses geometric projection to handle. Extracting
multi-view features results in huge computational overhead
and ignores the essential geometry and depth information. Ad-
ditionally, plain texts often lead to ambiguities especially in
cluttered and complex 3D environments [Chen et al., 2024c].
ConceptGraphs [Gu et al., ] proposes a graph-structured repre-
sentation for 3D scenes that operates with an open vocabulary,
which is developed by utilizing 2D foundation models and
integrating their outputs into a 3D format through multiview
association.

Monocular Image as input. LLMI3D [Yang et al., 2024]
uses a single 2D image for 3D perception, enhancing perfor-
mance through spatial local feature mining, 3D query token
decoding, and geometry-based 3D reasoning. It uses a depth
predictor and CNN to extract spatial local features and uses
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learnable 3D query tokens for geometric coordinate regression.
It combines black-box networks and white-box projection to
address changes in camera focal lengths.

RGB-D Image as Input. Depth is estimated in SpatialPIN
[Ma er al., 2024a] by ZoeDepth when finding field of view
(FOV) through perspective fields and provided for 3D-scene
understanding and reconstruction. M3D-LaMed [Bai et al.,
2024] pre-trains the 3D medical vision encoder with medical
image slices along depth and introduces end-to-end tuning to
integrate 3D information into LLM.

3D Medical Image as input. Unlike previous research fo-
cused on 2D medical images, integrating multi-modal other
information such as textual descriptions, M3D-LaMed [Bai
et al., 2024] is specifically designed for 3D CT images by
analyzing spatial features. It demonstrates excellent perfor-
mance across multiple tasks, including image-text retrieval,
report generation, visual question answering, localization, and
segmentation. In order to generate radiology reports automati-
cally, a brand-new framework [Liu et al., 2024a] is proposed
to employs low-resolution (LR) visual tokens as queries to
extract information from high-resolution (HR) tokens, ensur-
ing that detailed information is retained across HR volumes
while minimizing computational costs by processing only the
HR-informed LR visual queries. 3D-CT-GPT [Chen et al.,
2024b], based medical visual language model, is tailored for
the generation of radiology reports from 3D CT scans, with a
focus on chest CTs. OpenMEDLab [Wang et al., 2024] com-
prises and publishes a variety of medical foundation models
to process multi-modal medical data including Color Fundus
Photography (CFP), Optical Coherence Tomography (OCT),
endoscopy videos, CT&MR volumes and other pathology im-
ages.

Discussion. Image-based spatial reasoning methods offer
significant advantages, such as easy data acquisition and inte-
gration with pre-trained 2D models. Multi-view images pro-
vide rich spatial information, while depth estimation enhances
scene understanding. However, challenges remain, including
limited depth from single views, scale uncertainty, occlusion,
and viewpoint dependency. These methods also face issues
with visual hallucinations, generalization to novel scenes, and
high computational costs. Future research should focus on im-
proving multi-view integration and depth estimation to address
these limitations.

3.2 Recent Advances of Point Cloud-based Spatial
Reasoning

As shown in Figure 4, point cloud-based spatial reasoning has
advanced significantly in recent years, employing three main
alignment methods: Direct, Step-by-step, and Task-specific
Alignment. These methods are essential for integrating point
cloud data with language models to enable effective spatial
reasoning. Direct Alignment establishes immediate connec-
tions between point cloud features and language model em-
beddings, while Step-by-step Alignment follows a sequential
process through multiple stages. Task-specific Alignment is
customized for particular spatial reasoning requirements. The
choice of method depends on specific application needs and
constraints.
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Figure 4: An overview of point cloud-based approaches.

Direct Alignment. Direct alignment methods create direct
connections between point cloud data and language models.
PointCLIP [Zhang ef al., 2022] was a pioneer, projecting
point clouds into multi-view depth maps and using CLIP’s pre-
trained visual encoder for feature extraction, which was then
aligned with textual features through a hand-crafted template.
This approach showed promising results in zero-shot and few-
shot classification tasks by transferring 2D knowledge to the
3D domain. PointCLIP V2 [Zhu et al., 2023] improved the
projection quality with a realistic projection module and used
GPT-3 for generating 3D-specific text descriptions, achieving
better performance in zero-shot classification, part segmenta-
tion, and object detection. Chat-Scene [Huang et al., 2024]
introduced object identifiers to facilitate object referencing
during user-assistant interactions, representing scenes through
object-centric embeddings. PointLLM [Xu et al., 2025] ad-
vanced the field by integrating a point cloud encoder with a
powerful LLM, effectively fusing geometric, appearance, and
linguistic information, and overcoming data scarcity with au-
tomated generation. These methods demonstrate the potential
for effective 3D point cloud understanding through language
models, enabling improved spatial reasoning and human-AlI
interaction.

Step-by-step Alignment. Step-by-step alignment has
gained popularity in integrating point cloud features with
language models. Notable approaches include GPT4Point
[Qi et al., 2024b], which uses a Bert-based Point-QFormer
for point-text feature alignment, followed by object gen-
eration. Grounded 3D-LLMs [Chen et al., 2024e] first
aligns 3D scene embeddings with textual descriptions via
contrastive pre-training, then fine-tunes with referent tokens.
LiDAR-LLMs [Yang er al., 2023] employ a three-stage
process: cross-modal alignment, object-centric learning, and
high-level instruction fine-tuning. MiniGPT-3D [Tang et
al., 2024a] follows a four-stage strategy, from point cloud
projection to advanced model enhancements using Mixture
of Query Experts. GreenPLM [Tang et al., 2024b] uses a
three-stage method that aligns a text encoder with an LLM
using large text data, followed by point-LLM alignment with
3D data. These step-by-step approaches highlight the gradual
improvement of spatial reasoning in 3D contexts, offering
valuable insights for future research.
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Figure 5: An overview of hybrid modality-based approaches.

Task-specific Alignment. Task-specific alignment cus-
tomizes models for specific spatial reasoning tasks to improve
performance and generalization. SceneVerse [Jia er al., 2024]
introduces a large 3D vision-language dataset and Grounded
Pre-training for Scenes (GPS), using multi-level contrastive
alignment for unified scene-text alignment, achieving state-of-
the-art results in tasks like 3D visual grounding and question
answering. LL3DA [Chen et al., 2024c] presents a dialogue
system that integrates textual instructions and visual interac-
tions, excelling in complex 3D environments. Chat-3D [Wang
et al., 2023] proposes a three-stage training scheme to align
3D scene representations with language models, capturing
spatial relations with limited data. VisProg [Yuan et al., 2024]
introduces visual programming for zero-shot open-vocabulary
3D grounding, leveraging LLMs to generate and execute pro-
grammatic representations. These task-specific approaches
highlight the importance of adapting models to complex spatial
relationships, enabling robust performance even with limited
data or zero-shot tasks.

Discussion. The three alignment approaches, Direct, Step-
by-step, and Task-specific, each have distinct strengths and
challenges. Direct alignment offers efficiency and quick re-
sults but struggles with complex spatial relationships. Step-
by-step alignment improves feature integration at the cost
of higher computational resources and training time. Task-
specific alignment excels in specialized tasks but may lack
broader applicability.

3.3 Hybrid Modality-based Spatial Reasoning

Hybrid modality-based spatial reasoning integrates point
clouds, images, and LLMs through Tightly Coupled and
Loosely Coupled approaches, as shown in Figure 5. The
Tightly Coupled approach fosters close integration, enabling
seamless interaction and high performance, while the Loosely
Coupled approach promotes modularity, allowing independent
operation of components for greater scalability and flexibility
at the cost of reduced real-time interaction.

Tightly Coupled. Several recent works have explored
tightly integrated approaches for spatial reasoning across point
clouds, images and language modalities: Point-Bind [Guo
et al., 2023] proposes a joint embedding space to align point
clouds with images and text through contrastive learning. It
leverages ImageBind to construct unified representations that
enable tasks like zero-shot classification, open-world under-
standing and multi-modal generation. The tight coupling al-
lows Point-Bind to reason about point clouds using both visual
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and linguistic cues. JM3D [Ji er al., 2024] introduces a
Structured Multimodal Organizer that tightly fuses multi-view
images and hierarchical text trees with point clouds. This
coupled architecture enables detailed spatial understanding by
leveraging complementary information across modalities. The
Joint Multi-modal Alignment further enhances the synergistic
relationships between visual and linguistic features. Uni3D
[Zhou et al., 2023] employs a unified transformer architecture
that directly aligns point cloud features with image-text rep-
resentations. By tightly coupling the modalities through end-
to-end training, it achieves strong performance on tasks like
zero-shot classification and open-world understanding. The
shared backbone enables efficient scaling to billion-parameter
models. Uni3D-LLM [Liu et al., 2024b] extends this tight
coupling to LLMs through an LLM-to-Generator mapping
block. This enables unified perception, generation and editing
of point clouds guided by natural language. The tight integra-
tion allows leveraging rich semantic knowledge from LLMs
while maintaining high-quality 3D understanding.

Loosely Coupled. Loosely coupled approaches maintain
greater independence between different modalities while still
enabling interaction through well-defined interfaces. Multi-
PLY [Hong et al., 2024] proposes a multisensory embodied
LLM that handles multiple input modalities (visual, audio,
tactile, thermal) through separate encoders. The modalities
are processed independently and communicate through action
tokens and state tokens. This decoupled design allows the
system to process each modality with specialized encoders
optimized for that data type, while enabling scalability and
modularity in the system architecture. Similarly, UniPoint-
LLM [Liu et al., 2024c] introduces a Multimodal Universal
Token Space (MUTYS) that loosely connects point clouds and
images through independent encoders and a shared mapping
layer. This modular design allows easy integration of new
modalities and simplified training by only requiring alignment
between new modalities and text, rather than pairwise align-
ment between all modalities. The main benefits of loosely
coupled architectures include greater modularity and flexi-
bility in system design, easier integration of new modalities,
and independent scaling of different components. However,
this approach may result in less optimal joint representation
learning, reduced real-time interaction capabilities, and poten-
tial information loss between modalities compared to tightly
coupled approaches.

Discussion. The choice between tightly and loosely cou-
pled approaches presents important tradeoffs in multimodal
spatial reasoning systems. Tightly coupled approaches like
Point-Bind and JM3D offer stronger joint representation learn-
ing and real-time interaction capabilities through end-to-end
training and shared feature spaces. This makes them par-
ticularly suitable for applications requiring detailed spatial
understanding and precise control. However, they can be more
complex to train and scale, and adding new modalities may
require significant architectural changes. In contrast, loosely
coupled approaches like MultiPLY and UniPoint-LLM pro-
vide greater modularity and flexibility, making them easier to
extend and maintain. They allow independent optimization
of different components and simplified training procedures,
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Model Data Source Alignment Type Pre-training Fine-tuning Task Code
LLaVA-3D [Zhu et al., 2024b] Multi-view Images - v v 3D VQA, 3D Scene Understanding code
Agent3D-Zero [Zhang et al., 2024] Multi-view Images - v X 3D VQA, 3D Semantic Segmentation X
ShapeLLM [Qi et al., 2024a] Multi-view Images - v v 3D Object Classification, 3D Scene Captioning code
3 Scene-LLM [Fu et al., 2024] Multi-view Images - v v 3D VQA, Dense Captioning X
% SpatialPIN [Ma er al., 2024al RGB-D Images - v X 3D Motion Planning, Task Video Generation X
< LLMI3D [Yang et al., 2024] Monocular Images - v v 3D Grounding, 3D VQA X
@, Spatialvim [Chen et al., 2024a] Monocular Images - v v Dense Reward Annotator, Spatial Data Generation  code
g M3D-LaMed [Bai et al., 2024] Medical Images B v v 3D VQA, 3D VLP code
= HILT [Liu et al., 2024a] Medical Images - v v 3DHRG X
3D-CT-GPT [Chen et al., 2024b] Medical Images - v v Radiology Report Generation, 3D VQA X
OpenMEDLab [Wang ez al., 2024] Medical Images - v v Medical Imaging code
PointLLM [Xu et al., 2025] Point Cloud Direct Alignment v v 3D Object Classification, 3D Object Captioning code
Chat-Scene [Huang et al., 2024] Point Cloud Direct Alignment v v 3D Visual Grounding, 3D Scene Captioning code
PointCLIP [Zhang et al., 2022] Point Cloud Direct Alignment v v 3D Point Cloud Classification code
PointCLIPV2 [Zhu et al., 2023] Point Cloud Direct Alignment v v 3D Point Cloud Classification code
GPT4Point [Qi ef al., 2024b] Point Cloud Step-by-step Alignment v v 3D Object Understanding code
g MiniGPT-3D [Tang et al., 2024a] Point Cloud Step-by-step Alignment v v 3D Object Classification, 3D Object Captioning code
2 GreenPLM [Tang et al., 2024b] Point Cloud Step-by-step Alignment v v 3D Object Classification code
“ Grounded 3D-LLM [Chen er al., 2024e]  Point Cloud Step-by-step Alignment v v 3D Object Detection, 3D VQA code
2 Lidar-LLM [Yang er al., 2023] Point Cloud Step-by-step Alignment v v 3D Captioning, 3D Grounding code
8 3D-LLaVA [Deng et al., 2025] Point Cloud Task-specific Alignment v v 3D VQA, 3D Captioning code
= ScanReason [Zhu et al., 2024a] Point Cloud Task-specific Alignment v v 3D Reasoning Grounding code
‘5 SegPoint [He ez al., 2024] Point Cloud Task-specific Alignment v v 3D Instruction Segmentation X
& Kestrel [Fei et al., 2024] Point Cloud Task-specific Alignment v v Part-Aware Point Grounding X
SIG3D [Man et al., 2024] Point Cloud Task-specific Alignment v v Situation Estimation code
Chat-3D [Wang et al., 2023] Point Cloud Task-specific Alignment v v 3D VQA code
LL3DA [Chen et al., 2024c] Point Cloud Task-specific Alignment v v 3D Dense Captioning code
g Point-bind [Guo et al., 2023] Point cloud, Image Tightly Coupled v v 3D Cross-modal Retrieval, Any-to-3D Generation  code
é IM3D [Ji et al., 2024] Point cloud, Image Tightly Coupled v v Image-3D Retrieval, 3D Part Segmentation code
. Uni3D [Zhou et al., 2023] Point cloud, Image Tightly Coupled v v Zero-shot Shape Classification code
2 Uni3D-LLM [Liu et al., 2024b] Point cloud, Image Tightly Coupled v v 3D VQA X
-, MultiPLY [Hong er al., 2024] Point cloud, Image Loosely Coupled v v Object retrieval code
T UniPoint-LLM [Liu et al., 2024c] Point cloud, Image Loosely Coupled v v 3D generation, 3D VQA X

Table 1: Taxonomy of Large Language Models with spatial reasoning capability. This table presents a comprehensive comparison of various
3D vision-language models categorized by their input modalities (image-based, point cloud-based, and hybrid-based), showing their data
sources, alignment types, training strategies (pre-training and fine-tuning), primary tasks, and code availability. The models are organized into
three main categories based on their input type: image-based models, point cloud-based models, and hybrid models that utilize both modalities.

but may sacrifice some performance in tasks requiring fine-
grained cross-modal understanding. The optimal choice ulti-
mately depends on specific application requirements. Tightly
coupled architectures may be preferred for specialized high-
performance systems, while loosely coupled designs better
suit general-purpose platforms prioritizing extensibility and
maintainability. Future work may explore hybrid approaches
that combine the benefits of both paradigms, potentially us-
ing adaptive coupling mechanisms that adjust based on task
demands.

4 Applications

A key research focus leverages LLMs to enhance robotic em-
bodied intelligence, enabling machines to interpret natural lan-
guage commands for real-world tasks. This includes robotic
control, navigation, and manipulation, where LLMs parse
instructions, generate action plans, and adapt to dynamic en-
vironments, for instance, guiding robots to locate objects in
cluttered spaces using text-based prompts [Zhao et al., 2025].

3D Scene Understanding. Advanced 3D scene analysis inte-
grates multimodal data (e.g., images, point clouds, text) for
tasks like open-vocabulary segmentation, semantic mapping,
and spatial reasoning . Central to this is 3D visual question
answering (3D-VQA) [Zhan et al., 2025], requiring models to
interpret queries about object attributes, spatial relationships,
or contextual roles within scenes. Context-aware systems fur-
ther account for user perspectives to deliver precise responses.

Cross-Domain Applications. In healthcare, LLMs analyze
volumetric medical scans (e.g., CT) for lesion detection and

automated diagnostics. Autonomous driving systems utilize
3D-capable LLMs to interpret traffic scenes, aiding object
detection and tracking and path planning [Zha et al., 2025; Zha
et al., 2024]. Design-oriented applications include generating
indoor layouts from textual requirements, while educational
tools employ interactive 3D environments to teach spatial
concepts.

S Challenges and Future Directions

Table 1 summarizes the models that leverage LLMs to as-
sist graph-related tasks according to the proposed taxonomy.
Based on the above review and analysis, we believe that there
is still much space for further enhancement in this field. Re-
cent advances in integrating LLMs with three-dimensional
(3D) data have demonstrated considerable promise. However,
numerous challenges must still be overcome to realize robust
and practical 3D-aware LLMs. Below, we summarize these
obstacles and then outline potential pathways to address them,
highlighting key research directions for the future.

5.1 Challenges

Weak Spatial Reasoning and Representation. Multimodal
LLMs (MLLMs) exhibit limited acuity in 3D spatial un-
derstanding, struggling with fine-grained relationships (e.g.,
front/back distinctions, occluded object localization) and pre-
cise geometric outputs (distances, angles). These issues stem
partly from mismatches between unstructured point clouds and
sequence-based LLM architectures, where high-dimensional
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3D data incur prohibitive token counts or oversimplified en-
codings.

Data and Evaluation Gaps. Progress in 3D-aware LLMs is
hindered by the scarcity of high-quality 3D-text paired datasets.
Unlike the abundant resources for 2D images and video, the 3D
domain lacks standardized, richly annotated datasets crucial
for training robust models. Existing benchmarks focus mainly
on discriminative tasks like classification and retrieval, empha-
sizing category differentiation rather than generating rich and
descriptive 3D scene outputs. Consequently, evaluations often
rely on subjective metrics (e.g., human or GPT-based judg-
ments) that can lack consistency. Advancing the field requires
developing objective, comprehensive benchmarks that assess
both open-vocabulary generation and the spatial plausibility
of descriptions relative to the underlying 3D structure.

Multimodal Integration and Generalization. Fusing 3D
data (e.g., point clouds) with other modalities like 2D imagery,
audio, or text poses significant challenges due to their distinct
structural characteristics. The conversion and alignment of
high-dimensional 3D data with lower-dimensional representa-
tions can lead to a loss of intricate details, diluting the original
3D richness. Moreover, current models often struggle with
open-vocabulary recognition, limiting their ability to identify
or describe objects outside of their training data, especially
when encountering unseen scenes or novel objects. This dif-
ficulty is further compounded by the variability of natural
language, from colloquial expressions to domain-specific ter-
minology, and by noisy inputs. Thus, more sophisticated multi-
modal integration techniques and generalization strategies are
needed to preserve geometric fidelity while accommodating
diverse, unpredictable inputs.

Complex Task Definition. While 3D-aware LLMs excel
in controlled settings, they lack frameworks for nuanced
language-context inference in dynamic environments. Task
decomposition and scalable encoding methods are needed to
balance geometric fidelity with computational tractability, par-
ticularly for interactive applications requiring real-time spatial
reasoning.

5.2 Future Directions

Enhancing 3D Perception and Representations. Address-
ing spatial reasoning gaps requires richer 3D-text datasets
(e.g., from robotics, gaming, autonomous driving) and model
architectures that encode geometric relationships. Multi-view
data and robust depth cues can improve orientation, distance,
and occlusion estimation. Compact 3D tokens and refined
encoding/decoding methods may bridge unstructured point
clouds with sequence-based models, enabling fine-grained
spatial understanding and generation.

Multi-Modal Fusion and Instruction Understanding.
Tighter integration of modalities (point clouds, images, text,
audio) via unified latent spaces or attention mechanisms
could preserve subtle geometric and semantic details. En-
hanced instruction processing, including hierarchical task de-
composition, contextual interpretation, and robustness to di-
alects/terminology, would improve compositional reasoning
in 3D environments and broaden real-world applicability. Fur-

thermore, by leveraging these integrated representations, mod-
els can more adeptly adapt to complex instructions and novel
scenarios, ultimately paving the way for more robust and ver-
satile 3D reasoning systems.

Cross-Scene Generalization and Robust Evaluation.
Open-vocabulary 3D understanding demands large-scale pre-
training on diverse scenes and transfer/lifelong learning
paradigms for adapting to novel objects or environments. This
understanding extends beyond predefined categories to gener-
alize to unseen objects and scenes. For instance, models need
to comprehend “an old rocking chair” even if this specific type
of chair never appeared in the training data.

Expanding Applications for Autonomous Systems. 3D-
aware LLMs hold potential in robotics (navigation, manip-
ulation), medical imaging (lesion detection), architectural de-
sign, and interactive education. Future systems may integrate
environmental constraints, user perspectives, and object af-
fordances for autonomous planning and decision-making in
dynamic 3D contexts.

Collectively, these challenges and potential directions un-
derscore the field’s rapid evolution and its equally significant
open questions. Moving forward, more robust 3D-specific data
resources, better model architectures, and more refined eval-
uation protocols will be essential to unlock the full potential
of LLMs in three-dimensional settings, and ultimately bring
intelligent and multimodal understanding closer to real-world
deployment.

6 Conclusion

The integration of LLMs with 3D data is a dynamic research
area. This survey categorized 3D-LLM research into image-
based, point cloud-based, and hybrid modality-based spatial
reasoning. It reviewed state-of-the-art methods, their applica-
tions in multiple fields, and associated challenges. Notably,
image-based methods have data-related advantages but face
issues like depth information shortage. Point cloud-based
methods offer precise 3D details but encounter data-handling
difficulties. Hybrid methods combine strengths yet struggle
with data alignment. Applications are diverse, but challenges
such as weak spatial perception, data scarcity, and evaluation
problems exist. Future research should focus on enhancing 3D
perception, improving multi-modal fusion, expanding general-
ization, developing evaluation metrics, enhancing instruction
understanding, optimizing 3D representations, and exploring
continuous learning. By addressing these, we can unlock the
full potential of 3D-aware LLMs for real-world deployment
and industry advancement.
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