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Abstract

As an essential movie promotional tool, trailers are
designed to capture the audience’s interest through
the skillful editing of key movie shots. Although
some attempts have been made for automatic trailer
generation, existing methods often rely on pre-
defined rules or manual fine-grained annotations
and fail to fully leverage the multi-modal informa-
tion of movies, resulting in unsatisfactory trailer
generation results. In this study, we introduce a
weakly-supervised trailer generation method driven
by multi-modal semantic consistency. Specifically,
we design a multi-modal trailer generation frame-
work that selects and sorts key movie shots based
on input music and movie metadata (e.g., category
tags and plot keywords) and adds narration to the
generated trailer based on movie subtitles. We uti-
lize two pseudo-scores derived from the proposed
framework as labels and thus train the model un-
der a weakly-supervised learning paradigm, ensur-
ing trailerness consistency for key shot selection
and emotion consistency for key shot sorting, re-
spectively. As a result, we can learn the proposed
model solely based on movie-trailer pairs without
any fine-grained annotations. Both objective exper-
imental results and subjective user studies demon-
strate the superior performance of our method over
previous works. The code is available at https:
//github.com/Dixin-Lab/MMSC.

1 Introduction

Trailers serve as a powerful tool to showcase a movie’s high-
lights and stimulate audience interest. Unlike video sum-
marization [Narasimhan et al., 2021; Wang er al., 2023;
Narasimhan et al., 2022], which selects video clips in their
original chronological sequence in the video to provide an
overview, trailer generation requires not only the selection of
key movie shots but also their rearrangement to maintain sus-
pense and avoid revealing the storyline [Thompson, 1999;
Hauge, 2017]. At the same time, a well-produced trailer
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should ensure multi-modal semantic consistency for its vi-
sual, textual, and acoustic information. For example, when
a movie shot depicts a heavy storm, the music often features
dense drum beats, and the narration may vividly describe the
disaster, together creating a tense atmosphere. Therefore,
generating a high-quality trailer requires the expertise of the
editors and is time-consuming and expensive.

Currently, various efforts have been made to generate
movie trailers automatically. Existing trailer generation
methods either summarize empirical movie shot editing pat-
terns and rules from official trailers or require manually de-
fined fine-grained labels to learn a trailer generation model in
a supervised way. However, due to the diversity and complex-
ity of trailers and the scarcity of large-scale labeled movie-
trailer datasets, these methods are highly prone to overfitting
and often suffer from poor generalization performance. In ad-
dition, most existing methods rely solely on single-modality
data, such as muted movies and trailers (visual modality) or
movie metadata (textual modality), thereby failing to satisfy
the requirements of real-world commercial applications. Al-
though some methods try to integrate multi-modal data, they
fail to sufficiently explore the semantic consistency across
multiple modalities within high-quality movie trailers. As a
result, the trailers generated by the existing methods remain
far from satisfactory.

To address the aforementioned problems, we propose
MMSC, a novel automated trailer generation framework
driven by Multi-Modal Semantic Consistency. As illustrated
in Figure 1, given a movie with metadata and a piece of mu-
sic, we formulate the trailer generation task as selecting and
sorting key movie shots according to the music and the meta-
data (e.g., category tags and plot keywords of movies). A
multi-modal model is designed to achieve this task and is
trained in a weakly-supervised way on a collection of movie-
trailer pairs. In particular, during training, the model first
derives the trailerness pseudo-scores and emotion pseudo-
scores for movie shots, based on the input movie and music.
The trailerness pseudo-score measures the likelihood of each
shot being selected for the trailer, while the emotion pseudo-
score reflects the emotional intensity of each movie shot. Ac-
cordingly, we train the model under the supervision of the
two pseudo-scores, encouraging the model to select and sort
the movie shots that are semantically consistent with those
in official trailers. In addition, given the generated trailer se-
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Figure 1: An illustration of our MMSC method. (a) Model architecture and loss components used during the training phase. (b) Calculation
methods for trailerness and emotion pseudo-scores. (c) Trailer generation pipeline during the inference phase.

quence (i.e., the sorted key shots), we leverage a large lan-
guage model [DeepSeek-Al er al., 2024] to analyze movie
subtitles and extract key sentences as the trailer narration,
thereby improving the quality of the trailer.

In summary, our MMSC-based method utilizes multi-
modal information to train a trailer generation model, ensur-
ing semantic consistency across visual, textual, and acoustic
modalities when generating trailers. Guided by the trailer-
ness and emotion pseudo-scores, the proposed model gener-
ates semantically-meaningful trailers that effectively capture
the styles and themes of the movies while aligning the emo-
tion intensities with the given music. Moreover, our method
is weakly supervised, learning from movie-trailer pairs with-
out additional fine-grained annotations.

2 Related Work

Recently, many learning-based trailer generation methods
have been proposed to achieve better performance. For ex-
ample, some methods leverage movie subtitles [Hesham et
al., 2018] and movie plot summaries [Gaikwad e al., 2021]
as labels, selecting key movie shots that best match the la-
bels. The work in [Papalampidi er al., 2023] assigns each
movie shot with a turning point label and sequentially selects
the movie shots based on their labels when generating trailers.
Besides using textual labels, some methods use frames [Liu
and Jiang, 2015] or shots [Wang et al., 2020] of official trail-
ers as positive samples, training classifiers to identify useful

frames or shots from input movies and stitching them as trail-
ers. The work in [Argaw er al., 2024] transforms the feature
sequences of movies into those of trailers. More recently,
some methods attempt to leverage multi-modal information
for trailer generation. For example, the inverse partial opti-
mal transport (IPOT) method in [Wang er al., 2024] selects
and sorts key movie shots via aligning the visual features of
the movie shots with the acoustic features of music. The work
in [Liu et al., 2023] trains a trailer generation model using
manually labeled emotional categories for each movie shot
and selects key shots by maximizing the emotional alignment
among visual, textual, and audio features.

However, the above learning-based methods require anno-
tations for movies at the shot and even frame levels, which
is expensive and time-consuming. The scarcity of such fine-
grained labeled data makes these methods suffer a high risk
of over-fitting. Although some attempts have been made to
generate trailers using unsupervised learning methods, e.g.,
the anomaly detection-based movie-to-trailer (M2T) method
in [Rehusevych, 20191, these methods often lead to sub-
optimal performance due to the lack of annotations. In addi-
tion, most existing methods mainly rely on information from
one or two modalities for trailer generation, and they sel-
dom consider the multi-modal semantic consistency within
high-quality trailers. Our work overcomes the limitations of
the existing methods, achieving a weakly-supervised learning
framework for trailer generation under the guidance of multi-
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modal semantic consistency.

3 Proposed Method

Given a movie M, a piece of music A, and the movie’s meta-
data WV, we aim to learn a multi-modal model to generate
a trailer 7 based on the movie, the music, and the meta-
data jointly. Here, the trailer 7 = {V, A} consists of the
video V extracted from the movie and the input music. We
use the camera shot boundary detector TransNet-v2 [Soucek
and Lokoc, 2024] to segment each movie and its correspond-
ing trailer into shot sequences, ie., M = {mi}{zl and
V = {v; }3’:1, where m; and v; denote the visual shots of
the movie and the trailer, respectively. For the music, we first
apply the Ultimate Vocal Remover (UVR) tool' to remove its
vocals and then segment it into music shots that are aligned
with the trailer shots, denoted as A = {a;}7_,.* The movie
metadata consists of K tokens that indicate the movie’s cate-
gory labels and plot keywords, denoted as W = {wy } K_,.

As illustrated in Figure 1, we design a multi-modal model,
which takes { M, A, W} as input and generates V' via select-
ing and sorting key movie shots based on the multi-modal
semantic features of the input. The model is learned in a
weakly-supervised learning framework, which does not re-
quire any fine-grained annotations of movies.

3.1 Model Architecture

As shown in Figure 1(a), our proposed model consists of three
parts, i.e., a multi-modal encoder for data representation and
two predictors for shot selection and sorting.

Multi-modal Encoding

We first apply the pre-trained ImageBind [Girdhar et al.,
2023] to derive the initial visual and textual features, respec-
tively, i.e., M = f,(M) = [m;] € RI*P.V = f,(V) =
[vj] € R”>P and W = fi(W) = [wy] € REXP. Note
that, the movie metadata used in this study includes movie la-
bels and movie plot keywords, which reflect the core themes
and style of the movie and are important considerations in
trailer design. Therefore, the text-vision encoder merges the
information of the metadata into the visual representation of
each movie shot, enhancing the semantics of the visual rep-
resentation accordingly. In particular, given M and W, we
deploy a cross-attention module between the source and the
query modalities at the very first layers of the encoder, i.e.,

(MW" )(WW;)
VD

where {W/", W € RP*P}2 [ 5(.) denotes the softmax

operation, and M* € R?*P is the metadata-dependent visual

representations of movie shots.

Furthermore, taking the metadata-dependent visual repre-
sentations as input, we apply one more self-attention layer to
capture the temporal correlations among the movie shots, i.e.,
(MW (MWm) T
vD

"https://github.com/Anjok07/ultimatevocalremovergui.
’Here, we can use existing music segmentation tools such as
Ruptures [Truong er al., 2020] to obtain the music shots.

Mt:M+a( )ngﬂ, (1)

M*® = MLPy, (a< )MtWJ”), @)

where {W;™ € RP*P1 , MLP)s : RP — R? is a multi-
layer perceptron (MLP), and M* = [m$] € R/*? is the
contextualized visual features.

The music shots can be processed similarly. In partic-
ular, we apply the pre-trained CLAP [Wu et al., 2023] to
derive the initial acoustic features for the music shots, i.e.,
A = f,(A) = [a;] € R7*P’ and obtain its contextualized
acoustic features by a self-attention module, i.e.,

(AW (AWS) T
/D/
where {W¢ € RP'*P'13_ MLP, : RP" s R and A° =

[aj—] € R7*4 denotes the contextualized acoustic features of
music shots.

A" =MLP, (o Jaws), @)

Predictors for Shot Selection and Sorting

As aforementioned, our model selects and sorts movie shots
conditioned on the given music. Therefore, we need to con-
sider the inter-modal interaction between different modali-
ties. In particular, we apply a cross-attention module to fuse
the contextualized visual and acoustic features and get the fi-
nal movie shot representation as

(MW (A W) T
Vd

where W {W2}2_, € R4 and M€ is the final movie
shot representations, which are aligned cross-modal features
for key shot selection and emotional prediction.

Given the final movie shot representations M ¢, we use two
MLPs to predict the normalized trailerness score and emotion
score for each movie shot, respectively, i.e.,

MC:M5+0( )Aswg, @)

t = [£;] = Sigmoid(MLP,(M°¢)) € [0,1],

&)
é = [¢;] = Sigmoid(MLP,(M®)) € [0,1].

Each #; indicates the predicted probability that i-th movie
shot is in the trailer and é; indicates the predicted emotional
intensity of ¢-th movie shot. The two predicted scores will be
used for selection and sorting during the inference stage.

3.2 Weakly-supervised Learning Framework

We design two informative signals to supervise the training
of the model, ensuring the trailerness and emotion scores de-
rived in Eq. (5) to guide the selection and sorting of movie
shots effectively. As illustrated in Figure 1(b), given a movie
M = {m;}!_, and its corresponding trailer 7 = {V, A},
where V = {v;}7_, and A = {a;}/_,, we calculate two
pseudo-scores based on the initial features and treat them as
the training labels of our model. Because the labels are de-
rived from the input data themselves, we essentially train our
model in a weakly-supervised learning framework.

Trailerness Pseudo-Score

For each movie, we assign a trailerness pseudo-score ¢; to the
i-th movie shot based on the similarity between the movie
shot and the shots in the corresponding trailer. Specifically,
we first utilize the cosine similarity to compare each movie
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shot feature m; with all trailer shots V' = [v;] belong to the
same movie, i.e.,
m; - Uy

 Vi=1,...,1,j=1,.,J (6)

P
o mallflo
Then, we take the maximum value in the set {s; ; } 3-]:1 as the

trailerness pseudo-score of the movie shot m, i.e.,

t; = maxjeq1,...J} Si g Vi=1,2,.,1. 7
A high trailerness pseudo-score t; indicates that the movie
shot m; is highly similar to a trailer shot and should be se-

lected, whereas a low pseudo-score suggests that it is dissim-
ilar to any trailer shot and should not be included in the trailer.

Emotion Pseudo-Score

The video and the music of the official trailer are carefully
designed to express emotions consistently [Xu ez al., 2015].
For example, music with a fast tempo is often paired with
thrilling chase and fighting scenes, while slow and smooth
music tends to complement scenes with a warm and soothing
atmosphere. Therefore, besides the trailernesss pseudo-score,
we further propose the emotion pseudo-score for each movie
shot, quantifying its emotional intensity.

In particular, given a music shot, we calculate the average
energy coefficient of its Mel Frequency Cepstral Coefficients
(MFCCs), i.e., for each music shot a;, we have

¢; = Average(Norm(MFCC(a,))), Vi =1,2,...,J, (8)
where MFCC(-) denotes extracting N; energy coefficients,
Norm(-) denotes min-max normalization, and Average(-) de-
notes the average operation. Note that, MFCC is commonly
used to extract features from music, where the energy co-
efficient reflects core attributes of the music signal, such as
timbre, intensity, frequency distribution, and dynamic varia-
tions. Music with high energy typically sounds loud and has a
large dynamic range, a broad frequency spectrum, and strong
rhythm and beats. Such music often conveys intense emo-
tions and high vitality. Accordingly, a high emotion pseudo-
score indicates an intense emotional expression in the music
shot, while a low score suggests relatively mild emotions.

We transfer the emotion pseudo-scores from the music
shots to the movie shots: given a movie shot, we first find the
most similar trailer shot and then assign the emotion pseudo-
score of the corresponding music shot to the movie shot, i.e.,
fori =1,2,...,1,

e; = cj, where j = arg max;c(1, .. 7} Si,j- 9)
Learning with Multi-modal Semantic Consistency
Given the above pseudo-scores and the predictions in Eq. (5),
we learn the proposed model to fit the pseudo-scores, i.e.,

I I
Liotal = =t e —el]?. (10)
i=1 =1

Ly Le

Here, the first loss pursues the trailerness consistency be-
tween a movie and its trailer based on their visual modality.
The second loss pursues the emotion consistency between a
movie and its trailer’s music, which leverages the visual and
acoustic modalities jointly. By minimizing the two losses
jointly, we learn the proposed model, ensuring its prediction
results to be consistent with the semantics within the corre-
sponding trailers.

3.3 Trailer Generation

As illustrated in Figure 1(c), given a well-trained model, we
can generate a trailer based on a movie, a piece of music, and
the metadata of the movie through the following steps.

Selecting Key Movie Shots
First, given the movie shots M = [m;]_,, the music shots
A = [a;]]_;, and the metadata W = [wy]|E_,, the model

j=1
predicts the trailerness scores {f;}/_, and the emotion scores
{é;}1_, for the movie shots. Accordingly, we select the
movie shots corresponding to the J highest trailerness scores
to construct the target trailer. The set of the movie shots, de-
noted as Mg = {m; };cs, where S = arg Top—JiE{l,_“J}fi,
covers the key shots that are likely to appear in the trailer.

Sorting Selected Movie Shots

As mentioned earlier, to maintain emotion consistency, the
order of selected shots is crucial for constructing a high-
quality trailer and should be aligned with the music shots.
To achieve this aim, we sort the selected movie shots based
on their emotion scores. In particular, given the music shots,
we calculate their energy coefficients {c; }3]:1 via Eq. (8),
leading to a sequence reflecting the temporal dynamics of the
emotions behind the music. We sort the selected shots based
on their emotion scores {é;};cs, ensuring that the order of
the sorted emotion scores matches with that of {c;}:_,.

Post-processing

Besides selecting and sorting movie shots, we further design
three post-processing steps to make the generated trailer more
realistic. Firstly, given the sorted key movie shots, we follow
the previous work [Wang et al., 2024] and align the dura-
tion of each shot with its corresponding music shot, as shown
in Figure 2(a). For movie shots that exceed the duration of
the corresponding music shots, we trim the excess parts of
the movie shots. For movie shots that are shorter than the
corresponding music shots, we use the adjacent shot from the
original movie with higher trailerness score to fill the duration
gap. Secondly, we use DeepSeek-V3 [DeepSeek-Al et al.,
2024], a pre-trained large language model (LLM), to analyze
and select the movie’s subtitles. As shown in Figure 2(b), the
LLM takes the movie’s subtitles with timestamps and some
instructional prompts as input and selects some subtitles as
the narrations of the generated trailer. Based on the times-
tamps of the subtitles, we can automatically extract the cor-
responding audio from the movie. Finally, we determine the
positions of the selected narrations automatically. As shown
in Figure 2(c), we utilize MiniCPM-V 2.6 [Yao er al., 2024],
a multi-modal LLM for video captioning, to generate a one-
sentence description for each shot of the generated trailer. We
extract the textual features of the shot descriptions and the
selected narrations and calculate their pairwise similarities.
Accordingly, we associate each narration with a shot by max-
imizing the sum of the similarities between all narrations and
the shot descriptions under the constraint that the narrations
do not overlap. This problem can be solved efficiently using
dynamic programming (DP) [Bellman, 1966]. After adjust-
ing the durations of the shots and merging the audio of the
narrations into the music, we derive the final generated trailer.
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Figure 2: Illustration of post-processing steps, including adjusting the duration of selected movie shots (a), selecting narrations and processing

narration audios (b), and inserting narrations into the trailer (c).

Category Method — Test-8 — Test-74

PrecisionT Recallt F11T LDJ] AAT|PrecisiontT Recallt F11T LDJ] AA?T
VASNet [Fajtl et al., 2018] 0.0712  0.0645 0.0676 100.62 0.43 | 0.0496  0.0422 0.0455 84.79 0.44

Video Muvee [Ganhor, 2014] 0.2400 0.0461 0.0714 103.50 0.36 - - - - -
Summary | CLIP-It [Narasimhan er al., 2021]| 0.0711  0.0629 0.0667 101.12 0.45| 0.0832 0.0710 0.0764 85.82 0.38
OTVS [Wang et al., 2023] 0.0688  0.0613 0.0648 101.25 0.46 | 0.0834 0.0711 0.0766 84.82 0.39

M2T [Rehusevych, 2019] 0.0611  0.0503 0.0515 95.67 0.42 - - - - -

V2T [Irie et al., 2010] 0.1121  0.0603 0.0945 103.75 0.52 - - - - -

Trailer PPBVAM [Xu et al., 2015] 0.0813  0.1244 0.0945 101.50 0.53 - - - - -
Generation TGT [Argaw et al., 2024] 0.0703  0.0928 0.0788 124.75 0.47 | 0.0584 0.1001 0.0708 118.43 0.43
IPOT (90%) [Wang et al., 2024] 0.1187  0.1388 0.1277 102.75 0.44 | 0.1011 0.1184 0.1087 84.01 0.42
IPOT [Wang et al., 2024] 0.1218  0.1425 0.1311 101.50 0.42| 0.1258 0.1483 0.1357 83.21 0.46
MMSC (Ours) 0.1301  0.1496 0.1391 99.25 0.58 | 0.1851 0.2163 0.1991 82.47 0.50

Table 1: Experimental results compared with baselines on the two test sets. We bold the best results and underline the second-best results.

4 Experiments

4.1 Implementation Details

Dataset

We construct a dataset of 500 movies and 922 trailers span-
ning 18 genres and 30 years based on IMDb [IMDb, 2025]
tags and years. The movie labels and movie plot keywords
of each movie are collected from IMDb. Following the work
in [Wang er al., 2024], we resize movies in the dataset to
320p for learning convenience and efficiency and remove hu-
man vocals from the audio of trailers using UVR. The entire
dataset is divided into training, validation, and test sets in a
ratio of 85:5:10. The test set contains 74 movie-trailer pairs,
denoted as Test-74. In addition, previous trailer generation
methods [Ganhor, 2014; Rehusevych, 2019; Irie et al., 2010;
Xu et al., 2015; Wang et al., 2024] are tested on an inde-
pendent test set with eight movies. Therefore, besides our
dataset, we also use the eight movies as our test data, denoted
as Test-8. The movies in Test-8 do not appear in the training
and validation sets of our dataset.

Baselines

We compare our MMSC-based method with state-of-the-
art trailer generation methods, including V2T [Irie et al.,
2010], M2T [Rehusevych, 2019], PPBVAM [Xu ef al., 2015],
TGT [Argaw et al., 2024], and IPOT [Wang et al., 2024].
When evaluating the capability of shot selection, we also

choose state-of-the-art video summarization methods as base-
lines, including a commercial video summarization software
Muvee [Ganhor, 2014], VASNet [Fajtl et al., 2018], CLIP-
It [Narasimhan et al., 2021], and OTVS [Wang et al., 2023].

Evaluation Metrics

Following the work in [Wang et al., 2024], we employ Preci-
sion, Recall, and F1-score (F1) to evaluate the performance of
shot selection given the shots in the ground truth trailers (i.e.,
official trailers). Following the work in [Argaw er al., 2024;
Liu et al., 2024], we employ Levenshtein distance (LD) and
Pairwise agreement accuracy (AA) to evaluate the consis-
tency between the order of the correctly selected movie shots
with the order of ground truth trailer shots.

Model Architecture and Hyperparameter Settings

Each attention layer in our multi-modal model consists of
two Transformer encoders with four attention heads. Each
MLP in our model consists of two linear layers connected by
a GELU function. The Adam [Kingma and Ba, 2015] op-
timizer is used during training, with an initial learning rate
of le-5 and a cosine warm-up scheduler with 5,=0.9 and
£2=0.999. Our model is trained for 1,500 epochs with a batch
size of 10, on a single NVIDIA RTX 3090.
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Figure 3: Comparison between the trailer generated by our method against the official trailer. The gray shots in our generated trailer are
incorrectly selected, while the rest are correct. The green checkmarks indicate that the movie shots connected by the double-headed arrows
are in the correct order, while the red cross indicates an incorrect order. We also provide plot keywords and labels of the example movie,
where plot keywords that are consistent with the shot contents are marked in blue, and shots that can reflect the movie labels are marked in
purple. The last row shows the visualization of music energy coefficients, where a higher score is indicated by a darker red.

4.2 Objective Evaluation

In Table 1, we compare the performance of our method and
baselines on movie shot selection and sorting. TPOT [Wang
et al., 2024] introduces a constraint in shot selection to avoid
spoilers, that is, limiting the selection in the first 90% of the
movie shots, i.e., IPOT (90%). However, to better evaluate
the model’s selection capability, we perform selection and
ranking across all movie shots as other baselines. To ensure
a fair comparison, we also provide the results of IPOT’s se-
lection across all movie shots in Table 1. TGT [Argaw et al.,
2024] uses the encoder-decoder architecture to generate the
trailer sequence. Since there is no official trailer as input to
limit the length of the trailer sequence generated by the TGT
decoder during the inference phase, we set the length of the
decoded sequence to no more than 150. From the results,
we can see that our method achieves the best performance
on most selection and sorting metrics. Especially on Test-74,
our proposed method outperforms the state-of-the-art method
IPOT by a large margin, i.e., 5.93%, 6.80%, and 6.34% on
the Precision, Recall, and F1-score, respectively. Besides, the
performance on two sorting metrics also improves by 5% and
4% in AA metric over the state-of-the-art method on the two
test sets, respectively.

Since closely adjacent shots in a movie often share similar
content, following prior work [Argaw et al., 2024], we also
relax the evaluation criteria by expanding the ground truth to
include the R shots before and after each official trailer shot
in the original movie. This prevents overly strict evaluation
from overlooking reasonable shots and underestimating our
model’s performance. In Table 2, this expansion leads to im-
proved model performance across all shot selection metrics,
indicating our model’s ability to generalize to shot variations.

Figure 3 provides an example comparing the trailer gener-
ated by our method with the official trailer. After selecting
the appropriate movie shots for the trailer, our method calcu-
lates the energy coefficient for each shot of the given music,
as visualized in the last row of Figure 3. In our generated
trailer, shots with higher emotion scores correspond to the

Test-8
PrecisionT Recall? FI11

Test-74
PrecisionT Recallf FI1

R=0| 01301 0.1496 0.1391| 0.1851 0.2163 0.1991
R=1| 02781 03208 0.2978| 0.2772  0.3253 0.2985
R=2| 03803 0.4378 0.4069| 0.3520 0.4126 0.3789

Table 2: The analysis of relaxing the shot selection metrics. R rep-
resents the radius of the ground truth relaxation range.

music shots with higher energy. This is attributed to emo-
tion consistency loss, which adjusts the order of the selected
movie shots to ensure that the emotion scores of the movie
shots align with the energy coefficients of the music shots.

4.3 Subjective Evaluation

Since the goal of producing trailers is to attract audiences, we
conduct user studies to evaluate how well the trailers gener-
ated by our method and baselines perform compared to pro-
fessionally edited trailers. We invite 30 volunteers (15 fe-
males and 15 males) to assess the quality of the trailers gener-
ated by different methods from four aspects: Theme&Style:
“How well does the trailer convey the theme and style as
the movie?”, Rhythm: “How well do the visuals match the
rhythm of the music?”, Attractiveness: “How attractive is
the trailer?”’, Appropriateness:”How close is the trailer to a
real trailer?”. Following the previous work [Xu et al., 2015;
Wang et al., 2024], we resize all trailers to the same resolu-
tion, anonymize the names of the trailer generation methods,
and upload them to the website for volunteers to rate. We
also provide the official trailer (RT) as the reference standard
with the highest score (set to seven). According to the aver-
age and median scores of the four aspects shown in Figure 4,
our method significantly surpasses all baseline methods.

4.4 Ablation Study

Movie Metadata
We study the importance of metadata guidance by training
our model with textual content at different granularity levels.
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Figure 4: Comparison of subjective scores rated by volunteers to
different methods. The black dots are means and the red dashed
lines are medians. For each method, darker colors indicate a higher
proportion of the corresponding score.

Test-8
FIT LDJ] AAfT

Test-74
FIT LDJ] AAfT

Label Keyword

X X 0.1218 99.65 0.42 |0.1871 83.69 0.40
v X 0.1334 99.62 0.48 |0.1942 83.00 0.44
X v 0.1360 99.50 0.54 |0.1944 82.86 0.49
v v 0.1391 99.25 0.58 | 0.1991 82.47 0.50

Table 3: Ablation studies on the impacts of movie metadata.

The movie labels represent the narrative style of the movie,
providing coarse-grained categorical information. Movie plot
keywords capture the core themes and key visual elements of
the movie, providing fine-grained content descriptions. In Ta-
ble 3, training the model without any metadata leads to severe
performance degradation across all metrics, while applying
metadata at both granularity levels contributes to model per-
formance. Compared to abstract labels, the more specific plot
keywords can better guide the model to learn key events that
are more likely to be selected by professional editors.

Network Components

In Table 4, we analyze the impact of different network com-
ponents by training the model with the single-modality con-
text encoder or without any context encoders. The results
show that both context encoders enhance overall model per-
formance by integrating contextual information and improv-
ing feature discrimination between similar movie shots or
similar music shots. Notably, the models corresponding to
the suboptimal results differ between the two test sets. We
speculate that this may result from Test-8, which has fewer
trailers and is more sensitive to atypical trailers, leading to
inconsistencies with the larger test set Test-74.

Visual Acoustic Test-8 Test-74

Encoder Encoder | F11T LDJ| AA?T| FI1t LDJ AA?T
0.1289 99.75 0.51 [0.1677 83.10 0.47
0.1380 99.50 0.55 [0.1702 83.04 0.46
0.1318 99.50 0.52 [0.1725 82.90 0.48

0.1391 99.25 0.58 | 0.1991 82.47 0.50

ENENE RN
WX A X

Table 4: Ablation studies on the impacts of network components.
Visual Encoder and Acoustic Encoder refer to Visual Context En-
coder and Acoustic Context Encoder for brevity.

Test-8 Test-74
DCT ACtT HMT | DCT ACT HM?T
Random 038 046 038 | 045 041 0.39
Chronological | 0.00 1.00 0.00 | 0.00 1.00 0.00
Proposed 0.52 052 044 | 0.51 047 043

Sorting Method

Table 5: Ablation studies on the impacts of emotion consistency.

Emotion Consistency Loss

To investigate the effectiveness of emotion consistency loss
in shot sorting, we compare shot sequences obtained by sort-
ing randomly (i.e., Random), sorting according to the chrono-
logical order in the movie (i.e., Chronological), and sorting
based on the emotion consistency (i.e., Proposed) against the
official trailer sequence. We propose three metrics to mea-
sure the detailed order consistency, namely, Ascending con-
sistency (AC), Descending consistency (DC), and the har-
monic mean (HM) calculated based on these two metrics,
ie, HM = %. Note that for any pair of two differ-
ent shots (m;, m;), where ¢ < j, with their shot indices (a;,
a;) in the generated trailer, there are two possible order rela-
tionships of these two shots in the ground truth trailer, includ-
ing ascending order a; < a; and descending order a; > a;.
The AC metric computes the number of correctly predicted
pairwise ascending orders in the generated trailer among all
possible pairwise ascending orders. The DC metric does the
same for descending orders. As shown in Table 5, since we
calculate metrics on the shot sequence of correctly selected
shots by our model and all pairwise orders in the chrono-
logical sorted sequence are in ascending order, DC and AC
of the chronologically sorted sequence are always fixed at 0
and 1, respectively. Compared with the randomly sorted and
the chronologically sorted sequences, the sequence generated
based on emotion consistency achieves the best performance
in DC and HM, demonstrating that our proposed strategy ef-
fectively captures reverse-order editing techniques used in of-
ficial trailers to prevent spoilers and enhance suspense.

5 Conclusion

In this work, we propose a weakly-supervised framework for
trailer generation, driven by multi-modal semantic consis-
tency. Our method leverages data from all modalities to gen-
erate movie trailers that contain all modality elements. The
entire process is fully automated, eliminating the need for
additional fine-grained annotation. Experiments demonstrate
that our MMSC-based method outperforms state-of-the-art
trailer generation and video summarization methods on both
objective and subjective evaluation metrics.
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