
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Towards a Practical Tool for Music Composition: Using Constraint Programming
to Model Chord Progressions and Modulations

Damien Sprockeels , Peter Van Roy
ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
{damien.sprockeels, peter.vanroy}@uclouvain.be

Abstract
The Harmoniser project aims to provide a practi-
cal tool to aid music composers in creating com-
plete musical works. In this paper, we present a for-
mal model of its second layer, tonal chord progres-
sions and modulations to neighbouring tonalities,
and a practical implementation using the Gecode
constraint solver. Since music composition is too
complex to formalize in its entirety, the Harmoniser
project makes two assumptions for tractability:
first, it focuses on tonal music (the basis of West-
ern classical and popular music); second, it defines
a simplified four-layer composition process that is
relevant for a significant number of composers.
Previous work on using constraint programming for
music composition was limited to exploring the for-
malisation of different musical aspects and did not
address the overall problem of building a practi-
cal composer tool. Harmoniser’s four layers are
global structure (tonal development of the whole
piece), chord progressions (diatonic and chromatic)
and modulations, voicing (four-voice chord lay-
out), and ornaments (e.g., passing notes, appoggiat-
uras), all allowing iterative refinement by the com-
poser. This paper builds on prior work for voicing
layer 3, Diatony, and presents a model for layer 2,
chord progressions and modulations. The results of
the present paper can be used as input to Diatony
to generate voicing. Future work will define mod-
els for the remaining layers, and combine all layers
together with a graphical user interface as a plug-in
for a DAW.

1 Introduction
Constraint Programming (CP) is a popular technique for gen-
eration [Pachet and Roy, 2011; Papadopoulos et al., 2015;
Bonlarron and Régin, 2024]. Music generation with CP is
popular as well, in particular for harmonisation. It is some-
times added to some form of learning [Lattner et al., 2018;
Giuliani et al., 2023] to provide more user control as well
as a better global structure. However, learning is limited by
the training data. An alternative approach is to formalise mu-
sic theory and rely solely on CP [Huang and Chew, 2005;

Anders, 2008; Anders and Miranda, 2009; Carpentier et al.,
2010; Davismoon and Eccles, 2010]. This alternative has
multiple advantages. First, there is no limitation based on
training data. Second, it ensures that the rules are satisfied in
every generated solution. Third, it makes the solutions eas-
ier to tweak, giving more control to composers. However,
there are two disadvantages. First, it requires a substantial
set of rules to make the generated solutions usable, and sec-
ond, finding solutions often requires significant computation
at runtime. Previous work using CP to create composer tools
falls into two categories: Tools formalising one specific as-
pect of music theory [Ebcioğlu, 1990; Truchet et al., 2003;
Herremans and Sörensen, 2013], that lack generality, and
tools that can model large amounts of music theory [An-
ders et al., 2005; Laurson and Kuuskankare, 2005; Sandred,
2010] but require programming to be used, therefore limiting
their usability for composers. In contrast, we propose an ap-
proach that completely models a musical style without requir-
ing programming skills to be usable. Aside from CP and ML,
two other approaches are generative grammars [Rohrmeier,
2011] and conceptual blending [Eppe et al., 2015]. Chord-
blending generates new progressions from existing ones, and
it could potentially be combined with our approach to ob-
tain more complex modulations. Generative grammars are
used to understand the recursive structure of tonal harmony.
Compared to these two approaches, constraint programming
allows composers to add arbitrary musical ideas to a musi-
cal theory such as tonal harmony, and find coherent solutions
(see Section 4.2 for a concrete example).

1.1 Harmoniser Project
The Harmoniser project aims to build a practical tool to aid
composers based on CP that addresses both the issues of rule
definition and computation time. The rules are inferred from
treatises on music theory (see Section 3). Because the solver
enforces rules, this relieves the composer of much tedious
work so they can focus on adding musical ideas to shape solu-
tions into a desired result. To reduce computational complex-
ity, we follow the decomposition of the composition process
that was introduced in [Sprockeels and Van Roy, 2024], fol-
lowing [Pachet and Roy, 2001] which concludes that proper
structuring is necessary to make constrained musical compo-
sition feasible. It decomposes the process of musical com-
position in four layers, resulting in smaller problems that

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Illustration of the four-layer framework for composing a
musical piece.

can be solved independently (see Section 2). The first layer
is global harmonic structure, the second is chord progres-
sions and modulations, the third is chord voicing, and the
fourth adds ornaments. The present paper focuses on the sec-
ond layer. The third layer was published in [Sprockeels and
Van Roy, 2024] and defines the Diatony model.

1.2 Contributions
The present paper has two main contributions. First, a for-
mal model of the second layer of the composition process,
namely chord progressions in a tonality and modulations to
neighbouring tonalities. This model gives freedom to express
musical ideas while guaranteeing that tonal music rules are
respected. Second, a constraint implementation in the Gecode
constraint solver [Gecode Team, 2019]. The generated output
can be given to Diatony to generate a voicing for the solu-
tions. The solution space contains all possible tonal chord
progressions with the given parameters, and composers ex-
press musical ideas by giving desired tonalities and modula-
tions as well as adding constraints. This prunes the search
space and eventually gives a desired musical solution.

1.3 Structure of the Paper
Section 2 gives the four-layer framework for music com-
position, which refines the framework of [Sprockeels and
Van Roy, 2024]. Section 3 defines the formal model of tonal
progressions and modulations. Section 4 evaluates the model
showing its intended use by a composer. Section 5 concludes
this paper and outlines future work.

2 Harmoniser Project
There are probably as many ways to compose music as there
are composers. In a practical tool, it is nonetheless important
to give a predefined structure to guide composers. In [Sprock-
eels and Van Roy, 2024], an iterative process with four layers
that are general enough to be relevant for a significant por-
tion of composers was identified, and is refined in this paper.
Figure 1 illustrates this structure. This paper focuses on the
second layer, namely chord progressions and modulations. To
put this in context, we explain all the layers.

Global structure. The first layer decomposes the piece into
progressions, each in a single tonality, connected by modula-
tions. It can happen that there is only one tonality for the
whole piece, and hence no modulations, but in the general
case, there are multiple tonalities with one modulation be-
tween every two successive progressions. The same tonality
can be present more than once in the whole piece.

Progressions and modulations. The second layer realises
the harmonic development within each progression. It defines

a sequence of chord degrees for each of the progressions, as
well as modulations to transition from one progression to the
next. Chord degrees can be diatonic (belonging to the tonal-
ity) or chromatic (not belonging to the tonality). Section 3
gives the main aspects of the formal model for this layer.
Voicing. The third layer defines the voicing, i.e., the ac-
tual notes on the musical staff for each chord. The typical
way to represent chord voicing is to use four voices. There
are two aspects to take into account: “vertical” harmony, i.e.
the interaction between notes in a given chord, and “horizon-
tal” harmony, the interaction between notes in a voice over
time. Some voicing rules have an influence on chord states,
in which case they are also handled in layer 2 and thus in the
model of this paper. They are presented in Section 3. Layer 3
is presented in Diatony [Sprockeels and Van Roy, 2024].
Ornaments. The fourth and final layer is melodic orna-
ments. Given a voicing for a chord progression, ornaments
such as passing notes or appoggiaturas are added as details to
enrich the musical piece. This adds essential complexity to
the harmony.

3 Formal Model of Tonal Chord Progressions
We now define the formal model of tonal chord progressions
and modulations, which is the second layer of the Harmoniser
project and the main focus of this paper. Here, a progression
is a sequence of chord degrees in a given tonality and a mod-
ulation is a transition between two successive progressions
of different tonalities. The model defines the possible chords
(degree, quality and state) and transitions between them fol-
lowing the theory of Western tonal music, which is based on
the concept of tonality1. All the concepts used in the model
are standard concepts of tonal music theory, for which many
references exist2.

The rules implemented in the model are taken from [Duha,
2016] and [Gauldin, 2004], ensuring consistency with Di-
atony [Sprockeels and Van Roy, 2024] that uses the same ref-
erences. We use Duha’s chapter on modulations as well as
Gauldin’s chapters 4 (triads and seventh chords), 6 (partwrit-
ing), 8-11 (diatonic harmony), 13 (dominant chords), 14 (pre-
dominant chords), 16 (6-4 chord), 17 (third and sixth de-
gree), 19 (leading tone seventh chord), 21 (secondary domi-
nant chords), 29 (Neapolitan chord), and 30 (augmented sixth
chord). This model was established in collaboration with two
composers to ensure its correctness and utility for composers.

3.1 Basic Concepts of the Model
The formalisation builds on the concepts of chord and chord
transition:

• A chord is a set of three or more notes, uniquely iden-
tified by a triple (r, q, s) where r is the root note (one
of the twelve notes of Western music), q is the quality
(which defines the intervals between the chord notes),
and s is the state (defined by the chord note that is at the

1A tonality is defined as a pair of a key (one of the twelve notes
C, C#, D, up to B) and a mode (major or minor).

2Some links: tonality, chords and functions, secondary domi-
nants and augmented sixth chords, amongst many others.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.britannica.com/art/tonality
https://intermusic.lmta.lt/mod/book/tool/print/index.php?id=344
https://www.simplifyingtheory.com/secondary-dominants/
https://www.simplifyingtheory.com/secondary-dominants/
https://en.wikipedia.org/wiki/Augmented_sixth_chord

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

lowest voice). Within a given tonality, each note has a
degree d that defines its function within the tonality as
well as the possible qualities and states that are available
to build chords on that note as a root.

• A chord transition is a pair of two chords. In Western
tonal music, chord transitions are defined by degree tran-
sitions in a tonality.

Our formal model is built on top of these two concepts. The
constant transition matrix T defines possible chord transitions
between two chord degrees in a tonality, while three other
constant matrices M , P , and L define the relationships be-
tween a chord degree and the possible chord qualities, states,
and root notes respectively. These matrices compactly encode
a large amount of tonal music theory, which to our knowledge
has not been done by any previous composer tool. Aside from
these matrices, constraints are enforced to model more spe-
cific aspects of tonal music theory that are not captured by
the matrices. Additional constraints are also enforced to al-
low for modulations between tonalities, which is a key aspect
of Western tonal music.

3.2 Composer Input and Solver Output
For chord progressions to be generated, the model requires a
series of parameters. These can come from the first layer of
the Harmoniser project or from the composer. First, the to-
tal number of chords of the musical piece (n) and the number
of progressions (l) must be specified. The progressions’ be-
ginning (bi) and end (ei) are deduced from the modulations,
except for the start of the first progression and the end of the
last one, and are known from the start. This is developed in
Section 3.4.

n, l ∈ N0 (1)
∀i ∈ [0, l[bi, ei ∈ [0, n[(2)

bi < ei b0 = 0 el−1 = n− 1 (3)

The tonality of each progression (ti), in the form of a tuple
(key, mode), must also be provided.

∀i ∈ [0, l[ti = (k,m) (4)

where k ∈ {C,C♯,D, ...,B} and m ∈ {major, minor}. Dif-
ferent progressions can have the same tonality, but not succes-
sively. Additionally, modulation types3 (typem), starts (sm)
and ends (fm) must also be specified. Together, they will de-
termine the length of each progression.

∀m ∈ [0, l − 1[

sm, fm ∈ [0, n[sm < fm (5)
typem ∈ {perfect cadence, pivot chord,

alteration, chromatic} (6)

where m represents a modulation, and is linked to the pro-
gression from which it modulates (modulation m goes from
progression m to progression m+ 1).

Provided these parameters, the model gives the chords of
the piece. In tonal music, chords are referred to by their
degree, i.e. their role in the tonality. However, degrees are

3Modulation types are detailed in Section 3.4.

tonality specific, and the different progressions must be able
to communicate because in the case of modulations, some
chords must be constrained by two progressions. This is done
using the triplet (root note, quality, state) that uniquely iden-
tifies a chord. The model therefore defines three variable
arrays for the whole piece R, Q and S that represent each
chord’s root note, quality and state, as well as an array for
the chord degrees in each progression Di. Additionally, each
progression has a subset of the whole piece variable arrays
(Ri, Qi, Si) that correspond to their part in the piece. These
arrays are defined below.
Chord roots. The root of a chord is the note on which the
chord is built. It is one of the twelve notes (and their enhar-
monics) of Western music:

∀c ∈ [0, n[

R[c] ∈ {C, C♯/D♭, D, D♯/E♭, E/F♭, E♯/F
F♯/G♭, G , G♯/A♭, A, A♯/B♭, B} (7)

where c denotes each chord of the progression.
Chord qualities. Chord qualities define the intervals of the
chord notes with the root of the chord:

∀c ∈ [0, n[

Q[c] ∈ {Major, Minor, Diminished, Augmented,
Dominant seventh, Major seventh, Minor seventh,

Diminished seventh, Half-diminished seventh,
Minor-major seventh, Augmented sixth} (8)

Chord states. Chord states define the note of the chord that
is at the bass, i.e. the lowest note of the chord:

∀c ∈ [0, n[

S[c] ∈ {Fundamental, First inversion,
Second inv., Third inv.} (9)

Chord degrees. The supported chord degrees consist of the
seven diatonic chord degrees, as well as some common chro-
matic chords.

∀i ∈ [0, l[, ci ∈ [0, ni[

Di[ci] ∈ {I,II,III,IV,V,VI,VII,Vda,
V/II,V/III,V/IV,V/V,V/VI,V/VII,♭II, 6△} (10)

3.3 Progression Constraints
In this section and the next we present the most important
constraints of the model. We distinguish two categories of
constraints: constraints that apply to progressions, i.e. con-
straints in a given tonality, and constraints that apply to mod-
ulations, i.e. between two tonalities. The progression con-
straints ensure that chord progressions in a tonality follow
the rules of tonal harmony, while modulation constraints en-
sure a smooth transition between the progressions. Due to
space limitations, the matrices M , P and L are presented in
the technical appendix 4. In the following definitions, musi-
cal notations have been used to present the model more intu-
itively. In practice, numerical values are used.

4http://hdl.handle.net/2078.1/301819

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://hdl.handle.net/2078.1/301819
http://hdl.handle.net/2078.1/301819

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Table 1: Transition matrix T between successive chord degrees in
a tonality. Zeroes are omitted for clarity, thus an empty slot in the
matrix corresponds to a value of zero.

Chord transitions. The most important constraint de-
scribes the possible transitions for chord degrees in a tonality.
This is enforced through the T matrix and shown in table 1. It
is read as: chord row can be followed by chord column if the
value in the matrix is equal to 1. For example, the III chord
can be followed by the VI and V/VI, but not any other degree.
The T matrix encodes generally accepted rules for tonal har-
mony, taken from [Duha, 2016] and [Gauldin, 2004]. Each
block of the matrix constrains a specific aspect of tonal chord
progressions:

• Block A (orange) defines possible chord succession be-
tween diatonic chords5.

• Block B (dark blue) defines what secondary dominant6
chords can follow diatonic chords.

• Block C (yellow) defines what chromatic chords,
amongst the ones supported, can follow diatonic chords.

• Blocks D (green) and E (cyan) define what diatonic
chords and other secondary dominants can follow sec-
ondary dominants, respectively. Secondary dominants
must move to a chord that is based on the note that is a
perfect fifth below their root note. They can either re-
solve to their corresponding diatonic chord (e.g. II for
V/II), or move to another dominant chord based on that
same note (e.g. V/V for V/II).

• Block F (grey) enforces the rules for chromatic chords
following secondary dominant chords. It is not allowed,
so this part of the matrix is empty.

• Blocks G (violet) and H (magenta) enforce the rules for
chromatic chords. The lowered second degree (♭II) and
the augmented sixth (6△) must go to V, but they can go
to the fifth degree appoggiatura (Vda) before that.

• Block I (red) enforces rules for the succession of chro-
matic chords. It is not allowed, thus this part of the ma-
trix is empty.

T can be seen as an adjacency matrix, thus T k counts pos-
sible chord progressions of k chords in a tonality, which are
valid walks through the equivalent graph. Table 2 shows the
graph corresponding to the adjacency matrix, separated into

5The fifth degree double appoggiatura (Vda) is treated separately
because its musical function is completely different.

6A secondary dominant is the dominant of a diatonic degree.

the diatonic part (2a) and the chromatic part (2b) for readabil-
ity. Bold arrows mean that a transition is the preferred choice,
regular arrows mean a possible alternative, and dotted arrows
mean that a transition is possible but rarely used. Possible
transitions through chromatic chords in the diatonic part are
annotated on the transition arrow to make the diagram more
readable. Since these are nodes, they can be used to hop to
the chromatic part and back. The constraint enforced is:

∀i ∈ [0, l[, c′i ∈ [0, ei− bi[T[Di[c
′
i], Di[c

′
i+1]] = 1 (11)

where i represents each progression and c′i represents each
chord of the progression except the last one, and T is the
matrix in Figure 1. This is not implemented with the regu-
lar constraint [Pesant, 2004] because using a matrix makes it
easy for composers to modify the possible transitions with-
out requiring to recompute the whole underlying DFA of a
regular constraint. As explained in Section 4, this does not
cause efficiency problems but can be done in the future if it
becomes necessary.

Though voicing is handled by Diatony, the third layer of
the Harmoniser project, a few constraints must be enforced to
ensure that the progressions generated by this model are com-
patible with the strict voicing rules of tonal music, namely
tritone resolution and the preparation of diatonic seventh
chords. Voicing rules are also necessary for modulations.
Tritone resolution. When one of the tritone notes is at the
bass, its resolution affects the state of the next chord. This
is the case for dominant chords (primary or secondary) in
first or third inversion. For chords in first inversion, the bass
note should move up by step. For chords in third inversion, it
should move down by step.

∀i ∈ [0, l[, c′i ∈ [0, ei − bi[

D = (Di[c
′
i] = V ∧Qi[c

′
i] ∈ {Major, Dom. 7th, Dim. 7th})

∨ (V/II ≤ Di[c
′
i] ≤ V/VII)

(12)

D ∧ Si[c
′
i] = 1stinv =⇒ Bi[c

′
i + 1] = Bi[c

′
i] + 1 mod 7

(13)

D ∧ Si[c
′
i] = 3rdinv =⇒ Bi[c

′
i + 1] = Bi[c

′
i]− 1 mod 7

(14)

Where D is true for a dominant chord, and false otherwise,
and Bi is the array containing the degree of the note at the
bass for each chord, which is derived from Di and Si and
defined in the technical appendix. The “ mod 7 ” is due to
the fact that there are seven diatonic degrees in a tonality.
Preparation of diatonic seventh chords. Except for the
fifth degree (V) chord, when a diatonic chord has a seventh,
that note must be present in the chord that is played before,
at the same voice. In our model, we can only enforce that
the seventh is in the previous chord. Diatony will impose that
they are in the same voice.

∀ci ∈ [1, ei − bi]

Hi[ci] = 1 ∧Di[ci] ≤ VII ∧Di[ci] ̸= V =⇒
Roi[i− 1] = Sei[i] ∨ Tii[i− 1] = Sei[i]

∨ Fii[i− 1] = Sei[i] (15)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Diatonic part of the graph described by the adjacency matrix
in Figure 1.

(b) Chromatic part of the graph described by the adjacency ma-
trix in Figure 1.

Figure 2: Transition matrix between chord degrees, as a graph. Node names are unique, so walks can hop between (a) and (b).

(a) Perfect cadence modulation

(b) Pivot chord modulation

(c) Alteration modulation

(d) Chromatic modulation

Figure 3: Representation of the different modulation types.

Where Hi[ci] is true when chord ci in progression i has a
seventh, and false otherwise; Roi, Tii, Fii and Sei are the
degree corresponding to the root, third, fifth and seventh of
each chord respectively. They are derived from Di and de-
fined in the technical appendix.

3.4 Modulation Constraints
There are two main types of modulation from one tonality to
another: modulations to neighbouring tonalities (at least one
chord in common), and modulations to distant tonalities. In
this paper, we focus on modulations to neighbouring tonali-
ties. We distinguish four types of modulations to neighbour-
ing tonalities. Their representation is given in Figure 3, and
their definitions and formalisation are given below.
Perfect cadence modulation. This can be considered as
one tonality ending and another beginning. The current tonal-
ity ends on a perfect cadence and the next tonality starts on

the next chord (see Figure 3a). The only constraint to enforce
is that the last two chords of the first tonality are V and I, both
in fundamental state.

Dm[em − bm − 1] = V ∧ Sm[em − bm − 1] = Fund. State
∧ Dm[em − bm] = I ∧ Sm[em − bm] = Fund. State

(16)

We link the first and the second progression to the modula-
tion.

em = fm bm+1 = fm + 1 (17)

Pivot chord modulation. A pivot chord modulation uses a
chord that is in both tonalities as a pivot to transition from one
tonality to the other. It can be followed by multiple chords
that are in both tonalities, and eventually a perfect cadence in
the new tonality, which ends the modulation. To model this
transition period where chords are in both tonalities, there is
an overlap between the two corresponding progressions (see
Figure 3b). The global variables from position sm up to posi-
tion fm−2 are constrained by both tonalities, so the chords at
these positions must be available in both tonalities. The pivot
chord cannot be VII.

Dm+1[fm − bm+1 − 1] = V
∧ Sm+1[fm − bm+1 − 1] = Fund. State

∧ Dm+1[fm − bm+1] = I
∧ Sm+1[fm − bm+1] = Fund. State (18)

We link the first and the second progression to the modula-
tion.

em = fm − 2 bm+1 = sm (19)

Alteration modulation. An alteration modulation intro-
duces a note from the second tonality that is not present in
the original tonality to start the modulation. This chord has to
be followed by the V of the new tonality, affirming it (see Fig-
ure 3c). If the chord used to introduce the alteration cannot
be followed by V, it has to be the next chord. The last chord
of the first progression must be diatonic, cannot be VII and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

cannot have a seventh. The first chord of the new progression
must be diatonic, and cannot be V or VII.

Dm[em] ̸= VII ∧ Hm[em] = 0

∧ Dm+1[0] /∈ {V,VII} (20)
Dm+1[0] < VII ∧Dm+1[0] ̸= V (21)

Where Hm[cm] is true when chord cm has a seventh.
We must also ensure that the first chord of the new progres-

sion contains a note that is not in the first tonality. We define
a function ft(n) that takes as argument a note in [C,B], and
returns the quality of the diatonic chord built on that note if it
is in t. The function is not defined if the note is not in t.

ft(n) =

{
n ∈ t Qt(n)

n /∈ t ⊥
This is equivalent to a 12-value array, containing for each note
the quality of the chord based on this note in t if it exists, and
nothing otherwise. We then impose the constraint:
ftm(Rm+1[0]) = ⊥ ∨ ftm+1

(Rm+1[0]) ̸= ftm(Rm+1[0])
(22)

which means that the quality of the chord based on note
Rm+1[0] cannot be the same in both tonalities. If this note
is not in tm, this is trivially satisfied. This ensures that there
is at least one note in the first chord in the new progression
that is not in the previous tonality. We still have to enforce
that this altered chord is followed by V. Depending on which
degree it corresponds to, it might not be possible for V to
follow directly. In that case, it should be the next chord.

T [Dm+1[0],V] = 0 =⇒ Dm+1[2] = V (23)
T [Dm+1[0],V] ̸= 0 =⇒ Dm+1[1] = V (24)

Chromatic modulation. This kind of modulation occurs
when one chord in the first tonality is followed by the V of
the new tonality, with a chromatic movement in the voice that
plays the leading tone of the new tonality in the dominant
chord (see Figure 3d). The voice leading aspect of this mod-
ulation needs to be handled in the third (voicing) layer of the
Harmoniser project. Similarly to the preparation of diatonic
seventh chords, constraints still need to be enforced in this
model to make sure that this chromatic movement is possi-
ble. In particular, we must enforce that the first chord of the
new progression is V, and there must be a one chord over-
lap between the progressions to ensure that the transition is
smooth. The chord in this overlap is thus a secondary domi-
nant in the first tonality, and the dominant in the new one. We
must also ensure that the note in the first tonality correspond-
ing to the leading tone in the new tonality is present in the
chord just before the dominant of the new tonality (i.e., when
modulating from C major to A major, there must be a G in
the first chord that can move to a G♯ in the second chord). To
enforce that, we must compute the interval in semitones be-
tween the keys of the two tonalities, and transform that into a
degree difference. This is shown in Table 2.

d = Degs[|tm.km − tm+1.km+1|]
s = 6 + d mod 7

Dm+1[0] = V ∧ Rom[nm − 2] = s

∨ Tim[nm − 2] = s ∨ Fim[nm − 2] = s (25)

Where s is the degree that the seventh of the new tonality
corresponds to in the first tonality.

3.5 Branching
The goal of our model is to define a search space that is as per-
missive as possible, only enforcing mandatory rules of tonal
harmony to allow for composers’ creativity to shape the so-
lutions instead of the constraints. As a result, the number of
solutions is very large and the branching strategies are defined
for the relevancy of solutions rather than for efficiency.

With that in mind, the branching is first performed on chord
degrees, as this is the most important variable array, select-
ing the variable with the smallest domain size and the value
at random. The preferences in Figure 2 are not followed
to avoid staying in the “preferred” transitions that would be
repetitive. This could of course be improved in the future by
considering composer preferences when assigning new val-
ues to variables. Branching is then performed on states, also
on the smallest domain variable, favouring fundamental state
and first inversion as these are the most common states in
tonal music. Finally, branching is performed on chord quali-
ties, favouring triads over seventh chords.

4 Evaluation and Example Use Case
Complete source code of our model is available on GitHub7,
along with its integration with Diatony.

4.1 Efficiency and Number of Solutions
Since the model is designed to give as much freedom as pos-
sible to composers, the number of possible solutions for a
given problem is enormous if no composer preferences are
given. The only constraints enforced by default are the ones
that are necessary to ensure that the generated chord progres-
sions follow the rules of tonal harmony. We expect the com-
poser to add musical ideas to guide the solver, formulated as
constraints. This will in the future be done through a GUI.

As a result of this approach, solutions are found extremely
quickly for problems of significant size and efficiency is
hence not the main focus of this section. For example, the
musical piece shown in Section 4.2 was generated in 3ms on
an M1 MacBook Pro. Another longer piece, consisting of 60
chords with five modulations, was generated in 20ms. This
is because this layer of the Harmoniser project on its own
lacks global rules, that will be enforced through the first layer
in future work. We expect the computation to be more in-
tensive with the addition of composer-subjective constraints,
that will transform the problem from a satisfaction problem
(finding a valid solution) to an optimisation problem (finding
the best solution), where the criteria for what makes a solu-
tion better are provided by the composer, and with complex
links between the progressions.

4.2 Example of Composer Use
We now put ourselves in the mindset of a composer, to show
how our tool can be used to generate a harmonic progression.

7https://github.com/sprockeelsd/Progressions-and-Modulations/
tree/IJCAI2025

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025
https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025
https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0 1 2 3 4 5 6 7 8 9 10 11
unison (0) second (1) third (2) fourth (3) fifth (4) sixth (5) seventh (6)

Table 2: Conversion between intervals and degree difference (Degs). The first row correspond to intervals in semitones.

Figure 4: Representation of the input given to the solver.

We explain the example in terms of constraints, but in a prac-
tical tool, these constraints would be given through a GUI.
For our example, we want to write a chord progression that
starts in C minor, modulates to its relative tonality E♭ major
and then comes back to the tonality of C minor, that is 28
chords long. We want a perfect cadence modulation on chord
12, and a pivot chord modulation from chord 18 to 23.

In addition to these necessary instructions, we add the fol-
lowing constraints to express our musical intentions. (1) The
first chord must be I. (2) No chord can be III or VII, ex-
cept during the pivot chord modulation. (3) Only dominant
chords can have a seventh. (4) There is a half cadence on
chord seven. (5) There is a chromatic chord just before that
(position six). (6) The II chord should only be used in first in-
version. (7) There is a perfect cadence at the end of the piece.
The input is illustrated in Figure 4.

If we run the solver with these input and constraints, it
produces the following output. For the first progression in
C minor, the chords suggested by the solver are I-II-Vda-V-
VI-IV-♭II-V-I-V-I-IV-V-I. This is interesting, but based on per-
sonal taste, we make a few modifications: I-II-Vda-V-I-IV-
6△-V-I-V-I-Vda-V-I. This is also an accepted solution for the
solver. For the E♭ major to C minor progression, the output is
I-VI-II-V-VI|I-V/VI|V-VI|I-VII|II-V-I-VI-II-V-I, where VI|I is
the pivot chord starting the modulation (sixth degree in E♭
major and first degree in C minor) and the following chords
are in both tonalities up until the perfect cadence in C mi-
nor. For this part, we only make one small modification: we
modify the perfect cadence that ends the modulation to be an
interrupted cadence. This is due to personal taste. The final
chords for this part are thus I-VI-II-V-VI|I-V/VI|V-VI|I-VII|II-
V-VI-I-II-V-I. Chord states have been omitted in the listing
of the output to keep it readable, but they are as shown in
Figure 5. Diatony can then be used to generate a four-voice
texture representing our piece. Figure 5 shows one possible
four-voice texture of this piece. It can be listened to here8.
A harmonic rhythm has been given to the chords, as well as
some ornamental notes, by the composer.

5 Conclusion
This paper defines a formal model of tonal chord progres-
sions and modulations to neighbouring tonalities. We give a
constraint-based implementation of this model in the Gecode

8https://youtu.be/97wBAwcZC8E?si=o dvYZyOGCegtrHN

Figure 5: Musical piece based on the chord progression generated by
the solver. The voicing has been added by Diatony and the rhythm
by the composer.

constraint solver. Combined with the Diatony model [Sprock-
eels and Van Roy, 2024], this implementation generates tonal
chord progressions with modulations in a four-voice texture.

The present model can be used as the foundation for
many useful extensions. It can be enriched by allowing for
more chromatic and borrowed chords, as well as modulations
to distant tonalities, and by adding larger harmonic struc-
tures like harmonic sequences. The matrices encoding large
amounts of musical knowledge, such as T and others defined
in the technical appendix, are currently encoded in Gecode by
element constraints, and could be extended to give a weight to
each value, allowing composers to value some choices more
than others. Extensional constraints could also be used in-
stead of constant values, to dynamically change values dur-
ing the search. Global constraints such as the regular or cost-
regular constraints could also be used to further improve the
efficiency of the model.

In the case where the composer wants suggestions from the
solver, it would be interesting to generate successive solutions
that differ significantly. This could be done using a branch
and bound approach to post additional constraints when a so-
lution is found, or using other approaches such as those pro-
posed in [Pesant et al., 2022] and [Ingmar et al., 2020]. This
is left for future work.

This work is part of the ongoing Harmoniser project aiming
to assist composers in their creation process with constraint
programming. In this project, a four-layer decomposition of
the composition process was identified. So far, models have
been defined and implemented for layer 2 (this paper) and
layer 3 ([Sprockeels and Van Roy, 2024]). Models for the re-
maining layers are ongoing work with the goal of providing
a complete set of models for the whole composition process,
allowing to generate full musical pieces with the help of con-
straint programming. We are also working on a graphical user
interface for this tool as well as an implementation as a plug-
in for a Digital Audio Workstation.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://youtu.be/97wBAwcZC8E?si=o_dvYZyOGCegtrHN
https://youtu.be/97wBAwcZC8E?si=o_dvYZyOGCegtrHN

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
The authors wish to thank the Conservatoire Royal de Brux-
elles for allowing us to take courses on music theory, and
more specifically we thank Prof. Adrien Tsilogiannis for his
insight on this paper, as well as Dr. Karim Haddad from IR-
CAM for his insight on the musical aspect of the paper. We
also thank Juliette Vanderhaeghen and Lucile Dierckx for
their support and feedback during the redaction. We thank
all the anonymous reviewers of this paper who helped us to
greatly improve the quality of the paper.

References
[Anders and Miranda, 2009] Torsten Anders and Eduardo R

Miranda. A Computational Model that Generalises
Schoenberg’s Guidelines for Favourable Chord Progres-
sions. In proceedings of the Sound and Music Computing
Conference, pages 48–52, 2009.

[Anders et al., 2005] Torsten Anders, Christina Anagnos-
topoulou, and Michael Alcorn. Strasheela: Design and Us-
age of a Music Composition Environment Based on the Oz
Programming Model. In Multiparadigm Programming in
Mozart/Oz: Second International Conference, MOZ 2004,
Charleroi, Belgium, October 7-8, 2004, Revised Selected
and Invited Papers 2, pages 277–291. Springer, 2005.

[Anders, 2008] Torsten Anders. Composing Music by Com-
posing Rules: Design and Usage of a Generic Music Con-
straint System. PhD thesis, Queen’s University Belfast,
2008.

[Bonlarron and Régin, 2024] Alexandre Bonlarron and Jean-
Charles Régin. Intertwining CP and NLP: The Generation
of Unreasonably Constrained Sentences. In Thirty-Third
International Joint Conference on Artificial Intelligence
{IJCAI-24}, pages 7600–7608. International Joint Confer-
ences on Artificial Intelligence Organization, 2024.

[Carpentier et al., 2010] Grégoire Carpentier, Gérard As-
sayag, and Emmanuel Saint-James. Solving the Mu-
sical Orchestration Problem using Multiobjective Con-
strained Optimization with a Genetic Local Search Ap-
proach. Journal of Heuristics, 16:681–714, 2010.

[Davismoon and Eccles, 2010] Stephen Davismoon and
John Eccles. Combining Musical Constraints with
Markov Transition Probabilities to Improve the Gen-
eration of Creative Musical Structures. In European
Conference on the Applications of Evolutionary Compu-
tation, pages 361–370. Springer, 2010.

[Duha, 2016] Isabelle Duha. L’Harmonie en Liberté: de la
Mémoire à l’Improvisation. Gérard Billaudot, Armiane
Imp., 2016.

[Ebcioğlu, 1990] Kemal Ebcioğlu. An Expert System for
Harmonizing Chorales in the Style of JS Bach. The Jour-
nal of Logic Programming, 8(1-2):145–185, 1990.

[Eppe et al., 2015] Manfred Eppe, Roberto Confalonieri,
Ewen Maclean, Maximos Kaliakatsos, Emilios Cam-
bouropoulos, Marco Schorlemmer, Mihai Codescu, and
K Kühnberger. Computational Invention of Cadences and

Chord Progressions by Conceptual Chord-Blending. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, pages 2445–2451. AAAI
Press; International Joint Conferences on Artificial Intelli-
gence, 2015.

[Gauldin, 2004] Robert Gauldin. Harmonic Practice in
Tonal Music. Second Edition. W. W. Norton and Com-
pany, Inc, 2004.

[Gecode Team, 2019] Gecode Team. Gecode: Generic Con-
straint Development Environment, 2019.

[Giuliani et al., 2023] Luca Giuliani, Francesco Ballerini,
Allegra De Filippo, and Andrea Borghesi. MusiComb:
a Sample-based Approach to Music Generation Through
Constraints. In 2023 IEEE 35th International Conference
on Tools with Artificial Intelligence (ICTAI), pages 194–
198, 2023.

[Herremans and Sörensen, 2013] Dorien Herremans and
Kenneth Sörensen. Composing Fifth Species Counterpoint
Music with a Variable Neighborhood Search Algorithm.
Expert systems with applications, 40(16):6427–6437,
2013.

[Huang and Chew, 2005] Cheng Zhi Anna Huang and Elaine
Chew. Palestrina Pal: a Grammar Checker for Music Com-
positions in the Style of Palestrina. In Proceedings of
the 5th Conference on Understanding and Creating Mu-
sic, 2005.

[Ingmar et al., 2020] Linnea Ingmar, Maria Garcia de la
Banda, Peter J Stuckey, and Guido Tack. Modelling Diver-
sity of Solutions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 1528–1535,
2020.

[Lattner et al., 2018] Stefan Lattner, Maarten Grachten, and
Gerhard Widmer. Imposing Higher-level Structure in
Polyphonic Music Generation using Convolutional Re-
stricted Boltzmann Machines and Constraints. Journal of
Creative Music Systems, 2:[1]–31, 2018.

[Laurson and Kuuskankare, 2005] Mikael Laurson and Mika
Kuuskankare. Extensible Constraint Syntax through Score
Accessors. In Journées d’Informatique Musicale, 2005.

[Pachet and Roy, 2001] François Pachet and Pierre Roy. Mu-
sical Harmonization with Constraints: A Survey. Con-
straints, 6:7–19, 2001.

[Pachet and Roy, 2011] François Pachet and Pierre Roy.
Markov Constraints: Steerable Generation of Markov Se-
quences. Constraints, 16(2):148–172, 2011.

[Papadopoulos et al., 2015] Alexandre Papadopoulos, Pierre
Roy, Jean-Charles Régin, and François Pachet. Generating
all Possible Palindromes from n-gram Corpora. In IJCAI
2015, 2015.

[Pesant et al., 2022] Gilles Pesant, Claude-Guy Quimper,
and Hélène Verhaeghe. Practically Uniform Solution Sam-
pling in Constraint Programming. In International Con-
ference on Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research, pages 335–
344. Springer, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Pesant, 2004] Gilles Pesant. A Regular Language Member-
ship Constraint for Finite Sequences of Variables. In In-
ternational conference on principles and practice of con-
straint programming, pages 482–495. Springer, 2004.

[Rohrmeier, 2011] Martin Rohrmeier. Towards a Generative
Syntax of Tonal Harmony. Journal of Mathematics and
Music, 5(1):35–53, 2011.

[Sandred, 2010] Örjan Sandred. PWMC, a Constraint-
solving System for Generating Music Scores. Computer
Music Journal, 34(2):8–24, 2010.

[Sprockeels and Van Roy, 2024] Damien Sprockeels and Pe-
ter Van Roy. Expressing Musical Ideas with Constraint
Programming Using a Model of Tonal Harmony. In Inter-
national Joint Conference on Artificial Intelligence, 2024.

[Truchet et al., 2003] Charlotte Truchet, Gérard Assayag,
and Philippe Codognet. OMClouds, Petits Nuages de Con-
trainte dans OpenMusic. In Journées d’Informatique Mu-
sicale, 2003.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

