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Abstract
With the rapid advancements in quantum comput-
ing, cloud-based quantum services have gained in-
creasing prominence. However, due to quantum
noise, optimizing the deployment of quantum cir-
cuits remains an NP-hard problem with an ex-
pansive search space. Existing methods usually
use heuristic algorithms to approximate the solu-
tion, such as the representative IBM Qiskit. On
the one hand, they often find suboptimal deploy-
ment solutions. On the other hand, prior technolo-
gies do not consider user-specific requirements and
can only provide a single deployment strategy. In
this paper, we propose QCDeploy that can pro-
vide a ranked list of effective deployment strate-
gies to optimize quantum serverless circuit deploy-
ment. Specifically, we model quantum circuits as
Directed Acyclic Graph (DAG) representations and
utilize graph contrastive learning for vector embed-
ding. Then, a tailored list-aware learning-to-rank
architecture is employed to generate a list of can-
didate strategies (prioritizing better strategies). We
conduct extensive evaluations involving 45 preva-
lent quantum algorithm circuits across 3∼5 qubits,
utilizing 3 IBM quantum physical devices with
three types of chip topologies. The results demon-
strate that our proposed framework significantly
outperforms IBMQ’s default deployment scheme,
e.g., achieving 17.95% overhead reduction and in-
creasing the execution success rate by 20%∼40%.

1 Introduction
Quantum computing offers a significant advantage over
classical computing in addressing computationally inten-
sive problems, owing to its inherent properties of quan-
tum superposition and entanglement [Zhao et al., 2025;
Li et al., 2024c]. Some application scenarios involve phys-
ical simulation [Zhang et al., 2023b; Deng et al., 2022],
quantum machine learning [Saravanan and Saeed, 2023;
Ren et al., 2022], optimization problems [Li et al., 2023;
Tan et al., 2023]. The broader quantum computing ecosystem

∗Co-corresponding authors.

Figure 1: Illustrative explanation for circuit deployment.

is currently constrained by the limited availability of quan-
tum hardware resources, which has led to the emergence of
Quantum-as-a-Service (QaaS) platforms [Li and Zhao, 2024].
QaaS marks a pivotal shift in the provisioning of special-
ized quantum computing resources, following the industry-
wide trend of delivering technology through service-oriented
models. It parallels established paradigms such as Function-
as-a-Service (FaaS) [Chopra et al., 2021] and Platform-as-a-
Service (PaaS) [Mei et al., 2015].

In QaaS, quantum serverless architecture lowers the barrier
to accessing quantum hardware [Li and Zhao, 2024; Nguyen
et al., 2024b], but deploying quantum algorithms is a complex
and multifaceted process. Particularly, Noisy Intermediate-
Scale Quantum (NISQ) hardware [Preskill, 2018; Li et al.,
2024d; Li et al., 2024a] is characterized by limited coherence
times, noisy operations, and restricted qubit connectivity. Un-
like logical qubits, physical qubits on NISQ devices can typ-
ically interact only with their immediate neighbors, making
two-qubit gate operations challenging. Consequently, algo-
rithm deployment necessitates a series of transpilation steps,
including qubit mapping, circuit optimization, gate decompo-
sition, topology-aware gate insertion, and eventual execution
on physical hardware [Li et al., 2019]. We provide the illus-
trative explanation for circuit deployment in Figure 1. Con-
sider deploying the original circuit (involving 3 qubits) onto
the IBM Lima [IBM, 2022a] (the quantum device contains 5
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qubits), the right part of Figure 1 displays two types of qubit
mapping methods. It is clear that the transpiled circuit ob-
tained using the Virtual to Physical: {0:1; 1:0; 2:3} strategy
will use fewer gates and have a shorter execution time than
the Virtual to Physical: {0:1; 1:4; 2:2} strategy. A detailed
explanation of the factors leading to these differences in tran-
spiled circuits is provided in § 3.2.

Deploying quantum algorithms on NISQ devices faces
key challenges in qubit mapping and layout optimization,
both NP-hard problems with large search spaces [Lao et al.,
2021]. To this end, existing methods use heuristic algo-
rithms for approximations, and a representative solution is
IBM Qiskit [Aleksandrowicz and others, 2019]. Neverthe-
less, previous techniques have some limitations. On the one
hand, they often provide suboptimal solutions, resulting in
additional quantum gate overhead and reduced execution ef-
ficiency. On the other hand, existing solutions only provide a
single deployment scheme, which may fail to satisfy specific
functional requirements (e.g., constraints on fidelity).

In this paper, we propose QCDeploy that can provide a
ranked list of effective deployment strategies to optimize
quantum serverless circuit deployment. To the best of our
knowledge, this is the first solution that considers user re-
quirements of function execution results and provides a list
of candidate strategies. Specifically, we model quantum cir-
cuits as Directed Acyclic Graph (DAG) representations and
utilize graph contrastive learning for vector embedding. Sub-
sequently, a tailored list-aware learning-to-rank architecture
is employed to generate a list of candidate strategies (pri-
oritizing better deployment strategies). As a result, QCDe-
ploy not only delivers low-overhead deployment strategies
but also offers multiple alternatives to accommodate diverse
user-specific constraints and preferences.

In summary, this paper makes three key contributions.
• We carefully examine the challenges of function deploy-

ment when using current serverless FaaS technologies
for quantum computing. Then, we propose QCDeploy,
to provide a list of effective deployment strategies to op-
timize quantum serverless circuit execution.

• In QCDeploy, we employ the Graph Convolutional Net-
work (GCN) to extract the embedding features of the
circuit DAG, and leverage graph contrastive learning to
capture structural patterns. The circuit graph embedding
vector is then fed to the learning to rank architecture and
outputs a list of candidate deployment strategies.

• We implement a prototype of QCDeploy and evaluate
it substantially on the IBM Quantum platform with 3
physical devices. The experiments involve 100 groups
of function sets based on 45 prevalent quantum circuits,
encompassing 15 algorithms each configured with 3 dif-
ferent qubit counts. The results demonstrate that QCDe-
ploy significantly outperforms the IBMQ default deploy-
ment scheme in terms of circuit execution overhead and
execution success rate.

2 Background and Related Work
Quantum Computing and QaaS. Quantum computing has
shown great potential in solving computational problems that

are intractable for classical computers [Li et al., 2025b], such
as factoring large numbers [Shor, 1999], cryptography [Pi-
randola and others, 2020], and simulating quantum sys-
tems [Zhang et al., 2023b]. Quantum as a Service (QaaS) is
a cloud-based paradigm that provides remote access to quan-
tum computing resources via the Internet [Garcia-Alonso et
al., 2021], such as IBM Quantum [IBM, 2022a] and Ama-
zon Braket [Gonzalez, 2021]. It allows users to leverage the
power of quantum processors for various computational tasks
without owning or maintaining the sophisticated and costly
quantum hardware themselves. In the Noisy Intermediate-
Scale Quantum (NISQ) [Preskill, 2018] era, characterized
by the availability of quantum devices with a limited num-
ber of qubits that are prone to noise and error, has sparked a
surge in quantum computing research and development [Li et
al., 2025a]. Effectively utilizing NISQ-era quantum proces-
sors depends heavily on the efficient management of quan-
tum resources. Therefore, optimizing the orchestration and
choreography of circuit deployment is essential, as it can en-
hance resource efficiency, improve algorithm performance,
and scalability.
Quantum Circuit Deployment. Deploying quantum algo-
rithms onto physical hardware requires bridging the gap be-
tween high-level logical circuits and low-level hardware im-
plementations [Preskill, 2018; Li and Zhao, 2024]. This de-
ployment process typically involves compiling the algorithm
into a sequence of quantum gates compatible with the target
hardware [Smith et al., 2016], optimizing the circuit to re-
duce noise and resource consumption [Hietala et al., 2023],
and mapping logical qubits to physical qubits [Zulehner et
al., 2018]. The physical implementation is constrained by
the hardware topology, which dictates how qubits can in-
teract [Wille et al., 2019]. To accommodate these con-
straints, additional operations like SWAP gates may be re-
quired [Svore et al., 2018], complicating the deployment pro-
cess. The above operations (such as mapping and routing) are
NP-hard problems [Lao et al., 2021], making efficient and
scalable solutions a critical area of research. Current solu-
tions mainly include mathematical optimization and heuris-
tic algorithms. Mathematical methods, such as integer linear
programming (ILP) [Tan and Cong, 2020], aim for globally
optimal solutions but often struggle with scalability due to the
exponential size of the search space. Heuristic approaches,
like genetic algorithms and simulated annealing [Zhou et
al., 2020], provide approximate solutions that prioritize ef-
ficiency over optimality. In light of recent advances in artifi-
cial intelligence, we intend to promote a data-driven scheme
for generating deployment strategies via deep learning tech-
niques.

3 Preliminaries and Problem Formulation
In this section, we formalize the system model and problem
space of quantum serverless circuit deployment optimization.

3.1 System Model
We consider a system represented by the tuple SM = (D,F),
where D denotes the available quantum devices (i.e., quan-
tum computers) and F represents the set of functions that
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Figure 2: The overall workflow of QCDeploy.

need to be executed. Formally, D = {d1, d2, ...} and F =
{f1, f2, f3, ...}. The objective is to execute all functions in F
using the devices in D. Note that for any function fi ∈ F re-
quiring nc qubits, it can only be executed on a device dj ∈ D
that provides at least nd ≥ nc qubits.

3.2 Optimization Goals
The optimization of quantum function deployment primar-
ily involves two aspects: circuit deployment and candidate
strategies. On the one hand, circuit deployment relies on the
qubit mapping method to transpile the virtual circuit into a
physical one. This process involves decomposing virtual cir-
cuit gates into basis gates supported by the target quantum
hardware and inserting SWAP gates to satisfy the qubit con-
nectivity constraints imposed by the device topology [Li et
al., 2019]. Specifically, qubit mapping refers to assigning the
nc qubits of the original circuit to the nd physical qubits of
the selected quantum device, where nd ≥ nc. As shown in
Figure 1, different qubit mapping configurations yield distinct
transpiled circuits, which vary in terms of gate count and ex-
ecution overhead. The primary reason for this variability lies
in the physical connectivity constraints of the quantum chip,
not all two-qubit operations can be directly executed between
arbitrary pairs of qubits. In Figure 1, the original circuit in-
cludes a two-qubit gate (i.e., the CX gate involved q0 and
q1). We analyze two different qubit mapping strategies for
circuit deployment based on IBMQ Lima [IBM, 2022a]. For
the Virtual to Physical: {0:1; 1:0; 2:3} strategy, q0 (corre-
sponding to q1 in original circuit) and q1 (corresponding to
q0 in original circuit) in IBMQ Lima are directly connected
so as the CX gate can be directly implemented. For the Vir-
tual to Physical: {0:1; 1:4; 2:2} strategy, q4 (corresponding
to q1 in original circuit) and q1 (corresponding to q0 in origi-
nal circuit) in IBMQ Lima are not directly connected so that
the CX gate needs to be implemented with a series of ad-
ditional SWAP gates to exchange the quantum states of two
qubits. Therefore, we can see that more gates are introduced
in Figure 1 (d) to achieve transpilation in the physical device.

On the other hand, considering that quantum computers are
affected by quantum noise, when a given deployment scheme

Figure 3: The DAG conversion of the quantum circuit.

cannot meet user requirements (e.g., realize greater than 0.9
fidelity), we tend to provide a list of candidate deployment
strategies to ensure the successful execution of user functions
as much as possible.

4 Design Details of QCDeploy

4.1 Architecture and Overview

In Figure 2, we depict a high-level architecture of QCDe-
ploy, including key components of quantum circuit represen-
tation and learning to rank module. Among them, the func-
tions (i.e., quantum circuits) arrive sequentially over time.
Then, the function circuit will be converted into a Directed
Acyclic Graph (DAG) to feed the Graph Convolutional Net-
work (GCN) [Kipf and Welling, 2017] for embedding vector
extraction. To enhance the representation, a tailored graph
contrastive learning module is used to train the GCN param-
eters. Subsequently, the learning to rank module is used to
generate a list of candidate deployment strategies.

4.2 Quantum Circuit Representation

A quantum circuit can be converted into a Directed Acyclic
Graph (DAG), as illustrated in Figure 3. In this representa-
tion, each quantum gate corresponds to a node in the graph,
and the qubits serve as edges connecting these nodes. For in-
stance, a two-qubit gate results in a node with both in-degree
and out-degree equal to 2, such as the CX gate in the BV 3 ex-
ample shown in Figure 3. Note that the resulting DAG from a
quantum circuit may be a MultiDiGraph, which allows mul-
tiple (parallel) edges between the same pair of nodes. For-
mally, a quantum circuit DAG (i.e., graph) can be defined as
G = {V, A}, where V is the gate set consisting of n nodes
{v1, · · · , vn}, and A ∈ Rn×n is a symmetric matrix used
to characterize the adjacency relationship for nodes. Specif-
ically, aij = 1 indicates an edge between nodes vi and vj ,
and 0 otherwise. To record the edge number of nodes, the
node degree matrix is defined as D = diag(d1, · · · , dn) with
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Algorithm 1 Contrastive Learning for Circuit Graph

Input: The initialized GCN-based graph embedding model
M, the quantum circuit graph dataset S

Output: The well-trained modelM
1: # Generate graph view with random perturbations
2: procedure GENE GRAPH VIEWS(g)
3: g′ ← copy(g)
4: edges← list(g′.edges(keys=true)) ▷ Multiple edges
5: Initialize the perturbation probability prob
6: for edge ∈ edges do
7: if rand().item() < prob then
8: g′.remove edge(edge)
9: end if

10: end for
11: return g′.feature, g′.edges
12: end procedure
13: # The training pipeline
14: Initialize the optimizer
15: Initialize the self-supervised contrastive loss criterion
16: for g ∈ S do
17: optimizer.zero grad()
18: feature1, edge1 ← Gene graph views(g)
19: feature2, edge2 ← Gene graph views(g)
20: zi ←M(feature1, edge1)
21: zj ←M(feature2, edge2)
22: loss← criterion(zi, zj)
23: loss.backward()
24: optimizer.step()
25: end for
26: return The well-trained modelM

di=
∑n

j=1 aij .

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , D =

d1 · · · 0
...

. . .
...

0 · · · dn

 (1)

In addition, we generate one-hot vectors for each node in
the graph and stack them to form the feature matrix. Specif-
ically, the nodes considered include 10 types, i.e., {‘barrier’,
‘in’, ‘out’, ‘cx’, ‘cz’, ‘h’, ‘rz’, ‘u1’, ‘u3’, ‘x’}. Among them,
‘barrier’, ‘in’, and ‘out’ belong to circuit control nodes, cor-
responding to circuit logic partitioning, quantum state initial-
ization, and quantum state measurement, respectively. And
{‘cx’, ‘cz’, ‘h’, ‘rz’, ‘u1’, ‘u3’, ‘x’} correspond to various
single-qubit gates and two-qubit gates. Therefore, each node
is finally mapped into a 10-dimensional one-hot vector, and
the feature matrix of the circuit graph is represented as an
n× 10 matrix.

4.3 Graph Vector Embedding
We employ a Graph Convolutional Network (GCN) [Kipf
and Welling, 2017] model to extract the embedding repre-
sentations of the circuit DAG. Specifically, GCN transforms
each node vector of size f (i.e., the dimension of node in-
put) into a vector of size c (i.e., the embedding dimension)
through multiple graph convolutional layers. At the final

Figure 4: Mapping node connections based on chip and strategy.

layer, the embedding vectors of all nodes are averaged to ob-
tain the embedding representation of the DAG. Formally, let
X(l) = {x(l)

1 , · · · , x(l)
n } ∈ Rn×c (l ∈ {1, · · · , L}) denotes

the node feature matrix after layer l and the row feature vector
of node i represented as x(l)

i = {h0, · · · , hc−1} ∈ Rc (espe-
cially, x(0)

i ∈ Rf ). These vectors are updated at every layer,
so as to construct a hierarchical profile with higher-level vec-
tors representing broader and more abstract properties.

At each GCN layer, the vector of each node is first trans-
formed by a learned matrix W (l) ∈ Rf×c as x̃

(l)
i =

x
(l−1)
i W (l). Then, each node’s representation vector is aver-

aged with that of its direct neighbors, which allows this node
to include its neighbor qubit information, effectively captur-
ing the topological structure of the quantum circuit.

x
(l)
i ←

n∑
j=1

aij√
didj

x̃
(l)
j , ∀i ∈ {1, 2, . . . , n} (2)

Furthermore, a non-linear function σ is applied at the end to
complete updating the node representation vectors for the cur-
rent layer. More compactly, we can express the above update
in matrix form as X(l) ← σ(ĀX(l−1)W (l)), where σ usually
employs ReLU activation function (i.e., σ(x) = max(0, x)),
and Ā = D−1/2(A + I)D−1/2 is the normalized adjacency
matrix (I refers the identity matrix).

Next, we will adopt self-supervised contrastive learn-
ing [You et al., 2020] to train the GCN embedding model pa-
rameters. The contrastive learning workflow is summarized
in Algorithm 1. Given quantum circuit graph dataset S , take
out a specific circuit g, and call the Gene graph views func-
tion to generate two views of g after random perturbations.
Particularly, perturbation refers to randomly removing edge
connections with a certain probability (lines 1∼12 in Algo-
rithm 1). Subsequently, a tailored self-supervised contrastive
learning loss is defined as follows:

L = − log
exp (z̃i · z̃j/τ)∑n

k=1 exp (z̃i · z̃k/τ) + ϵ
(3)

where z̃i and z̃j are the normalized results of the embedding
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Figure 5: Three types of quantum chip topologies.

vectors (zi and zj at lines 20∼21 in Algorithm 1). In Eq. (3),
the numerator calculates the positive-pair score, while the de-
nominator represents the negative-pair score. Moreover, ·
represents the dot product, τ is the temperature hyperparam-
eter [He et al., 2020], and ϵ is a small value to prevent numer-
ical instability. The above contrastive learning loss is used
to calculate the embeddings from both graph views. Then,
the loss is backpropagated through the network, and the opti-
mizer updates the model’s parameters. Finally, we can obtain
a well-trained modelM, which enables effectively extracting
embedding representations of quantum circuit graphs.

4.4 Candidate Deployment Strategy Generation
Given a quantum circuit graph, its virtual circuit (before
deployment) assumes that all qubits are interconnected, as
shown in the upper part of Figure 4. However, on a physi-
cal quantum chip, there is a certain connection relationship
between qubits (i.e., chip topology). In addition, the deploy-
ment strategy will directly affect the connection relationship
between qubits in the physical quantum circuit. A specific ex-
ample is shown in the lower part of Figure 4, the qubit map-
ping from virtual to physical reference {0:1, 1:0, 2:2}. Thus,
q[0] and q[1] are connected to each other in virtual circuits
(due to q[1] is connected with q[0] in physical circuit); q[0]
and q[2] are connected to each other in virtual circuits (due to
q[1] is connected with q[2] in physical circuit).

For a specific deployment strategy mapping into a circuit
graph, we can extract its graph vector embedding (in § 4.3),
and the top node representations X(L) (after L layers) are cas-
caded with the average function, and the embedding vector
representation of the circuit DAG can be denoted as follows.

E = average(x(L)) =
ehk∑c−1
k=0 e

hk

(4)

To generate the candidate strategies, we use RankFormer
architecture [Buyl et al., 2023] in QCDeploy, a list-aware
Transformer designed for Learning-to-Rank (LTR) tasks. Let
Ei represent the embedding vector for the i-th deployment
strategy. The embedding vectors E1,E2, . . . ,En are fed into
a Transformer encoder. The Transformer processes these vec-
tors to capture interdependencies among items within the list.

H = Transformer(E1,E2, . . . ,En) (5)

Each item’s features hi are passed through a scoring head to
produce a raw score si. This scoring head typically consists
of a linear layer followed by an activation function.

si = ScoreHead(hi) (6)

Figure 6: Visualization of 100 testing groups of function sets.

In addition to individual item scores, QCDeploy also models
the overall quality of the list using the [CLS] token’s output
from the Transformer, denoted as hCLS.

q = ListAssessmentHead(hCLS) (7)

The final score for each item is a combination of its raw score
si and the list’s quality score q. This combination ensures that
per-item scores are adjusted based on the overall list quality.

s′ = s+ αq (8)

where α is a learnable parameter that controls the influence
of the listwide quality on individual scores. The items are
then ranked based on their final scores s′. The ranking can be
formally represented as sorting the indices i based on s′i:

Ranking = argsort(s′) (9)

Overall, QCDeploy will produce the candidate strategy list
based on embedding vectors of deployment strategies.

5 Evaluation
In this section, we comprehensively evaluate the quantum
serverless circuit deployment effect by QCDeploy, with code
available in the online repository1.

5.1 Experiment Setup
Testbeds. We use OpenWhisk [Apache, 2021] to imple-
ment the quantum serverless framework, given that Open-
Whisk is an open-source, distributed serverless computing
platform that provides a flexible and scalable environment for
running code snippets or functions without the need to man-
age infrastructure. Specifically, we deploy the IBMQ as the
backend and employ IBM Qiskit [Aleksandrowicz and oth-
ers, 2019] to conduct quantum experiments. Three quantum
machines [‘IBMQ Lima’, ‘IBMQ Manila’, ‘IBMQ Jakarta’]
are utilized, and these machines consist of three distinct topo-
logical structures of quantum chips, as shown in Figure 5. For
the quantum circuit deployment baseline, we use the default
scheme of IBM [IBM, 2022a; IBM, 2022b] quantum comput-
ing platform as the competing algorithm, which is consistent
with existing work [Wang et al., 2022].
Basic Quantum Circuits. For serverless function orches-
tration experiments, we generate a series of basic quantum

1Repository https://github.com/Secbrain/QCDeploy.
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Candidate Number of strategies = 10 Number of strategies = 20 Number of strategies = 30
Qubit qubit = 3 qubit = 4 qubit = 5 qubit = 3 qubit = 4 qubit = 5 qubit = 3 qubit = 4 qubit = 5

IBMQ Lima 87.47±0.09 83.41±0.12 92.03±0.08 73.30±0.11 73.53±0.18 78.15±0.15 68.67±0.09 69.12±0.21 75.83±0.15
IBMQ Manila 89.22±0.08 88.23±0.09 86.32±0.13 72.11±0.15 74.29±0.14 75.01±0.19 70.29±0.12 72.03±0.16 71.62±0.21
IBMQ Jakarta 82.42±0.15 89.12±0.10 84.47±0.18 73.04±0.15 75.90±0.16 74.45±0.18 66.96±0.15 71.22±0.17 68.51±0.22

Candidate Number of strategies = 40 Number of strategies = 50 Number of strategies = 60
Qubit qubit = 3 qubit = 4 qubit = 5 qubit = 3 qubit = 4 qubit = 5 qubit = 3 qubit = 4 qubit = 5

IBMQ Lima 65.66±0.12 69.03±0.24 72.65±0.16 60.16±0.18 66.49±0.27 72.78±0.18 60.03±0.21 65.80±0.28 71.51±0.19
IBMQ Manila 67.95±0.10 71.59±0.20 69.31±0.22 63.68±0.12 69.33±0.22 68.43±0.24 61.48±0.13 67.64±0.23 65.17±0.28
IBMQ Jakarta 66.34±0.09 68.40±0.18 64.83±0.25 65.96±0.09 66.54±0.20 59.68±0.26 65.36±0.10 66.54±0.19 60.75±0.24

Table 1: The averaged NDCG results for different numbers of candidate strategies, under various qubit settings and different devices.

Figure 7: Visualization of generated strategies by QCDeploy for
IBMQ Manila. Lighter colors represent better deployment schemes.

circuits as the function to be executed. Specifically, 15
classical quantum algorithm circuits [Zhang et al., 2023a;
Li et al., 2019; Li et al., 2020b; Li et al., 2020a] are used, in-
cluding [‘BV’, ‘Clifford’, ‘Grover’, ‘Ising’, ‘QFT’, ‘QKNN’,
‘QNN’, ‘QPE’, ‘QSVM’, ‘QuGAN’, ‘RB’, ‘Shor’, ‘Simon’,
‘VQC’, ‘XEB’], that cover commonly used quantum algo-
rithm circuits. For each algorithm, we set the used qubit
ranging from [3, 5], resulting in a total of 45 original circuits.
These 45 (i.e., 15 algorithms× 3 types of qubit settings) orig-
inal circuits will be transpiled onto 3 quantum devices with
three types of chip topologies.
Function Groups. For function sets, we randomly generate
200 groups from the original circuits, and each group com-
prises a random number of circuits ranging from [20, 50].
These 200 groups are divided into training and testing sets
according to 1:1. For 100 testing groups of function sets, we
visualize them in native-generated order in Figure 6 (a), and
Figure 6 (b) corresponding to reordered by circuit index. Note
that the groups with native-generated order in Figure 6 (a) are
the test data for subsequent experiments.

5.2 Generated Strategy Analysis
We analyze the generated strategies based on the Normal-
ized Discounted Cumulative Gain (NDCG) metric [Buyl et
al., 2023], which is widely used to evaluate ranking quality.
Different Number of Candidate Strategies. Under three
quantum devices and three types of qubit settings, we
consider different numbers of candidate strategies (i.e.,
[10, 20, 30, 40, 50, 60]), calculate the NDCG results of the

Figure 8: The loss and NDCG curves during model training.

generation strategies by QCDeploy and summarize them
in Table 1. It is clear that when the number of candi-
dates is smaller, QCDeploy realizes better results, e.g., un-
der IBMQ Lima and qubit = 5, the NDCG is 92.03% for
10 candidate strategies. Even when considering 60 candidate
strategies, QCDeploy can still achieve more than 60% NDCG
results. This demonstrates the effectiveness of QCDeploy be-
cause we can usually narrow the candidate deployment strate-
gies to less than a dozen by combining the topological con-
nections between circuits and quantum chips.
Deployment Strategy Visualization. Furthermore, we vi-
sualize the generated strategies to provide more in-depth in-
sights. Among them, the lighter the color of the block, the
better the deployment strategy. Figure 7 shows 15 circuits
with three types of qubit settings on IBMQ Manila (results of
other devices can be found in the online repository), QCDe-
ploy almost generates excellent deployment strategy lists, in
which colors are arranged from light to dark. In addition,
even if the first one is a suboptimal deployment strategy in
some cases, the candidate strategy list generated by QCDe-
ploy can support the optimal deployment strategy within a
limited number of times.
Convergence Process during Training. We record the train-
ing loss and NDCG logs and plot them in Figure 8. It can be
seen that the model converges quickly. At about Epoch = 25,
the loss value drops to a lower level, and then NDCG gradu-
ally approaches the highest value at about Epoch = 75.

5.3 Deployment Effectiveness Evaluation
Next, we evaluate the practical deployment effect with IBMQ
physical machines as the backend.
Circuit Execution Time Analysis. For three quantum ma-
chines, we randomly select 10 sets of functions and ana-
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Figure 9: The circuit execution time analysis.

lyze the execution time of each quantum circuit. As shown
in Figure 9, our solutions all outperform the default de-
ployment strategy of IBMQ. For example, for G10 under
IBMQ Manila machine, the maximum execution time is re-
duced from ∼78µs to ∼64µs, which realizes 17.95% over-
head reduction. This demonstrates that vector embedding
design and graph contrastive learning in QCDeploy can ef-
fectively extract quantum circuit representations, thereby en-
abling remarkable deployment strategy generation.
Function Execution Success Rate. Moreover, we consider
a conditionally constrained setting in the real world where
users have requirements on the execution overhead and fi-
delity of functions. Specifically, we set the execution fi-
delity greater than 0.9 as the success condition. We plot four
groups of function sets from the testset in Figure 10, based
on the IBMQ Lima machine. We can observe that, at the end
of each function set, the success rate of IBMQ is between
40% to 80%. In contrast, all our solutions achieve a 100%
success rate. The black star mark indicates that this func-
tion succeeded after executing two candidate strategies. In
other words, in the candidate list generated by QCDeploy,
the first one cannot meet the fidelity condition, while the sec-
ond strategy can meet the requirement. This highlights that
the Learning-to-Rank design in QCDeploy is able to priori-
tize and recommend the optimal deployment strategy, thereby
supporting low execution overhead and high fidelity within a
limited number of times to meet user needs.

6 Discussion
Practicability of Quantum Serverless FaaS. In the realm of
quantum computing, the efficient orchestration of quantum

Figure 10: The execution success rate of function sets.

resources is paramount to enhancing the performance and
scalability of quantum algorithms. Motivated by the current
advancements in Function-as-a-Service (FaaS) and Quantum-
as-a-Service (QaaS) [Nguyen et al., 2024b], our research
aligns with the ongoing technological convergence of these
paradigms and explores their architectural integration. Fur-
thermore, our proposed approach is also readily applicable to
major quantum cloud service providers, such as IBM, Ama-
zon Web Services (AWS), Microsoft Azure, Google Cloud
Platform, and so on [Nguyen et al., 2024a]. This compati-
bility underscores the practical extensibility of our method in
real-world quantum computing infrastructures.
Limitations and Future Work. For different users, there
may be some specific patterns in circuit architectures (or
scale), so considering fine-grained customer-customized or-
chestration solutions may be an interesting and promising
direction. As part of future work, we will explore more
advanced neural network architectures that can be inte-
grated into the QCDeploy framework to enhance its decision-
making capabilities. Furthermore, quantum noise [Patel and
others, 2020; Li et al., 2024b] can also be considered and
used as input for function orchestration action to build higher-
fidelity circuits on physical machines. Finally, which compo-
nents can be parallelized to run more efficiently will be con-
sidered in subsequent work.

7 Conclusion
In this paper, we present QCDeploy, to provide a list of ef-
fective deployment strategies to optimize quantum serverless
circuit deployment. Given the properties of quantum cir-
cuits, QCDeploy designs the tailor-made circuit representa-
tion scheme, including DAG conversion and GCN embed-
ding vector feature extraction. Moreover, QCDeploy lever-
ages graph contrastive learning for mining node connection
patterns and learning-to-rank architecture to generate a list of
candidate strategies. Based on 3 IBM quantum physical de-
vices, extensive experiments with 45 quantum algorithm cir-
cuits demonstrate that QCDeploy can effectively reduce cir-
cuit execution time and improve execution success rate.
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