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Abstract

Large language models (LLMs) are increasingly
being adopted to develop general-purpose AI
agents. However, it remains challenging for
these LLM-based AI agents to efficiently learn
from feedback and iteratively optimize their strate-
gies. To address this challenge, tremendous efforts
have been dedicated to designing diverse feedback
mechanisms for LLM-based AI agents. To provide
a comprehensive overview of this rapidly evolving
field, this paper presents a systematic review of
these studies, offering a holistic perspective on the
feedback mechanisms in LLM-based AI agents.
We begin by discussing the construction of LLM-
based AI agents, introducing a generalized frame-
work that encapsulates much of the existing work.
Next, we delve into the exploration of feedback
mechanisms, categorizing them into four distinct
types: internal feedback, external feedback, multi-
agent feedback, and human feedback. Additionally,
we provide an overview of evaluation protocols and
benchmarks specifically tailored for LLM-based AI
agents. Finally, we highlight the significant chal-
lenges and identify potential directions for future
studies. The relevant papers are summarized and
will be consistently updated at https://github.com/
kevinson7515/Agents-Feedback-Mechanisms.

1 Introduction
An artificial intelligence (AI) agent refers to an autonomous
system that performs tasks, makes decisions, or interacts with
its environment based on a set of rules, training, or learned
knowledge [Wang et al., 2024b]. Traditional feedback sys-
tems, such as symbolic [Xi et al., 2025] or reinforcement
learning-based agents [Xi et al., 2025; Cheng et al., 2024],
are often limited by rigid predefined rules or heuristic policy
functions, which markedly diverge from the human learning
process, where individuals demonstrate the ability to adapt
flexibly across diverse contexts and learn from unstructured
feedback. Consequently, the agents developed in these

∗corresponding author

studies often fall short of replicating human-level general-
purpose decision-making abilities [Durante et al., 2024].

Recently, large language models (LLMs) [Ouyang et al.,
2022; OpenAI, 2023] have shown remarkable success across
diverse tasks, exhibiting human-like reasoning and decision-
making capabilities [Xi et al., 2025]. Building upon this
success, there has been a surge of research interest [Cheng et
al., 2024] in employing LLMs as central controllers to con-
struct general-purpose AI agents capable of processing input
and executing actions in open-domain scenarios. However, a
critical challenge remains: LLM-based AI agents struggle to
learn quickly and efficiently from trial-and-error processes in
a manner comparable to humans. Consequently, the feedback
mechanism has emerged as an increasingly vital component
in LLM-based AI agents. This mechanism analyzes and eval-
uates behavioral data, environmental responses, and historical
trajectories to guide agents in refining their strategies and
actions. Researchers have developed numerous promising
feedback mechanisms, spanning from reinforcement learn-
ing [Akyürek et al., 2023], self-refine [Madaan et al., 2024]
to multi-model debate [Du et al., 2024a]. However, these
models were developed independently, with limited efforts
made to summarize and compare them holistically. While
several surveys [Pan et al., 2024; Madaan et al., 2024] offer
a general perspective of feedback, they focus on LLMs rather
than the AI agents which operate within a broader ecosystem
of interactions and decision-making processes. The feedback
mechanism for LLM-based AI agents is more complex than
for standalone LLMs, as it involves not only the refinement
of language generation but also the agent’s ability to interpret,
learn from, and adapt to feedback continuously.

To fill this gap, we shed light on recent advances in
feedback mechanisms for LLM-based AI agents. We start
by introducing a generalized framework of LLM-based AI
agents (§2). We then present a taxonomy of recent studies
on feedback mechanisms for LLM-based AI agents (§3),
categorized as internal feedback, external feedback, multi-
agent feedback, and human feedback. After that, we sum-
marize the evaluation method and benchmarks specifically
tailored for assessing feedback mechanisms (§4). Finally, we
compare the representative methods of each category on three
benchmarks (§5) and analyze the limitations of existing work
and highlight important directions for future research (§6).
We advocate collaborative efforts within the community to
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pave the way toward the ultimate goal of Artificial General
Intelligence (AGI). The contributions of this work can be
summarized as: (1) we present a structured taxonomy that
categorizes existing works into four categories; (2) we pro-
vide the first comprehensive survey of recent advancements in
feedback mechanisms for LLM-based AI agents, encompass-
ing methodologies, evaluation protocols, and benchmarks;
(3) we discuss the remaining limitations of current research
and point out potential directions for future work.

2 Preliminary: A Unified Framework for
LLM-based AI agents

Recent advances in LLM-based AI agents have tended to be
modularized to improve the agent’s efficiency, adaptability,
and scalability. Inspired by previous studies [Cheng et al.,
2024; Durante et al., 2024], we propose a unified framework
to summarize these modules. As shown in Figure 1, an LLM-
based AI agents is composed of five modules: perception,
planning, feedback, memory, and action. The core functions
and roles of each module are described below:

Perception: The perception module enables AI agents to
analyze and understand environmental inputs, identifying key
patterns to support task execution.

Planning: The planning module helps AI agents break
down complex tasks into simpler sub-tasks, generating plans
and guiding actions to ensure logical and reliable behavior.

Memory: The memory module stores past experiences to
support decision-making, with long-term memory preserving
stable knowledge and short-term memory handling real-time
task information, thus enabling AI agents to accumulate
expertise and transfer knowledge between different scenarios.

Action: The action module translates decisions into op-
erational outputs, interacting with the environment through
tools, APIs, and embodied actions, bringing the agent’s
capabilities to real-world applications.

Feedback: The feedback module serves as a critical
component in equipping AI agents with self-reflection and
self-optimization capabilities. Leveraging the power of
LLMs, this module facilitates the agent’s ability to critically
evaluate its prior decisions and actions, enabling dynamic
adjustments and optimizations that enhance both intelligence
and adaptability. This mechanism is particularly crucial for
achieving continuous evolution in complex environments,
ensuring more reliable and efficient task execution.

Moreover, the feedback module is tightly coupled with
the memory and planning modules, collectively optimizing
the agent’s decision-making and execution. Taking Voy-
ager [Wang et al., 2023] iron-smelting task as an example:
Check furnace inventory → Discover no furnace → Retrieve
skills → Refer to chest crafting skill to craft a furnace →
Place the furnace → Check raw iron inventory → Smelt 5
raw iron. When detecting the absence of a furnace in the
inventory, the feedback module critiques this failure state,
triggering a skill retrieval mechanism, thereby guiding the
agent to learn furnace crafting.

Figure 1: A unified framework for LLM-based AI agents.

3 Taxonomy of Feedback Mechanisms
As shown in Figure 2, we present a structured taxonomy
that organizes existing research into four core categories:
(1) Internal Feedback, where AI agents generate feedback
internally to refine their strategies and actions; (2) External
Feedback, where AI agents leverage external models or
tools to enhance feedback quality; (3) Multi-agent Feedback,
where multiple agents interact and provide feedback to one
another; and (4) Human Feedback, where humans act as the
primary source of feedback to guide agent behavior.

We illustrate the basic flow of each category in Figure 3
and summarize the representative works, feedback format,
learning strategy, iteration (or not), and application tasks
associated with each category in Table 1.

3.1 Internal Feedback
As shown in Figure 3(a), Internal feedback originates from
the agent itself and serves to motivate proactive exploration,
learning, and self-improvement. This type of feedback does
not rely on explicit external goals; instead, it encourages
the agent to discover latent patterns, generalize strategies,
and develop adaptive behaviors [Liu et al., 2025]. Internal
feedback often manifests as signals generated and utilized
by the model itself [Pan et al., 2024]. For example, in
internal feedback mechanisms based on Chain of Thought
(CoT) reasoning, the model is prompted to generate answers
with explanations. By identifying and reinforcing reasoning
chains that lead to correct answers, the model’s behavior can
be fine-tuned, improving performance even without explicit
external supervision. This process can be iterative, contin-
uously enhancing the model’s reasoning and generalization
capabilities. Depending on whether cross-task knowledge is
used, internal feedback can be categorized into intra-task and
inter-task feedback.

Intra-task feedback refers to the feedback derived from an
agent’s historical steps during its trial-and-error interactions
with the environment, serving as the most relevant and
informative signals to guide the agent’s future actions. For
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Figure 2: Taxonomy of feedback mechanisms for LLM-based AI agents.

example, ReAct [Yao et al., 2023] uses LLMs to generate rea-
soning trajectories and task-specific actions in an interleaved
manner, improving the ability to solve complex tasks. Self-
Refine [Madaan et al., 2024] improves the initial output of
LLMs by iterative feedback and refinement during the same
task, leading to higher quality and more accurate results.
Inter-task feedback involves the transfer of knowledge and
experience across tasks, enabling the agent to apply lessons
learned from previous tasks to adapt to new or similar tasks.
Reflexion [Shinn et al., 2024] derives experiences from past
tasks and applies them in subsequent tasks to improve perfor-
mance in new scenarios. ExpeL [Zhao et al., 2024] retrieves
and analyzes similar past trajectories, identifying success
patterns by contrasting positive and negative examples.

Discussion: Intra-task feedback enables rapid optimiza-
tion for the current task, but its task-specific nature limits
broader knowledge learning and accumulation. Conversely,
inter-task feedback facilitates cross-task learning and long-
term experience integration, while it demands substantial
memory to store historical task experience. The fundamental
challenge lies in effectively combining these complementary
approaches to harness their respective strengths.

3.2 External Feedback
External feedback, as illustrated in Figure 3(b), comprises
environment-defined signals that evaluate and guide an
agent’s behavior toward goal achievement. For example, in
reinforcement learning, scores, task completion indicators,
and success rates are all forms of external feedback. In AI

agents, external feedback is usually provided by independent
feedback models or external tools (such as compilers, search
engines, or world models). Based on the external modules
involved, external feedback can be categorized into web
knowledge, game API, code interpreter, and world model.

Web knowledge is widely used to enhance AI agents’
feedback capabilities. WebGPT [Nakano et al., 2021] enables
web-based question answering by searching and browsing
online content, then refining answers through user feedback.
Game API serves as a key resource for improving agent
functionality and adaptability. Voyager [Wang et al., 2023]
introduces an iterative hinting mechanism that combines exe-
cution errors and self-validation to enhance program quality.
Some approaches employ code interpreters to boost feedback
effectiveness. StepCoder [Dou et al., 2024] learns from com-
piler feedback, improving its ability to understand complex
requirements and generate better code. World model facili-
tates feedback loops by allowing AI agents to incorporate and
adapt to real-world sensory and environmental data. PaLM-
E [Driess et al., 2023] integrates real-world sensor feedback
and visual feedback into a language model to establish a link
between words and perceptions.

Discussion: External feedback offers LLM-based AI
agents additional insights that they might not obtain through
self-improvement alone. However, the effectiveness of such
feedback is highly dependent on the quality and relevance of
external information. Therefore, optimizing the acquisition
and processing mechanism of external feedback is crucial to
boosting the performance of LLM-based AI agents.
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Figure 3: Illustrations of different feedback mechanisms for LLM-based AI agents.

3.3 Multi-Agent Feedback
Multi-agent feedback, shown in Figure 3(c), mimics multi-
agent interactions where diverse perspectives converge to
improve solutions. This process promotes knowledge shar-
ing and stronger decision-making in either collaborative or
adversarial ways.

Collaborative approaches encourage divergent thinking,
where each agent presents and discusses its own points
of view in multiple rounds, with the optimal solution as
the final answer. MetaGPT [Hong et al., 2024] employs
an executable feedback loop for iterative code refinement,
with agents collaboratively enhancing code quality using
execution history and debug logs. InteRecAgent [Huang et
al., 2023] adopts a dual-role feedback mechanism, pairing a
recommender agent with a reviewer agent to evaluate results
and identify execution errors. Adversarial approaches aim
to improve the quality of the output by employing multiple
agents to debate the same viewpoints in multiple rounds until
a consensus is reached. Du et al. [2024a] proposed a multi-
agent debate framework, featuring multiple agents expressing
their arguments in a “tit-for-tat” state, and a judge manages
the debate process toward final resolutions.

Discussion: In a multi-agent system, agents take on dis-
tinct roles and responsibilities, coordinating their actions to
achieve shared goals, which reduces the burden on individual
agents and enhances task performance. However, challenges
such as coordination, reward alignment, and learning stability
persist. For coordination, when three or more agents freely
express their views, discussions may become uncontrolled;
Solutions like introducing a dedicated coordination agent
(e.g., ChatLLM [Hao et al., 2023]) can integrate responses
to refine the final answer. Regarding reward alignment,
misaligned goals and reward functions among agents may
lead to conflicts or suboptimal outcomes. CollaQ [Zhang et
al., 2020] addresses this by decomposing reward allocation to
provide an innovative solution for decentralized Q-functions.
For learning stability, multi-agent negotiations may converge
on incorrect consensuses, PRD [Li et al., 2023] peer-ranking
algorithm analyzes pairwise preferences to generate a final
ranking, ensuring more accurate consensus answers.

3.4 Human Feedback
As shown in Figure 3(d), human feedback enables agents to
iteratively refine their behavior according to human feedbacks

while performing the task. Human feedback manifests in
three primary forms: instructional feedback, corrective feed-
back, and preference-based feedback.

Instructional feedback provides direct task guidance
through explicit human instructions. For instance, WebGPT
[Nakano et al., 2021] uses imitation learning to train models
by setting tasks in a way that humans can perform them
and then optimizes the quality of answers through user
feedback. Corrective feedback is provided when the agent’s
behavior deviates or contains errors, and humans intervene
to correct these mistakes or guide improvements. Abramson
et al. [2022] developed a 3D simulation framework captur-
ing human corrections when agents stray from goals. Re-
HAC [Feng et al., 2024b] includes a policy model designed to
determine the most opportune stages for human intervention
within the task-solving process. Preference-based feedback
shapes agent behavior through human preferences or choices.
PrefCLM [Wang et al., 2025] introduces a human-in-the-loop
pipeline that facilitates collective refinements based on user
comparative feedback to train robots.

Discussion: Human feedback is closely tied to human
values, guiding an agent’s behavior and learning through
direct human input. However, relying solely on human
feedback is often impractical due to limited resources or real-
time constraints, as it often requires continuous monitoring,
evaluation, and adjustment by experts to ensure the agent
aligns with desired outcomes. Several solutions have been
proposed, such as LLM-as-a-judge [Zheng et al., 2023],
which leverages the scalability and interpretability of LLMs
to reduce the need for human intervention, providing scores
and explanations, but it suffers from positional bias, verbosity
bias, and limitations in evaluating mathematical problems.
Agent-as-a-judge [Zhuge et al., 2024] integrates agent capa-
bilities to provide intermediate feedback during task resolu-
tion, achieving better consistency with human evaluators.

Ethical concerns about human feedback are growing.
Specifically, human feedback mechanisms have the potential
to introduce biases into the training data, particularly along
lines of gender, race, and culture, which in turn can amplify
the inherent biases within LLMs. To mitigate these risks,
future research should prioritize the development of more
diverse learning methodologies, such as the integration of
culturally representative datasets and the enhancement of
cultural awareness in model design.
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Method Subcategory Representative Works Format Learning Iteration Domain

Internal
Feedback

Intra-task

ReAct [Yao et al., 2023] NL ICL ✗ QA, Fact Verification
Reflextion [Shinn et al., 2024] NL ICL ✓ QA, Code Generation

Self-Refine [Madaan et al., 2024] NL ICL ✓ Multiple Tasks
Self-Check [Miao et al., 2024] NL ICL ✓ Arithmetic Reasoning
AdaPlanner [Sun et al., 2023] Code ICL ✓ Embodied Action, Web Browsing

Mirror [Yan et al., 2024] NL ICL ✓ Reasoning, Fact Verification
Self-Correct [Welleck et al., 2023] NL / Scalar SL ✓ Reasoning, Generation, Toxicity

Inter-task

Reflexion [Shinn et al., 2024] NL ICL ✓ QA, Code Generation
ExpeL [Zhao et al., 2024] NL ICL ✓ Multiple Tasks

Retroformer [Yao et al., 2024] NL SL ✓ QA, Embodied Action, Web Browsing
RAP [Kagaya et al., 2024] Scalar ICL ✓ Planning, Reasoning

Generative Agents [Park et al., 2023] NL ICL ✗ Social Simulation
PreAct [Fu et al., 2025] NL ICL ✓ Multiple Tasks

Trial and Error [Song et al., 2024] Scalar IL & RL ✓ Web Navigation, Embodied Action

External
Feedback

Web Knowledge
WebGPT [Nakano et al., 2021] NL IL & RL ✓ QA

AutoWebGLM [Lai et al., 2024] NL IL & RL ✓ Web Browsing
WebShop [Yao et al., 2022] Scalar IL & RL ✓ Web Shopping

Game API

Voyager [Wang et al., 2023] NL ICL ✗ Build Tools
JARVIS-1 [Wang et al., 2024c] NL ICL ✗ Build Tools

CALM [Yao et al., 2020] NL / Scalar RL ✓ Text Games
CRADLE [Tan et al., 2024] NL ICL ✓ Computer Control, Game Playing

Code Interpreter

CodeAgent [Zhang et al., 2024] NL ICL ✗ Code Generation
StepCoder [Dou et al., 2024] Scalar RL ✓ Code Generation

QueryAgent [Huang et al., 2024] NL / Code ICL ✓ QA
CodeRL [Le et al., 2022] Scalar RL ✗ Code Generation

World Model

RT-1 [Brohan et al., 2022] Scalar IL & SL ✓ Embodied Action
RT-2 [Zitkovich et al., 2023] Scalar IL & SL ✓ Embodied Action
PaLM-E [Driess et al., 2023] Scalar IL & SL ✓ Embodied Action

WorldCoder [Tang et al., 2024] Code RL ✓ Embodied Action

Multi-Agent
Feedback

Collaborative

MetaGPT [Hong et al., 2024] NL / Code ICL ✗ Program
InterAct [Chen and Chang, 2023] NL ICL & RL ✗ Embodied Action
InteRecAgent [Huang et al., 2023] NL RL ✓ Recommendation

AnyTool [Du et al., 2024b] Scalar RL ✗ Tool Usage

Adversarial
ChatLLM [Hao et al., 2023] NL ICL ✓ Classification, Sentiment Reversal

Multiagent Debate [Du et al., 2024a] NL ICL ✓ Reasoning, Factuality
ChatEval [Chan et al., 2023] NL ICL ✓ Text Evaluation

Human
Feedback

Instructional
InstructGPT [Ouyang et al., 2022] NL SL & RL ✗ Multiple Tasks

WebGPT [Nakano et al., 2021] NL IL & RL ✓ QA
COACH [Arumugam et al., 2019] NL RL ✗ Build Tools

Corrective
IBT [Abramson et al., 2022] NL IL & RL ✓ Scripted Probe

TAMER [Warnell et al., 2018] Scalar RL ✗ Embodied Action
ReHAC [Feng et al., 2024b] NL RL ✓ QA, Reasoning, Code Generation

Preference
PrefCLM [Wang et al., 2025] Scalar RL ✗ Control Suite, Embodied Action

DRLHF [Christiano et al., 2017] Scalar RL ✗ Embodied Action
Sparrow [Glaese et al., 2022] NL SL & RL ✓ Dialogue

Table 1: An overview of existing feedback mechanisms for LLM-based AI agents. NL refers to natural language, ICL refers to in-context
learning, SL refers to supervised learning, RL refers to reinforcement learning, and IL refers to imitation learning.

4 Evaluation and Benchmark
4.1 Evaluation
Although LLM-based AI agents have demonstrated remark-
able capabilities in downstream tasks, the question of how
to effectively evaluate feedback mechanisms remains unre-
solved. Current studies can be broadly categorized into
Outcome-based evaluation and Process-based evaluation.

Outcome-based evaluation: Presently, most evaluations
are Outcome-based evaluation, relying on the assessment of
feedback mechanisms through end-to-end agent task perfor-
mance. These methods typically measure the effectiveness of
feedback mechanisms based on task success rates. Olausson
et al. [2023] analyze LLMs’ self-repair capabilities on the
APPS coding benchmark, where the feedback mechanism
is evaluated by the pass rate of programming tasks. Trav-
elPlanner [Xie et al., 2024] assess feedback mechanisms
by assigning agents constrained travel planning tasks and
measuring tool usage error rates and planning failure rates.
While providing valuable insights, these indirect evaluations

often oversimplify the assessment process by focusing on
aggregate outcomes rather than granular performance details.

Process-based evaluation: Traditional agent evaluation
methods tend to focus solely on final outcomes, overlooking
critical details during execution or relying heavily on manual
assessment. Recently, DevAI [Zhuge et al., 2024] enables
agents to evaluate each other, assessing both the final out-
comes and intermediate execution steps for richer feedback.
AMOR [Guan et al., 2024] solves problems through au-
tonomous executions and transitions over disentangled mod-
ules, allowing to provide feedback to the individual modules,
and thus naturally forms process supervision.

Discussion: Gaps remain in developing robust quanti-
tative indicators for self-correction across diverse domains.
Factors like learning stage, task complexity, and environ-
mental diversity can significantly impact feedback effec-
tiveness, highlighting the need for a more comprehensive
evaluation system. Therefore, it is necessary to develop
a more comprehensive feedback evaluation framework that
integrates both Outcome-based and Process-based metrics.
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Domain Benchmark Size Major Modalities Evaluation Method Task

Reasoning

HotPotQA [Yang et al., 2018] 113k Q&A pairs text Outcome-based fact extraction and verification
ScienceQA [Lu et al., 2022] 21k Q&A pairs text, image Outcome-based science QA

StrategyQA [Geva et al., 2021] 2.7k Q&A pairs text Outcome-based multi-step QA
FEVER [Thorne et al., 2018] 185k claims text Outcome-based fact extraction and verification

Virtual World
ALFWorld [Shridhar et al., 2020] 3.1k examples text, image Outcome-based low-level actuation

IGLU [Mehta et al., 2024] 8k data text, 3D Outcome-based create structure
Minecraft [Wang et al., 2023] 58 items 3D Outcome-based build tools

Embodied Action
Franka-Kitchen [Gupta et al., 2020] 400 demonstrations 3D Outcome-based household action

Meta-World [Yu et al., 2020] 50 tasks 3D Outcome-based manipulation action
RT-X [Padalkar et al., 2023] 1m trajectories 3D Outcome-based household action

Web Navigation

WebShop [Yao et al., 2022] 1.8k examples, 12k instructions text, image Outcome-based web shopping
WebArena [Zhou et al., 2023] 812 tasks text, image Outcome-based web browsing
Mind2Web [Deng et al., 2024] 2k tasks text, image Outcome-based web browsing
WebVoyager [He et al., 2024] 300 tasks text, image Outcome-based web browsing

Code Generation

DevAI [Zhuge et al., 2024] 55 tasks text, iamge Process-based code generation
MBPP [Austin et al., 2021] 1k problems text Outcome-based code generation

HumanEval [Chen et al., 2021a] 164 problems text Outcome-based code generation
SWE-Bench [Jimenez et al., 2024] 2k problems text, image Outcome-based code generation

Social Simulation SocialBench [Chen et al., 2024] 6k questions, 30k utterances text Outcome-based role playing, social simulation
SocKET [Choi et al., 2023] 58 tasks text Outcome-based social factors, trustworthiness

Tool Usage
ToolBench [Qin et al., 2024] 16k API, 3k tools text, API Outcome-based tool implementation

TravelPlanner [Xie et al., 2024] 1225 plans, 4m data records text, API Outcome-based travel planning
ToolEyes [Ye et al., 2025] 600 tools text, API Outcome-based tool learning

Multi-agent
Collaboration

RocoBench [Mandi et al., 2024] 6 tasks 3D Outcome-based path planning
PARTNR [Chang et al., 2024] 100k tasks, 5k objects 3D Outcome-based house-hold collaboration

VillagerBench [Dong et al., 2024] 3 tasks 3D Outcome-based construction cooporation

Machine Translation WMT [Specia et al., 2021] 14 languages pairs text Outcome-based general machine translation
FLORES-200 [Guzmán et al., 2019] 842 articles, 3k sentences text Outcome-based article machine translation

Financial FiQA_SA [Cheng et al., 2023] 1k documents text, image Outcome-based financial document classification
FinQA [Chen et al., 2021b] 2.8k reports, 8k Q&A pairs text Outcome-based financial numerical reasoning

Multidimensional
evolution AgentBench [Liu et al., 2024] 1.4k samples text, image Outcome-based multiple tasks

Table 2: Common benchmarks for LLM-based AI agents.

In the future, standard evaluation methods in the field of
code generation may use datasets like DevAI for intermediate
process optimization and MBPP [Austin et al., 2021] for
overall performance testing.

4.2 Benchmarks
As presented in Table 2, we summarize and categorize main-
stream benchmarking approaches for evaluating LLM-based
AI agents, with emphasis on their feedback mechanisms.

Reasoning: Reasoning tasks aim to test an agent’s abil-
ity to handle complex reasoning by answering questions.
Common benchmarks include HotPotQA [Yang et al., 2018],
ScienceQA [Lu et al., 2022], FEVER [Thorne et al., 2018],
and StrategyQA [Geva et al., 2021]. ScienceQA involves
multiple-choice questions, but recent studies suggest agents
may exhibit option biases (e.g., favoring option C) rather than
truly understanding the problem. Moreover, this Q&A format
overlooks the reasoning process, where an incorrect process
might still yield a correct result.

Virtual World: Virtual world tasks evaluate an agent’s
decision-making and execution abilities in dynamic, com-
plex environments. Common benchmarks include ALF-
World [Shridhar et al., 2020], IGLU [Mehta et al., 2024], and
Minecraft [Wang et al., 2023]. ALFWorld’s grid-world sim-
plicity may fail to capture real-world ambiguity. Minecraft, a
widely adopted open-world simulation, offers diverse tasks
and vast potential for evaluating simulated environments.
However, this platform encounters difficulties concerning
the transferability of skills from simulation to real-world

application, i.e., the “sim-to-real” transfer problem.
Embodied Action: Embodied tasks test an agent’s inte-

grated abilities in perception, decision-making, and action
execution, typically simulating real-world physical actions
like moving a cup, pouring water, or cleaning an environment.
Common benchmarks include Franka-Kitchen [Gupta et al.,
2020], Meta-World [Yu et al., 2020], and RT-X [Padalkar et
al., 2023], with task success rate as the evaluation metric.
Franka-Kitchen focuses on kitchen environments, limiting
generalization to other physical scenarios. RT-X evaluates
diverse physical settings.

Web Navigation: Web navigation tasks simulate human
processes of solving problems through querying and filtering
information. Common benchmarks include WebShop [Yao et
al., 2022], WebArena [Zhou et al., 2023], Mind2Web [Deng
et al., 2024], and WebVoyager [He et al., 2024]. Mind2Web
interacts only with static website states, while WebArena cre-
ates realistic, dynamic, and reproducible web environments
through simulated websites. WebVoyager goes further, using
Selenium to directly interact with real web pages.

Code Generation: Code generation tasks test an agent’s
logical reasoning, planning, and interaction with compilers in
programming-related problems. Typical benchmarks include
MBPP [Austin et al., 2021], HumanEval [Chen et al., 2021a],
and SWE-Bench [Jimenez et al., 2024]. However, these
rely heavily on success rates, which fail to provide specific
feedback on each stage or capture the dynamic performance
of agent systems. DevAI [Zhuge et al., 2024] not only
focuses on final outcomes but also tracks and evaluates each
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Method Success Rate Feedback Round Computational
Cost Stability Multi-agent task

transferability Real-time
HotpotQA ALFWorld WebShop

Act 29% 28% 34% Single-round Low Low stability Transferable ✓
CoT 29% / / Multi-round Medium Low stability Transferable ✓

ReAct 28% 40% 35% Multi-round Medium Low stability Transferable ✓

Reflexion-R1 33% 48% 43% One-round with
experiment replay

High Low stability in short-term,
High stability in long-term

Require shared
experience pool

✗Reflexion-R2 40% 52% 46% Two-round with
experiment replay

Reflexion-R3 40% 54% 48% Three-round with
experiment replay

ExpeL 39% 59% 41% Multi-round with
experiment replay

High Medium stability Require shared
experience pool

✗

AdaPlanner / 63% / Multi-round Medium High stability Transferable ✓

AutoGuide / 79% 46% Multi-round with
experiment replay

High High stability Require shared
experience pool

✗

Table 3: Comparison of different feedback mechanisms.

stage of task execution for more comprehensive feedback.
Social Simulation: Social simulation tasks involve agents

playing roles and interacting with other virtual characters
in simulated social environments. Common benchmarks
include SocialBench [Chen et al., 2024] and SocKET [Choi
et al., 2023]. However, these benchmarks often feature
overly idealized social scenarios, lacking the complexity and
unpredictability of real-world social interactions. Park et
al. [2023]’s AI Town is a notable attempt to address this.

Tool Usage: Tool use tasks test an agent’s ability to lever-
age external tools to achieve complex task goals. Common
benchmarks include ToolBench [Qin et al., 2024], Trav-
elPlanner [Xie et al., 2024], and ToolEyes [Ye et al., 2025].
These tasks may overly focus on specific tools, limiting flexi-
bility in tool selection and combination. HuggingGPT [Shen
et al., 2023] uses a broader range of tools. Beyond evaluating
tool use, future assessments might explore an agent’s ability
to create tools tailored to specific tasks.

Multi-agent Collaboration: Multi-agent collaboration
tasks examine the ability of multiple agents to work to-
gether in shared environments. Common benchmarks include
RocoBench [Mandi et al., 2024], PARTNR [Chang et al.,
2024], and VillagerBench [Dong et al., 2024]. VillagerBench
relies on Minecraft environments, while RocoBench assumes
perfect perception (e.g., object detection, pose estimation,
collision checking), which may fail in real-world scenarios
like industrial production or medical collaboration.

Mathine Translation: Machine translation tasks assess
an agent’s ability to accurately and contextually translate
text across languages, preserving meaning, tone, and cultural
nuances. Common benchmarks include WMT [Specia et al.,
2021] and FLORES-200 [Guzmán et al., 2019]. FLORES-
200 covers multiple languages but focuses on document
translation, falling short in general translation. WMT is
widely used for general translation evaluation.

Financial: Financial tasks typically require understand-
ing numerical data, interpreting market signals, and gen-
erating actionable insights. Common benchmarks include
FiQA_SA [Cheng et al., 2023] and FinQA [Chen et al.,
2021b], with evaluation based on prediction accuracy or
financial calculation correctness. However, these tasks limit
the ability to test agents in dynamic market scenarios like
stock trading. Increasingly, financial agents are tested in real-
world stock trading scenarios.

Multidimensional evolution: Multidimensional evolution
evaluates an agent’s general capabilities across multiple do-
mains, including reasoning, decision-making, and execution.
For example, AgentBench [Liu et al., 2024] includes diverse
scenarios covering operating systems, databases, knowledge
graphs, card games, lateral thinking puzzles, household tasks,
online shopping, and web browsing, assessing an agent’s
comprehensive abilities across eight distinct task scenarios.

5 Experimental Comparison
This section selects several representative feedback mecha-
nisms for comparative experiments on HotpotQA [Yang et
al., 2018], ALFWorld [Shridhar et al., 2020], and Web-
Shop [Yao et al., 2022] (some experimental results are
borrowed from ExpeL [Zhao et al., 2024] and AutoGuide [Fu
et al., 2024]), as shown in Table 3.

In terms of reasoning capability, ReAct [Yao et al., 2023]
demonstrates limited performance improvement on complex
reasoning tasks such as HotpotQA and StrategyQA, whereas
Reflexion [Shinn et al., 2024] exhibits more significant en-
hancements on HotPotQA. For sequential decision-making
tasks (e.g., ALFWorld and WebShop), ReAct shows outstand-
ing performance, while Reflexion further improves ALF-
World’s performance through its multi-step environmental
navigation capability, with the most notable improvements
observed between the first and second trials. ExpeL [Zhao et
al., 2024], AdaPlanner [Sun et al., 2023], and AutoGuide [Fu
et al., 2024] also demonstrate applicability in such tasks.

From the stability perspective, non-learning-based meth-
ods like CoT, Act, and ReAct are suitable for immediate
single-run tasks but face accuracy bottlenecks. In contrast,
Reflexion, ExpeL, and AutoGuide exhibit greater stability in
long-term dynamic tasks through iterative learning mecha-
nisms. AdaPlanner mitigates hallucination issues by employ-
ing code-style prompts, demonstrating stability performance.

Compared to traditional reinforcement learning, feedback
mechanisms like Reflexion offer significant advantages over
traditional reinforcement learning (RL) across four dimen-
sions: (1) Trial-and-Error learning; it improves performance
by reflecting on errors and incorporating experience into
subsequent decisions, suitable for tasks requiring trial-and-
error learning, such as decision-making, reasoning, and pro-
gramming; (2) Efficiency; it does not require fine-tuning
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language models, offering higher data and computational
efficiency; (3) Detailed feedback; it uses linguistic feedback,
which is more specific and detailed than the scalar rewards
of traditional RL, helping agents understand errors and make
targeted improvements; (4) Interpretability and memory;
It provides explicit, interpretable staged memory, storing
self-reflections to facilitate analysis of the learning process,
outperforming traditional black-box RL.

6 Challenges and Future Directions
6.1 Real-Time Feedback and Multi-Agent System

Implementation
Challenge: As the number of agents grows, computational
demands rise sharply, increasing the need for efficient archi-
tecture and optimization. More complex communication net-
works slow information flow, make coordination harder, and
lower collaboration efficiency, hindering the achievement of
shared goals. Additionally, a lack of standardized protocols
also complicates interactions, especially when agents come
from different vendors and use different architectures.

Future Direction: Developing efficient and scalable
frameworks, such as agent systems based on the MARL
framework [Ma et al., 2024], to reduce communication costs
and computational complexity while enhancing adaptability
to heterogeneous agents and systems. Additionally, promot-
ing protocol standardization, such as MCP, A2A, ANP, and
Agora, for building large-scale agent systems.

6.2 Integration of Multi-modal Feedback
Challenge: The core challenge lies in the complexity of
aligning different modalities. Effective multimodal self-
correction requires agents to process and combine diverse
data—such as text, images, audio, and sensor inputs—where
unique representations for each modality make integration
difficult. Current research faces difficulties in establishing
unified fusion or representation learning strategies to convert
these diverse signals into cohesive features.

Future Direction: Developing unified frameworks for
multimodal feedback. For instance, Tactical Rewind [Ke
et al., 2019] leverages self-correction strategies to optimize
visual and language navigation. MM-React [Yang et al.,
2023] achieves multimodal reasoning and action by integrat-
ing ChatGPT with a pool of visual experts. A promising
research avenue involves cross-modal representation learning
to find shared feature space across modalities.

6.3 Meta-Learning Adaptive Feedback
Challenge: The primary challenge is creating a system that

effectively balances learning from multiple feedback sources
while maintaining stability and consistency in agent behavior.
For instance, AutoGen [Wu et al., 2023] highlights that
agents must continuously adapt to evolving user needs and
contexts, which can result in feedback conflicts or overfitting.

Future Direction: Future research should focus on de-
veloping more efficient and robust adaptive mechanisms to
enhance agent performance in diverse applications. One
potential direction is mutual learning, such as the two-stage
mutual learning framework [Wang et al., 2024a]. Another

direction involves learning unified latent representations to
integrate multi-source feedback and minimize conflicts.

6.4 Explainability of Feedback Mechanisms
Challenge: Current feedback mechanisms often lack trans-
parency in how they make and adjust decisions, which under-
mines user trust—especially in critical areas like healthcare
and transportation.

Future Direction: Developing explainable feedback mod-
els with visualization tools and transparency metrics to clarify
how feedback affects agent behavior. For example, natural
language explanation tools can generate easy-to-understand
feedback [Feng et al., 2024a], while AMOR [Guan et al.,
2024] improves explainability and safety by providing step-
by-step feedback similar to a chain of thought.

6.5 Feedback in Embedded AI Agent
Challenge: In embedded AI, deploying models trained in
simulated environments to the real world faces significant
“sim-to-real” issues. Embodied agents trained with rein-
forcement learning might struggle to fully replicate real-
world disturbances, lighting, gravity, and other physical
properties, leading to poor model performance in reality.
Approaches like domain randomization [Saito et al., 2022],
domain adaptation [Rao et al., 2020], and simulation im-
provement [Martinez-Gonzalez et al., 2020] are commonly
solutions to address these gaps.

Future Direction: Future developments include designing
adaptive learning algorithms that dynamically adjust in real-
world settings, rapidly adapting to unseen physical properties
through online learning or meta-learning; exploring hybrid
training paradigms that combine simulated and real-world
data to optimize generalization; developing high-fidelity sim-
ulators that integrate vision, touch, and mechanics to achieve
more robust transfer to real environments.

6.6 Inherent Limitations of LLM Feedback
Challenge: LLMs and VLMs often produce hallucinations
due to biases and spurious features in training data, such as
incorrectly associating objects with visual cues or generating
factually inaccurate text. Moreover, models may generate
biased or incorrect outputs due to limitations in pre-trained
knowledge or insufficient understanding of the dynamics of
the deployment environment. Such issues are especially
noticeable in AI agents with minimal fine-tuning, leading to
unreliable feedback and reduced trust in the agent system.

Future Direction: Addressing hallucinations and biases
might require the integration of retrieval-augmented genera-
tion (RAG) to cross-validate outputs with external sources, or
integrating external databases to improve factual accuracy. In
multi-agent systems, iterative interaction and debate among
agents can help correct individual hallucinations and reason-
ing errors [Xi et al., 2025]. Additionally, incorporating world
models (environmental models) can also support systematic
fact-checking of generated content.

7 Conclusion
In this survey, we provide a systematic review of feedback
mechanisms in LLM-based agents. First, we introduce the
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overall framework of LLM-based agents to help readers
understand their fundamental components and operational
models. Next, we summarize the current research status of
feedback mechanisms, evaluation protocols, and benchmarks
in LLM-based agents, offering clear classifications and intu-
itive insights. Finally, we conduct an in-depth analysis of the
main limitations of existing feedback mechanisms and high-
light several research directions worth further exploration.
Through this comprehensive review, we aspire to provide a
comprehensive reference for readers interested in this rapidly
evolving field and to inspire future research.
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