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Abstract

Causal discovery (CD) and Large Language Mod-
els (LLMs) have emerged as transformative fields
in artificial intelligence that have evolved largely
independently. While CD specializes in uncover-
ing cause-effect relationships from data, and LLMs
excel at natural language processing and genera-
tion, their integration presents unique opportunities
for advancing causal understanding. This survey
examines how LLMs are transforming CD across
three key dimensions: direct causal extraction from
text, integration of domain knowledge into statisti-
cal methods, and refinement of causal structures.
We systematically analyze approaches that lever-
age LLMs for CD tasks, highlighting their inno-
vative use of metadata and natural language for
causal inference. Our analysis reveals both LLMs’
potential to enhance traditional CD methods and
their current limitations as imperfect expert sys-
tems. We identify key research gaps, outline evalu-
ation frameworks and benchmarks for LLM-based
causal discovery, and advocate future research ef-
forts for leveraging LLMs in causality research. As
the first comprehensive examination of the synergy
between LLMs and CD, this work lays the ground-
work for future advances in the field.

1 Introduction

Uncovering causal relationships—understanding why things
happen—is fundamental to scientific discovery and informed
decision-making across diverse domains. From discovering
the causes of diseases and developing effective treatments to
optimizing complex systems like city traffic flow or global
supply chains, knowing why something occurs is crucial for
effective intervention [Kuang et al., 2020]. Causal Discovery
(CD) has long relied on two pillars: statistical methods for
data analysis and domain experts for knowledge integration
[Pearl, 2009]. While domain experts provide invaluable in-
sights drawn from years of experience and deep understand-
ing, their involvement often creates bottlenecks in the discov-
ery process. Consulting experts is time-consuming, expen-
sive, and inherently limited by human availability and po-
tential biases. Meanwhile, Statistical CD methods (SCD)

[Shimizu er al., 2011; Scutari and Denis, 2014; Zheng er
al., 2018], while mathematically rigorous, often fall short in
real-world scenarios. They typically demand vast amounts
of high-quality data, which is often unavailable or expen-
sive to acquire. Furthermore, they struggle to disentangle
complex temporal dynamics inherent in many real-world sys-
tems, where causes and effects unfold over time and influence
each other in intricate ways [Ban et al., 2023a]. Specifically,
these methods frequently produce multiple, equally plausible
causal explanations, traditionally requiring expert interven-
tion to resolve these ambiguities.

Large Language Models (LLMs) offer a transformative
approach to the challenges of causal discovery, potentially
serving as valuable tools to complement and augment hu-
man expertise. Their ability to process and synthesize
massive amounts of text—effectively distilling knowledge
from countless documents, research papers, and expert opin-
ions—makes them powerful aids for enhancing expert-level
reasoning [Petroni et al., 2019]. Unlike traditional domain
experts with specialized knowledge in specific areas, LLMs
can provide broad perspective across multiple domains con-
currently, working alongside human experts rather than re-
placing them. They can integrate information from diverse
sources to help identify potential causal relationships that
might benefit from further expert validation. For example,
when analyzing urban traffic, an LLM could rapidly synthe-
size insights from traffic engineering papers, weather stud-
ies, and city planning documents to suggest potential causal
factors for human experts to accelerate what could otherwise
take weeks of literature review.

The integration of LLMs into CD represents a paradigm
shift from both purely statistical approaches and traditional
expert-dependent methods, manifesting in three primary
ways: (1) LLMs can directly infer causal graphs or sub-
graph structures from natural language descriptions and do-
main knowledge [Jin et al., 2023b], effectively automating
the initial expert hypothesis generation phase. (2) LLMs
can function as posterior correction mechanisms, validating
and refining causal relationships identified by SCD methods
against their extensive knowledge base [Long er al., 2024],
similar to how experts would review and adjust statistical
findings. (3) They can serve as comprehensive prior infor-
mation sources for traditional SCD algorithms, providing do-
main knowledge and contextual constraints before statisti-
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Figure 1: Overview of LLM-based causal discovery methods, categorized by their role: direct evaluation, prior knowledge augmentation, and
post-hoc refinement. Evaluation strategies and future directions are also outlined.

cal analysis [Takayama er al., 2024]. This systematic en-
hancement of human expert involvement with LLM-based as-
sistance not only accelerates the discovery process but also
makes sophisticated causal analysis accessible to a broader
range of researchers and without domain expertise.

Several surveys have examined how large language models
(LLMs) relate to causality. However, there is still a lack of
detailed survey specifically on causal discovery in the era of
LLMs. Traditional causal discovery surveys like [Glymour
et al., 2019] extensively explore connections with machine
learning and deep learning approaches but lacks discussion
with the emergence of LLMs in this domain. [Zhao et al.,
2023] pioneered the discussion of LLMs in causal reasoning
but primarily focuses on broader tasks such as counterfac-
tual reasoning, cause attribution, and causal effect estimation.
More recent work by [Zhang et al., 2024] examines causal-
ity in LLMs but provides a limited analysis of how these
models fundamentally transform causal discovery methods.
Similarly, [Yu et al., 2024] offers a comprehensive review
of improving LLMs’ causal reasoning capabilities but lacks
specific focus on causal discovery tasks and their integra-
tion with traditional causal theory. To address this gap in
literature, our survey examines the emerging intersection of
LLMs and CD, providing a systematic framework for under-
standing their integration. We begin in Section 2 with back-
ground on both LLMs and CD, bridging knowledge gaps for
researchers from either field. Section 3 analyzes how LLMs

can enhance CD through direct inference, prior knowledge
integration, and structural refinement, while acknowledging
the methodological challenges each approach faces. Section
4 evaluates benchmark datasets and showcases applications
across diverse domains, from healthcare to social sciences.
Section 5 examines current limitations, explores open ques-
tions about LLMs’ causal reasoning capabilities, and iden-
tifies promising research directions that could advance this
rapidly evolving field.

2 Background

This section lays the groundwork for understanding funda-
mental concepts and methodologies of causal inference and
discovery, including essential notations and definitions in
causal discovery to prepare readers better understand and sub-
sequent technical sections.

2.1 Graphical Models and Structure Learning

Directed Acyclic Graphs (DAGs) provide the foundational
framework for causal modeling, defined as ordered pairs
G = (V,&), where V represents variables and € C V x V
contains directed edges without cycles. Structure learning
aims to estimate these graphs by capturing essential de-
pendence relationships in data [Drton and Maathuis, 2017].
While any probability measure P(X) can be factored as
P(X) = P(Xl)P(X2|X1) oo ]P)(Xn‘Xh ey Xn_l), this
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Figure 2: Two Markov equivalent DAGs

complete representation introduces unnecessary dependen-
cies. The goal is identifying minimal structures where edges
X; — X represent only necessary conditional dependen-
cies [Pearl, 2009]. A fundamental limitation is that differ-
ent DAGs can encode identical conditional independence re-
lations, forming Markov equivalence classes. For example,
given variables with relations Xy I/ Xo, Xo I/ X3, X7 V
X3,X; L X5 | Xo, multiple network structures (Figure 2)
can represent these relationships, showing that causal direc-
tion cannot be uniquely determined from data alone.

2.2 Causal Discovery: Methods and Evaluation

A causal graph is a DAG where edges represent direct causal
relationships—an edge X; — X indicates that X; is a di-
rect cause of X;. Causal Discovery (CD) is the systematic
process of uncovering these causal relationships from obser-
vational data [Glymour ef al., 2019], which typically involves
learning Bayesian Network structures with causal interpreta-
tions when all common causes are observed. These discov-
ered structures serve as foundations for downstream appli-
cations including effect inference [Kuang et al., 2020] and
prediction [Chu er al., 2023]. Formally, a Structural Causal
Model (SCM) M = (V,U, F, P) provides the framework
for representing these systems [Pearl, 2009], where V' rep-
resents observable variables, U unobservable variables, F'
causal mechanisms, and P the probability distribution. Each
variable X; € V is determined by a function f; € F of its
direct causes Pa(X;) and an independent noise term U; € U:
X; = fi(Pa(X;),U;). The goal of causal discovery is to re-
cover these structural components, particularly the parent sets
defining the underlying graph structure.

Statistical approaches to causal discovery have evolved
into two methodologies: Constraint-based methods like the
PC Algorithm [Spirtes et al., 2001] that test conditional inde-
pendence relationships (X L Y'|Z) to remove edges and ori-
ent directions, and Score-based methods that optimize scor-
ing functions balancing model fit against complexity, exem-
plified by NOTEARS [Zheng er al., 2018]. Causal discovery
with LLMs addresses two distinct tasks with different eval-
uation requirements: Causal Order Predictions (pairwise
discovery) evaluates direct relationships between variable
pairs using standard classification metrics like accuracy and
F1-score, while Full Graph Discovery constructs complete
causal networks using Structural Hamming Distance (SHD)
and Normalized Hamming Distance (NHD) [Tsamardinos et
al., 2006], which measure edge operations needed to trans-
form a learned graph into the true causal structure.

3 LLMs for Causal Discovery

Large Language Models (LLMs) have revolutionized natural
language processing through their advanced transformer ar-
chitecture, demonstrating remarkable capabilities in reason-
ing, knowledge acquisition, and cross-domain generalization
[Zhao et al., 2023], while serving as reliable knowledge bases

[Petroni er al., 2019] suitable for causal discovery tasks, en-
abling them to assume the role of human domain experts as il-
lustrated in Figure 3. We discuss three primary approaches to
incorporating LLMs in causal discovery: (a) direct inference,
(b) posterior refinement on derived causal structures, and (c)
knowledge integration as prior for generating causal struc-
tures, with Table 1 providing practical examples of prompts
used in these approaches.

3.1 LLMs as Direct Inference

Direct causal discovery leverages LLMs’ extensive knowl-
edge acquired during pre-training to serve as automated do-
main experts capable of reasoning about causal relationships.
Unlike traditional methods that rely on statistical patterns or
require extensive human expert consultation, LLMs can uti-
lize their broad understanding of domain concepts, scientific
principles, and real-world relationships to infer causality at
scale. The fundamental setting involves providing LLMs with
meta-data such as the descriptive texts T' = {t1,t2,...,tn}
for variables X = {z,x2,...,2,}. By comprehending
these descriptions and applying learned knowledge, LLMs
identify causal statements denoted as S = {(x;,x;)}, where
(x;, z;) indicates that x; causes x;. This approach effectively
transforms LLMs into scalable meta-data experts who can
reason about causality with both breadth and precision.

Two primary approaches have emerged in this direction.
First, causal order prediction, pioneered by [Willig ef al.,
2022] and advanced by [Kiciman er al., 2023], focuses on de-
termining pairwise causal relationships through direct LLM
queries, primaliry using chain-of-thought style prompting
[Wei et al., 2022]. Second, complete and partial causal
graph discovery methods aim to identify broader causal
structures through iterative pairwise discovery [Long et al.,
2024; Kiciman et al., 2023], though this naturally introduces
computational challenges scaling quadratically with the num-
ber of variables. To address these efficiency barriers, [Jiraler-
spong et al., 2024] reduced computational complexity from
O(n?) to O(n) through a structured three-phase process: root
cause identification, relationship expansion, and logical con-
sistency verification. For high-dimensional settings, [Sokolov
et al., 2024] developed a scalable solution using hierarchical
clustering based on semantic similarity, efficiently discover-
ing causal relationships by first analyzing within-cluster con-
nections before determining inter-cluster causality. To en-
hance the reliability of these approaches, researchers have
pursued several complementary directions: systematic veri-
fication to mitigate hallucination [Ji et al., 2023], specialized
fine-tuning for causal reasoning [Le et al., 2024], and struc-
tured prompting frameworks for consistent causal extraction
[Zhang er al., 2024; Vashishtha et al., 2023].

3.2 LLMs as Posterior Correction

LLMs can serve as a expert judge by correcting and refining
the learned causal structures from the traditional statistical
causal discovery (SCD) methods based on contextual reason-
ing or additional data. Recall that most of constraint-based
and score-based methods can only identify a BN up to its
Markov equivalence class. Given the set of all conditional in-
dependence relations, [Long et al., 2023] introduces a method
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Figure 3: Three distinct approaches for applying LLMs in causal discovery: (a) Direct causal inference without observational data, (b) Post
refinement of statistically derived causal structures, and (c) Integration of prior knowledge into traditional statistical methods. The figure
highlights the increasing automation and precision of causal discovery through LLMs, reducing the need for manual expert input.
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Figure 4: General Workflow of Applying LLM on Conditional In-
dependence Tests to Solve Constraint-Based Discovery Tasks.

that uses LLM as an imperfect expert to progressively reduce
the number of possible causal structures within the Markov
equivalence class, while controlling the risk of misorienting
edges. However, its application to larger datasets remains un-
proven and is likely hindered by the approach’s complexity
and computational demands. To refine causal structures be-
yond the Markov equivalence class using LLMs, [Long et al.,
2023] formulated a constrained discrete optimization prob-
lem: ming |MF%| subject to P(G* € MFS) > 1 -1,
where MF+% denotes the refined equivalence class after in-
corporating expert-guided orientations, and 7 controls the risk
of excluding the true graph G*. Define U to be all undirected

edges whose orientations vary across DAGs in the MEC, two
greedy strategies are proposed: one prioritizes reducing the
size of the equivalence class, and the other minimizes the risk
of eliminating, both following the iterative structure 1:
Instead of deriving the true causal graph beyond its Markov
equivalence class, the Iterative LLM Supervised CSL Frame-
work (ILS-CSL) by [Ban ef al., 2023al refines a partially
learned DAG by leveraging LLM feedback iteratively to
correct edge orientations. This approach efficiently inte-
grates expert knowledge while avoiding exhaustive pairwise
queries, ensuring a more accurate and robust causal structure
without requiring full causal discovery from scratch.
[Takayama et al., 2024] introduced a framework in which
large language models (LLMs) function both as post hoc re-
finers and prior knowledge generators, described in Algo-
rithm 2: Initially, the raw adjacency matrix G, derived from
certain SCD methods without prior knowledge, is input into
the LLMs. For each potential edge, the LLM is queried mul-
tiple times using pairwise prompts, with each response being
a binary decision (i.e., ’yes” or ”no”). The probability matrix
P is then constructed by aggregating these responses, and is
subsequently converted into a deterministic prior knowledge
matrix G based on predefined thresholds. Finally, G is in-
corporated into the original SCD method to infer the final
causal graph. While this framework is primarily designed for
LiNGAM, it is applicable to any causal discovery algorithm
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Tasks

Prompt

Pairwise Discovery

”Which is more likely to be true: (A) lung cancer causes cigarette smoking, or (B) cigarette smoking causes
lung cancer?”

Conditional Independence
Set Test

As an expert in a specific field, you’re asked to assess the statistical independence between two variables,
potentially conditioned on another variable set. Your response, based on theoretical knowledge, should be
a binary guess (YES or NO) and the probability of its correctness, formatted as: [ANSWER (PROBABIL-
ITY%)]. For example, [YES (70%)] or [NO (30%)].

Causal Validation

Given a statistical correlation between variables A and B, and their relationship with other variables in the
system, determine if we can validly conclude that A causes B. Please provide your reasoning step by step
and conclude with either *Valid® or "Invalid’ for this causal inference.

Full Graph Discovery

As a domain expert, analyze cause-and-effect relationships among variables with given abbreviations and
values. Interpret each variable and present the causal relationships as a directed graph, using edges to
denote direct causality, €.g., i1 — Tj1, .- ., Tim — Tjm.-

Table 1: A practical example of prompts with respect to various LLM causal discovery frameworks.

that relies on a matrix of pairwise edge scores.

Algorithm 1: MEC Refine with Imperfect Expert

Input: Initial MEC M, expert E, tolerance 7, strategy
S € {size,risk}

Output: Refined equivalence class M+

while P(G* e M) >1—ndo

foreach p € U/ do

Query orientation F(p) ;

Let M,, < MEC after orienting p via E(p)
and applying Meek rules ;

if S = size then
| Scorelp] + | M,

else if S = risk then
| Score[p] 1 —-P(G* € M,,)

Select p* = arg min, Score[p] ;
| Update M « M- ;

return MZ°5 « M

[Abdulaal et al., 2024] introduced the Causal Modeling
Agent (CMA), a novel framework for causal discovery
that combines the metadata-based reasoning of LLMs with
the data-driven power of Deep Structural Causal Models
(DSCMs). CMA employs an LLM to propose an initial causal
graph, which then informs the fitting of a DSCM to the data.
The framework iteratively refines this graph in global and lo-
cal phases, again using the LLM for both prior knowledge
and a critic of the model’s output, enabling the discovery
of causal relationships in complex, multi-modal data. Un-
like purely constraint-based or scoring-based methods, CMA
integrates aspects of both while leveraging LLMs. Further-
more, it can generate chain graphs to account for unmea-
sured confounding and has demonstrated state-of-the-art per-
formance on datasets like Arctic Sea [Huang et al., 2021] and
on synthetic data designed to prevent data leakage.

3.3 LLMs as Prior Knowledge

Similarly, LLMs can also be used in conjunction with tra-
ditional methods to provide source of prior knowledge by
leveraging meta-data extracted from textual descriptions and

X1

Xg./—>-\'X3

Figure 5: A minimal quasi-circle

domain-specific information. In [Ban et al., 2023b], a set of
variables X along with their descriptive texts T are provided
as input to an LLM, which performs causal discovery by iden-
tifying direct relationships after comprehending the semantic
meaning of each variable. Traditionally, the incorporation of
prior knowledge into CD procedures follows two primary ap-
proaches: the hard constraint method and the soft constraint
method. The hard constraint approach strictly enforces prior
knowledge by eliminating edges in BNs that conflict with
constraints derived from traditional causal discovery algo-
rithms. However, this method lacks flexibility, as any spuri-
ous prior assumptions cannot be corrected during the learning
process, potentially leading to erroneous causal structures.
[Chen et al., 2023] provides a systematic approach for de-
tecting and correcting potentially erroneous prior knowledge
derived from LLMs, thereby enhancing the reliability of uti-
lizing LLMs for hard prior constraints. To address this, [Chen
et al., 2023] focus on a particularly impactful class of prior er-
rors, termed order-reversed priors, where a prior (X; — X;)
contradicts the true edge (X; — X;) in the underlying DAG
Gy. The authors show that incorporating such priors un-
der hard constraints induces a unique acyclic structure in the
learned graph G, called a quasi-circle: a pair of distinct
directed paths ¢; and {5 from X, to X, sharing only their
endpoints, with an example shown in Figure 5. Building on
this insight, the authors propose a post-hoc correction strat-
egy that iteratively identifies priors involved in quasi-circles,
and replaces or removes them.

In contrast, the soft constraint approach, though imple-
mented through varying methodologies, aims to integrate
prior knowledge in a fault-tolerant manner. [Ban et al.,
2023b] integrates LLM-derived prior into scoring functions,
such as BDeu or BIC, as a regularization term, allowing flexi-
bility in cases where LLM priors may be inconsistent with ob-
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served data. Alternatively, [Darvariu et al., 2024] introduces a
probabilistic prior framework described in 2, where the LLM-
derived priors consist of probabilities of the existence and
direction of each edge in the causal graph, which are then
incorporated into some traditional CD algorithms. In par-
ticular, the proposed approach is compatible with any causal
discovery algorithm that relies on a pairwise edge score ma-
trix, including LINGAM and NOTEARS. Given the demon-
strated effectiveness of integrating LLMs into differentiable
causal discovery algorithms within this probabilistic frame-
work, recent work by [Kampani er al., 2024] further extends
this paradigm by using LLMs to initialize the continuous op-
timization process. Unlike many previous methods that as-
sume a parametric model (e.g., linear-Gaussian), focus pri-
marily on continuous data, and compute likelihoods accord-
ingly, the LLM-DCD framework targets discrete data using
a non-parametric loss called MLE-INTERP. Notably, LLMs
provide an initial estimate of the adjacency matrix A, thereby
guiding the continuous optimization from an informed start-
ing point. Although their results appears to be promising on
discrete data, it’s unclear whether a similar framework could
be generalized to continuous data.

A novel application of LLM:s as providers of prior informa-
tion lies in conditional independence testing, a cornerstone
of constraint-based causal discovery. Rather than using tra-
ditional statistical tests, LLMs can be queried with natural
language prompts representing conditional independence re-
lationships, effectively serving as an oracle. As shown in Fig-
ure 4, this enables constainted based algorithms like PC algo-
rithm [Spirtes et al., 2001] to leverage LLMs for guidance
in causal graph construction. The chatPC method [Cohrs et
al., 2023] exemplifies this approach, integrating LLMs with
the PC algorithm by transforming conditional independence
tests (e.g., ’Is X independent of Y given Z?”) into natural lan-
guage prompts. The LLM’s responses then guide the PC algo-
rithm’s edge removal process. This work evaluates LLM per-
formance on such queries, proposes a statistical aggregation
method to combine multiple LLM responses for increased ro-
bustness, and analyzes the resulting causal graphs. Research
indicates that LLMs tend to be more conservative in their in-
dependence judgments than human experts, yet still demon-
strate evidence of causal reasoning.

Remark. Probabilistic prior knowledge has never been a
strong focus in the causal discovery literature. Before the
era of LLMs, expert priors were often assumed to be deter-
ministically correct. Although recent efforts have introduced
imperfect expert frameworks, they often rely on simplified
assumptions. For instance, [Long et al., 2023] models expert
fallibility using a fixed noise level ¢ € {0.1,0.3}, assuming
a uniform error rate across all edge orientations. However, in
practice, LLM accuracy is highly sensitive to prompt design,
semantic ambiguity, and domain-specific difficulty—none of
which are captured by a static . Meanwhile, [Chen et al.,
2023] focuses on quasi-circle detection to identify erroneous
priors but limits the scope to cycles of length three, due to the
exponential complexity O(n*~2) for general detection. As a
result, when faced with novel tasks or unseen data, the reli-
ability of LLM-derived causal knowledge remains uncertain

and lacks any principled quantification.

Algorithm 2: Probabilistic LLM-driven Priors

Input: Data D, metadata { /li}?:p LLM expert E,
score function f, budget B, prior strength 7
Qutput: Estimated DAG G*
Initialize G(©) < (V,0), P € R ;
foreach unordered pair (i, j),i # j do
Query E on (p, j15) to get Pi_j ;
| Set Pli,j] < Py ;
G* + GO s* « 0
for b =1to B do
G+ GO
while termination not met do
Let A < valid acyclic edges notin G ;
Sample e;_,; ~ softmax; jyea(P[i, j]/7) ;
G+ GU{eis}s
Compute s < f(G) ;
if s < s* then
| §" <G, 8" s,

return G*

4 Evaluations and Applications

4.1 Benchmarks and Datasets

Table 2 provides a comprehensive overview of benchmark
datasets used to evaluate LLMs’ causal reasoning capabili-
ties. For each dataset, the table indicates (1) if for determin-
ing causal relationships between variable pairs, (2) full graph
reconstruction, and (3) novel reasoning scenarios (testing on
previously unseen causal patterns). The table also details
key characteristics including the average number of nodes
and edges per graph, along with the total number of graphs
in the collection. Multi-graph benchmark datasets, such as
CausalBench [Zhou et al., 2024], are particularly noteworthy
as they incorporate established causal networks dataset com-
monly tested in the literature, such as Asia [Pearl, 1988] and
Insurance [Binder et al., 19971, offering evaluation across di-
verse graph sizes and domains. Among these benchmarks,
CORR2CAUSE [Jin ef al., 2023a] addresses a crucial aspect
of causal reasoning: the ability to differentiate causation from
correlation and can be further used for fine-tuning LLMs to
enhance their causal inference capabilities from identifying
purely correlational statements.

4.2 Applications

Causal discovery has been used as a crucial tool across nu-
merous real-world domains, with LLM-based methods sig-
nificantly expanding its capabilities and applications. For in-
stance, [Gkountouras et al., 2024] introduced a “causal world
model” framework, connecting causal variables to natural
language to improve reasoning in complex environments. To
address the challenge of ill-defined high-level variables often
found in real-world observational data, [Liu et al., 2024] en-
ables LLMs to propose such variables, effectively extending
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Dataset Name Work Pair Full Novel Domain Avg. Nodes Avg. Edges Num. Graphs
Asia [Pearl, 19881 v v v Medical 8 8 -
Insurance [Binder et al., 1997] v v v Business 27 52 &
CauseNet [Heindorf et al., 20201 v X X Web/Mixed 12.2M 11.6M -
Arctic Sea [Huang et al., 2021] v v X Climate 12 42 -
Neuropathic [Tu et al., 2023] X v X Medical 222 770 -
Sangiovese [Kiciman et al., 2023] X v X Agriculture 15 55 -
Tiibingen [Kiciman et al., 2023] v X v Mixed Science 222 770 -
Alzheimer [Abdulaal et al., 2024] v v v Medical 11 19 -
Multi-Graph Benchmark Datasets
CLADDER [Jin et al., 2023al v v v Mixed 3.52 3.38 10,112
CORR2CAUSE [Jin et al., 2023b] v v v Mixed 2-6 8.60 207,972
AppleGastronome [Liu et al., 2024] v v v Food 6 5 200
CausalBench [Zhou et al., 2024] v v v Mixed 2-109 11.6M 15

Note: Pair = Pairwise Discovery; Full = Full Graph Discovery; Novel = Involves a stimulator to regenerate data to avoid data leakage

Table 2: Summary of Benchmark Datasets for Evaluating Causal Discovery Tasks

causal discovery to unstructured data. These and other ad-
vances have facilitated LLM-guided causal discovery in fields
like medicine [Tu et al., 2023; Cohrs et al., 2025], finance
[Sokolov et al., 2024], genetics [Afonja et al., 2024], and
health informatics [Patel et al., 2024]. Further research ex-
plores LLM-driven causal discovery in multi-agent systems
[Abdulaal et al., 2024; Jiang et al., 2024] and multi-modal
data integration [Shen er al., 2024], leveraging the richness
of multi-modal data to provide additional information to bet-
ter capture the complexity of real-world systems.

5 Challenges and Visions

Unified Evaluation and Domain-Specific Applications.
A significant challenge in LLM-enhanced causal discovery
is the lack of standardized evaluation protocols, making it
difficult to establish true state-of-the-art performance. Re-
searchers should utilize both synthetic datasets (avoiding
data leakage) and established benchmarks while developing
frameworks incorporating multiple performance metrics be-
yond accuracy. Simultaneously, we envision significant po-
tential in domain-specialized models that better capture field-
specific causal relationships in critical domains like health-
care and economics. These systems could be enhanced
through integration with field-specific knowledge bases, spe-
cialized reasoning modules, and domain-specific RAG incor-
porating scientific literature—for instance, accessing path-
way databases in biology or physics-based models in climate
science. Continuous learning mechanisms could ensure these
systems remain current with emerging research findings.

LLM for SCM Diagnosis. Future research should expand
LLMs’ role beyond identifying causal relationships to ver-
ifying underlying properties of Structural Causal Models.
While current approaches primarily detect causal links [Jin
et al., 2023b], LLMs could verify crucial aspects like the
nature of relationships (linear vs. nonlinear), functional
forms, and noise distributions. This verification is partic-
ularly important since traditional methods depend on spe-
cific assumptions—DirectLiNGAM requires linear relation-
ships [Shimizu et al., 2011], and BIC scoring becomes less

reliable with nonlinear effects [Peters et al., 2017]. LLMs
could leverage their language understanding to interpret do-
main knowledge about expected relationship characteristics,
helping select appropriate algorithms and validate assump-
tions, thus improving reliability across diverse scenarios.

Explanability and Interpretbility. The -capability of
LLMs to perform genuine causal reasoning remains an open
question, and studies [Zelevi¢ er al., 2023; Feng et al.,
2024] have suggested LLMs may function more as pattern-
matching systems reciting embedded knowledge rather than
understanding true causality, functioning as ’causal parrots’
without deeper understanding [Jin er al., 2023al. Empiri-
cal studies show LLMs often rely on correlational heuris-
tics when faced with questions requiring understanding of
confounding variables—indicating a gap between statistical
association and causal understanding [Kiciman et al., 2023;
Long et al., 2024]. Future research should focus on: (1) de-
veloping interpretability methods to analyze how LLMs pro-
cess causal relationships; (2) investigating relationships be-
tween pre-training data and causal capabilities; and (3) cre-
ating frameworks distinguishing between genuine reasoning
and memorized patterns.

6 Conclusion

The integration of LLMs with causal discovery represents
a promising yet challenging advancement in artificial intel-
ligence. This survey has explored how LLMs can enhance
traditional causal discovery through direct inference, knowl-
edge integration, and structural refinement. However, as sys-
tems trained primarily on correlational data, LLMs face in-
herent limitations in genuine causal reasoning that requires
interventions and counterfactuals. They may reproduce ex-
isting biases and generate plausible but incorrect causal re-
lationships, highlighting critical areas for future research in
understanding and improving LLMSs’ causal reasoning capa-
bilities. Moving forward, we envision LLMs as complemen-
tary tools that assist human experts rather than replace them,
ultimately accelerating scientific discovery while maintaining
human expertise at the center of the causal discovery process.
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