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Abstract
The Russian invasion of Ukraine in February 2022
has led to the largest forced migration crisis in Eu-
rope since World War II, with millions displaced
both internally and internationally. Among the dis-
placed, approximately 4.2 million individuals have
returned, highlighting the significance of return mi-
gration as a critical phase in the migration contin-
uum. Existing studies on return migration are lim-
ited in scope, relying on survey-based approaches
that suffer from demographic bias, lack of vali-
dation against ground truth, and inability to ac-
count for uncertainty. We propose a novel com-
putational framework for modeling the return of
conflict-induced migrants, using agent-based mod-
els (ABMs) and their surrogates. These models are
grounded in hazard functions and account for so-
ciopolitical contexts. Our proposed ABMs outper-
form baseline methods in estimating return migra-
tion from Poland to Ukraine by at least 42% and by
as much as 57% in terms of normalized root mean
squared error (NRMSE). Further, to illustrate the
utility of such models for policymakers, we con-
duct two case studies that estimate the duration
of displacement and characterize the demographic
breakdown among the returnees.

1 Introduction
The Russian invasion of Ukraine that began on February 24,
2022, has caused, among other things, the largest forced
migration in Europe since the end of World War II [UN-
HCR, 2023]. As of August 2024, around 3.7M people
have been reported to be internally displaced in various
parts of Ukraine [IOM, 2024]. Around 6.8M people have
been displaced as refugees, among which around 6.2M have
taken shelter in various European countries [UNHCR, 2024].
According to the 2025 Humanitarian Needs and Response
Plan, 12.7M people are estimated to be in need of multi-
dimensional humanitarian assistance. One such dimension
considers potential migrants who have already returned or
who are seeking to return to Ukraine once the situation de-
escalates. The return migration to Ukraine began as early as

April 2022. With the out-migration from Ukraine seemingly
halted, return migration is the most prominent dimension that
needs addressing at present.

Reports suggest that around 4.2M people have returned to
Ukraine as of October 2024 [IOM, 2024]. Even though return
migration is identified to be among the highest of priorities
among the multi-dimensional top-down management issues
surrounding international migration [Cassarino, 2008], there
is a paucity of systematic literature surrounding return mi-
gration [Adhikari and Hansen, 2014; Şahin-Mencütek, 2024;
Zetter, 2021; Toth-Bos et al., 2019]. In fact, available
studies attempting to tackle return migration in the con-
text of the conflict in Ukraine have relied on survey-based
approaches [van Tubergen et al., 2024; Maidanik, 2024;
Studien, 2024]. While potentially useful in identifying key
factors driving return migration, three limitations raise con-
cerns regarding the applicability of these survey-based ap-
proaches in the long run. First, these surveys are conducted
with a subsample of the population, which can make these
studies demographically biased. Second, models fitted from
these survey responses are not validated against any ground
truth observations, making their validity questionable. Third,
models developed from these studies are not probabilistic,
making them unable to account for the uncertainty associ-
ated with return migration, which is inherent in spatiotempo-
ral human mobility [Zhou et al., 2021]. Thus, a computa-
tional tool that can overcome these limitations is imperative.
Contributions: To address the above limitations, we assem-
bled a multidisciplinary team consisting of computer scien-
tists and political scientists. By integrating AI-driven mod-
eling and political science insights, our work makes the fol-
lowing contributions to address one dimension of the pressing
societal challenge of forced displacement.

• First, Using the concept of hazard functions we propose
three agent-based models (ABMs) to study return migra-
tion from a conflict-induced country by considering rele-
vant contexts (e.g., social and political), with each ABM
adding more contextual layers than the previous. We also
propose surrogates to these ABMs that generate aggregated
summary reports with lower computational expense. To the
best of our knowledge, this is the first work that computa-
tionally models conflict-induced return migration without
relying on survey-based approaches.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• Second, we evaluate our models against baselines and show
their superiority in modeling the first wave of return migra-
tion from Poland to Ukraine, which lasted roughly until the
end of July 2022. We also perform additional experiments
to quantify the uncertainties in the model.

• Third, we conduct two case studies that underscore the util-
ity of these models in generating policy-relevant informa-
tion. The first case study involves finding the mean length
of displacement. Validated against ground truth estimates
from subsidiary reports, this study shows the accuracy of
the emergent behavior of the ABM. The second case study,
which analyzes the demographic patterns of returnees using
the fast surrogate models, shows the efficacy of our model
in ensuring fair resource allocation based on requirements.

2 Related Work
Return Migration: An early work [Biondo et al., 2012] that
employed a computational approach to model return migra-
tion in the context of voluntary migration, assumed that each
migrant has two associated social networks, one at home and
another abroad. Using a single-agent perspective, they cal-
culated utility at home and abroad as functions of the net-
works and decaying expectation, and when the utility abroad
becomes less than the utility at home, they assumed that the
migrant would return. Since the work was done in the con-
text of voluntary migration and used a single-agent perspec-
tive, it is not directly applicable to our case. A more re-
cent work [Alrababah et al., 2023] attempted to model re-
turn intentions of Syrian refugees based on survey responses
of around 3000 refugees living in Lebanon. They identified
safety at home and network effects to be the key factors be-
hind return migration and commented that the effect of host
countries do not play a significant role during short-term mi-
gration. A recent work [van Tubergen et al., 2024] studied
return migration in the context of the Ukraine war by collect-
ing survey responses from 18,000 Ukrainian refugees. They
attempted to model return migration considering three per-
spectives: (a) contextual (e.g., economic, social attachment),
(b) source country (e.g., security) and (c) cross country (e.g.,
language). Although done in the context of conflict-induced
forced migration, these two studies are based on surveys,
which are often time consuming. Furthermore, both works
have acknowledged the respondent group to be demographi-
cally biased, which may fail to paint a general picture.
Hazard Function: Although hazard functions have been
used extensively in areas such as biometrics and industrial
engineering to examine life-expectancy and product fail-
ures [Lee and Horvitz, 2017; Rizzuto et al., 2017; Saikia
and Barman, 2017], researchers have also applied them in
other contexts. For example, Liu et al. [2017] applied haz-
ard function to study influence of one user over another in
social networks. Auld et al. [2011] developed a compet-
ing hazard model based on the Weibull hazard function and
used it to simulate the daily activities of individuals. Azzarri
et al. [2009] developed a duration model based on the log-
logistic hazard to understand the factors behind migration and
return of Albanian migrants, based on surveys. However, the
method was developed in the context of voluntary migration

Figure 1: Architecture of a conceptual ABM to capture one cycle
of migration of an agent. (From bottom left) a susceptible agent
(brown) from a conflict-induced region decides to migrate based
on conflict context and network influence and becomes a migrated
agent (red). Afterward, when the conflict situation improves and
their peer start to return, they may also return (blue). Our pro-
posed model primarily focuses on the decision pathway (solid ar-
row) marked in red. The dashed arrows indicate operation that up-
dates the state of the agents and the network.

and the temporal resolution was yearly, making it infeasible
to study short-term conflict-induced migration. Finally, haz-
ard functions have also been used in conjunction with ABMs
in various domains. For example, Wu et al. [2020] used ABM
simulation to infer the hazard of transmission and that of re-
covery. Billari et al. [2007] uses an ABM and a hazard func-
tion to study the influence of an agent’s age and social pres-
sure on the likelihood of the agent getting married. These ex-
amples illustrate applicability of ABMs in conjunction with
hazard functions to model various social issues.

3 Methodology
3.1 Overview
The concepts of hazard and survival functions lie at the core
of our modeling. While existing literature attempts to quan-
tify return intention by considering different combinations of
factors based on survey responses, we start with the basic as-
sumption that every migrant wants to return eventually. As
we point out in this section, this latent intention can be ac-
commodated in the simplest of our modeling approaches to
the very complex ones. First, we discuss these models under
the hood of the ABM framework, with the assumption that
the time of migration of each agent is known, along with other
properties. Subsequently, we discuss learnable surrogates of
the ABMs which can be leveraged to generate important re-
sults with less computational expense.

3.2 Hazard and Survival Functions
Hazard and survival functions were conceptualized and fur-
ther developed by Cox [1959; 1972]. We briefly review these
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concepts to make our paper self-contained. Additional in-
formation can be found in several textbooks (e.g., [Cox and
Oakes, 1984; Kleinbaum and Klein, 2012; Miller, 1981]).

Hazard and survival functions are defined for a random
variable T with an underlying probability distribution func-
tion (PDF) p(T = t) and a cumulative distribution function
(CDF) F (T ≤ t) that gives the probability that an event has
occurred by time t. The survival function S(t) is defined
as the complement of the CDF. Thus, S(t) = 1 − F (t) =∫∞
t

p(x)dx, which gives the probability that the event of in-
terest has not occurred by time t.

The hazard function h(t) is often defined in conjunction
with the survival function. Considering the event of inter-
est as a failure, h(t) is interpreted as the instantaneous rate of
failure given that the failure has not occurred by time t. Math-
ematically, h(t) is defined by h(t) = p(t)

S(t) = − ∂
∂t logS(t). It

follows that S(t) = exp (−
∫ t

0
h(u)du).

3.3 Problem Formulation
Let A be the set of agents and X be the set of conflict-induced
regions. Each agent a ∈ A has the following attributes. First,
their migration time TM

a , the time at which agent a migrates
to a different country. For agents a who never migrate, we
set Tm

a = ∞. Second, their origin xa ∈ X . Additionally, let
GA(A,EA) be the network formed by the agent set A where
EA corresponds to the agent pair who may exert peer influ-
ence over one another. Let Na be the set of agents who are the
neighbors of agent a induced by the edges EA. We assume
that the edge set EA does not change over time.

Let ha(t > Tm
a ) denote the hazard rate of an agent at time

t that represents instantaneous rate of the agent failing to stay
migrated (i.e., returning to xa). While recurring movements
are possible, we assume that agents only leave their countries
of migration when their goal is return migration. Applying
the formula for S(t) in the discrete-time scenario, the prob-
ability Sa(t + 1) that the agent will stay migrated at time
t + 1 given that it has remained a migrant up to time t, can
be written as Sa(t+1) = exp (−

∑t
t′=0 ha(t

′)). By doing a
Bernoulli sampling based on Sa(t) (where Bern(p) indicates
that the Bernoulli trial leads to success with probability p), we
can estimate return state of an agent at time t. Formally, let
ra(t) denote the state whether an agent has returned by time t
or not. Then, ra(t) ∼ Bern(Sa(t)) tells us the return state of
agent a at time t (if the agent has not already returned). Thus,
modeling the hazard function ha(t) will allow us to control
the return dynamics in various ways. Subsequent sections de-
scribe how we employ various strategies to progressively re-
fine the hazard function by employing various societal factors
that play a key role in conflict-induced migration scenarios.
Across all the models ha(t ≤ Tm

a ) = 0, which constrains
agents from returning before migration. Thus, from here on,
ha(t) corresponds to ha(t > Tm

a ).

3.4 ABM of Return Migration
Model 1: Basic Hazard (BASE)
Motivation: In the context of forced migration, it is well es-
tablished that the general intention of displaced individuals
is to eventually return to their place of origin [Zetter, 2021].

Therefore, the decision to return can be effectively seen as a
time-to-event problem, where the “event” is the act of return-
ing. The hazard function is often used for survival analysis
in discrete-time simulation [Suresh et al., 2022]. Thus, it is a
natural choice for modeling return migration dynamics.
Formulation: Various forms of hazard functions are used in
the literature. A comprehensive list of these various forms,
along with their mathematical properties and corresponding
survival functions has been described in [Van Wijk and Si-
monsson, 2022]. Our initial model uses the simplest of these
forms where we consider the hazard rate to be constant for all
agents at all times. Thus, the ABM is characterized by:

ha(t) = h (1)
It indicates that at any time t > Tm

a , agent a has a constant
value h of baseline hazard rate that controls their likelihood of
returning if they have not already returned by that time. It can
be shown that, if the hazard rate is constant, the underlying
probability distribution for the time to return can be expressed
as a geometric distribution [Chakraborty and Gupta, 2015].
Thus, P (ra(t) = 1) = h× (1− h)t−Tm

a , ∀a, ∀t.
Agent Dynamics: Thus, the Basic Hazard Guided ABM
works as follows. Initializing the baseline hazard rate h, at ev-
ery time step t, all the agents a with Tm

a < t and ra(t−1) = 0
calculate Sa(t) (probability of not returning) based on the
baseline hazard h. Then, ra(t) is sampled from Sa(t).

A more nuanced analysis can be conducted by classifying
the agents into groups and assigning each group a separate
hazard rate. While we explore this in a case study, our goal
is to provide the foundation for adding more layers of com-
plexity starting from the simplest of assumptions. Therefore,
while acknowledging the possibility of agent class-based haz-
ard rates, we refrain from doing so in our initial evaluations.

Model 2: Conflict Context Influenced Hazard (CL)
Motivation: Having established the basic ABM for model-
ing return migration, we next consider what other contexts to
incorporate in calculating the hazard rate and how to incor-
porate them. Several survey reports conducted on Ukrainian
migrants to identify key factors behind their intention to re-
turn can help us in this regard. One report published by
IOM [Sohst et al., 2024] indicates that improved security situ-
ation in origin community/Ukraine is the primary motive be-
hind Ukrainian refugees’ return in the short term. In another,
safety was marked as the primary factor for return by more
than 45% of the participants [Sologoub, 2024].
Formulation: We incorporate conflict context for modeling
return migration dynamics into the ABM as follows. Let,
Za ⊆ X denote the regions observed by agent a. Let c(z, t)
denote the conflict context1 of region z at time t. We use this
conflict context to modify the baseline hazard rate as follows.

ha(t) = h×

(
1− 1

K

∑
z∈Za

W∑
t′=0

c(z, t− t′ − L)

)
(2)

Here, L is a lag parameter that controls the time of the latest
conflict context. Since migration decisions involve planning

1Conflict context is a scalar quantity to measure the intensity of
conflict in a region at a particular time. More details are in Section 4.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

and travel time [Wycoff et al., 2024], choosing such param-
eter is important for temporal mapping of a migrant from in-
tending to return to being recorded as a returnee at the border.
The window parameter W is used to reduce the effect of noise
present in the data recording conflict context [Mehrab et al.,
2022]. Finally, K is a normalizing constant so that the right-
side term of the multiplication is bounded between 0 and 1. In
the evaluation section, we describe how these are configured.
From Equation (2), we can see that when the conflict context
is high, the baseline hazard will be scaled down, indicating
that the likelihood of return will decrease and vice-versa.
Agent Dynamics: Thus, the Conflict Context Influenced Haz-
ard Guided ABM works as follows. At every discrete-time
step t, all the agents a with Tm

a < t and ra(t − 1) = 0
look at the conflict contexts of each region z ∈ Za from time
t − L − W to t − L and incorporate it to scale the baseline
hazard h following Equation (2). This scaled hazard is used
to calculate the return probability of each agent.

Researchers have used other forms of hazard functions
(e.g., Weibull) to include additional covariates [Auld et al.,
2011]. However, these covariates are added in the exponent
term while the baseline hazard rate is kept as separate. Since
conflict context is significant to return dynamics, we choose
this functional form to let it affect the baseline hazard. More-
over, the other forms of hazard functions have additional pa-
rameters. Since this study aims at developing the simplest
possible model with a minimal set of parameters, we refrain
from using functional forms that introduce additional param-
eters and complexities.

Model 3: Conflict and Peer influenced Hazard (CLP)
Motivation: According to many social and behavioral theo-
ries (e.g., theory of planned behavior [Ajzen, 1991], herd be-
havior [Banerjee, 1992]), peer influence is a key factor behind
driving one’s decisions. It has also been established that both
conflict events and peer influence are important in driving mi-
gration decision-making [Mehrab et al., 2024b]. Following
this, in our final model, we incorporate peer influence along
with conflict context. We do so using the threshold model, a
well-known model used for capturing peer influence [Valente,
1996; Granovetter, 1978]. Traditionally threshold model is
used in the context of peer influence by having agents go
through state transition when the number of neighbors with a
particular state exceeds some threshold [Hancock et al., 2022;
Qiu and others, 2022]. Since we are modeling the return state
with hazard function, we use the threshold model instead to
have the agents transition using different hazard functions.
Formulation: Let, qa(t) =

∑
a′∈Na

ra′(t) be the number of
neighbors of a who have returned by time t. We express ha(t)
in the form of a piecewise hazard function as follows.

ha(t) =


hℓ ·

(
1−

∑
z∈Za

W∑
t′=0

c(z,t−t′−L)
K

)
if qa(t)

|Na| ≥ τa

hs ·
(
1−

∑
z∈Za

W∑
t′=0

c(z,t−t′−L)
K

)
otherwise.

(3)
Here, τa (0 ≤ τa ≤ 1) is the fractional active threshold

parameter required to influence agent a. Since considering

different thresholds across agents is difficult, we consider a
simpler model where each agent has the same fractional ac-
tive threshold parameter (i.e., ∀a ∈ A, τa = τ ). While we
do not impose any constraint here, ideally one can expect hℓ

to be larger than hs, since when more people are returning it
should drive a neighboring agent more likely to return.
Agent Dynamics: Thus, the Conflict Context and Peer Influ-
enced Hazard Guided ABM works as follows. At every time
step t, all the agents a with Tm

a < t and ra(t − 1) = 0 look
at the fraction of their neighbors who have migrated and re-
turned. If the fraction is larger (smaller) than τ , they choose
a baseline hazard of hℓ (hs). Then, they look at the conflict
contexts of each region z ∈ Za from time t − L − W to
t−L and incorporate it to scale the baseline hazard and sub-
sequently calculate the return probability using it.

It can be seen that we have progressively added layers to
our model to incorporate contexts of different dimensions,
making the models progressively more powerful in capturing
return migration dynamics. However, as this has two addi-
tional parameters (a different baseline hazard and the thresh-
old), it will be computationally more expensive to calibrate.

3.5 Surrogate Models of Return Migration
In this section, we propose some surrogates to the ABMs op-
erating in the aggregated population space rather than the in-
dividual agent space. While we lose some granularity by do-
ing so, we significantly reduce the computational cost.

The problem formulation for return migration in the
aggregated population space is as follows. Let M =
⟨m(1),m(2), ...,m(T )⟩ be the temporal estimates of mi-
grants, where m(t) is the number of migrants at time t. We
define R to be the T×T return matrix, where ri,j is defined as
the number of returnees at time i among those who migrated
at time j. Thus, by definition, when i ≤ j, ri,j = 0. Our goal
is to find the values ri,j , ∀i, j : i > j. We will refer to these
as the non-trivial entries of the R matrix. In the remainder of
this subsection, we describe three surrogates corresponding
to the three proposed ABMs; each description shows how the
non-trial values of R are computed.

Surrogate to the BASE model
Let h be the constant hazard rate defined as the parameter
of BASE. Let Qi,j denote the number of remaining migrants
at the time i from time j who survive (i.e., do not return),
calculated by Qi,j = m(j)−

∑
k<i rk,j . Thus, the surrogate

to BASE computes the non-trivial entries ri,j as follows.

• ri,j = Qi,j (1− e−h(i−j)) if i > j

Surrogate to the CL Model
Similar to how the problem space in the aggregated popu-
lation space, the surrogate also assumes conflict context at
a global level. Let ht

c be the conflict-influenced hazard ex-
pressed as ht

c = h× (1− 1
K

∑
x∈X

∑W
t′=0 c(x, t− t′ −L)),

where W,K,L have similar meanings as described for CL.
Thus, the non-trivial entries ri,j can be calculated as follows.

• ri,j = Qi,j (1− e−hi
c(i−j)) if i > j
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Surrogate to the CLP model
Since CLP considers peer influence at the local neighborhood
level of agents, an exact formulation of this peer influence is
difficult for the surrogate working at aggregated population
space. We approximate the peer influence as follows. Let,
r̃(t) =

∑t
t′=1

∑t′

j=1 ri,j be the total number of people who
have returned by time t. Let ht

cp be the conflict and peer
influenced hazard expressed as follows.

ht
cp =


hℓ ×

(
1−

∑
x∈X

W∑
t′=0

c(x,t−t′−L)
K

)
if r̃(t)

N ≥ τ̃

hs ×
(
1−

∑
x∈X

W∑
t′=0

c(x,t−t′−L)
K

)
otherwise

where N is the total number of agents. This essentially is a
peer influence considered at the overall population level in-
stead of the local neighborhood level. Using this, this surro-
gate calculates non-trivial ri,j as follows.

• ri,j = Qi,j (1− e−hi
cp(i−j)) if i > j

Here, the exponent term contains the conflict and peer-
influenced hazard term hi

cp which is defined above. It can be
seen that while these surrogate models can generate aggre-
gated level outputs, they cannot generate detailed individual
agent level behavior. However, since the outputs of surrogate
models can be generated with great computational efficiency,
if they are similar to the results of ABM, they can be used as
components of beneficial software tools for policymakers.

3.6 Model Calibration
In order to find a parameter configuration (e.g., hazard rate,
threshold parameter) that best fits the model, we define a loss
function that combines the capability of the model to cap-
ture the scale and trend of the observed return estimate and
apply a black-box optimization technique, namely Bayesian
optimization, to optimize this loss function. Bayesian opti-
mization is applied when the parameter space has a small
dimension (typically < 20), the objective function is com-
putationally extensive and its gradient is non-trivial to evalu-
ate ([Frazier, 2018]).

Let Rθ = ⟨rθ(1), rθ(2), ..., rθ(T )⟩ be daily return esti-
mates provided by our models (ABM or surrogate) parame-
terized by θ. Let, R̃ = ⟨r̃(1), r̃(2), ..., r̃(T )⟩ be the observed
number of returnees which we want to calibrate our model.
We define the following loss function.

L(θ) = λeRMSE(Rθ, R̃) + λc(1− PCC(Rθ, R̃)) (4)

The first term calculates the root mean squared error (RMSE)
between the model estimate and the ground truth estimate
whereas the second term calculates the Pearson correlation
coefficient (PCC) between the model estimate and the ob-
served estimate. Here, λe and λc are weight coefficient hy-
perparameters. Our proposed loss can help the model avoid
getting stuck in local minima in terms of just the traditional
RMSE loss. We present a justification for this claim and per-
form experiments to validate our claim in the online supple-
mentary material [Mehrab et al., 2025]

Baseline NACRPS NRMSE PCC

L21 N/A 0.223 0.569
L30 N/A 0.213 0.617
L40 N/A 0.211 0.628
L45 N/A 0.207 0.647

NACRPS NRMSE PCC
Ours ABM S-ABM ABM S-ABM ABM S-ABM

BASE 0.067 0.062 0.12 0.131 0.95 0.92
C21 0.059 0.060 0.112 0.135 0.93 0.91
C21P 0.057 0.062 0.106 0.126 0.93 0.91

C30P 0.051 0.083 0.089 0.102 0.95 0.93
C35P 0.052 0.051 0.094 0.128 0.96 0.94
C40P 0.056 0.054 0.107 0.169 0.95 0.89

Table 1: Evaluation of return estimation of proposed ABMs and
their corresponding surrogates (denoted as S-ABM). The metrics are
reported by comparing the median estimate of the ABM (or surro-
gate) with the ground truth. Each instance of ABM takes around 10
minutes and the surrogate takes around 3 seconds to run.

4 Evaluation
The following subsection provides an overview of the config-
urations of our experiments and the subsequent subsections
describe the results and case studies. All evaluation and stud-
ies involve the case of the return migrants from Poland to
Ukraine during the early period of the Russian invasion of
Ukraine. While we cannot comprehensively evaluate the gen-
eralizability of the model due to inadequacy of ground truth
pertaining to diverse scenario, we emphasize that our model
can be applied in other conflict scenarios as well.

4.1 Experimental Setup
Datasets: We parse the conflict events of Ukraine during
the Feb-Aug 2022 period from ACLED [2010]. For the
agent data, we use the synthetic household data described
in [Mortveit et al., 2020]. We collect the synthetic house-
holds of Ukraine and the associated synthetic individuals.
These households represent the agents in our model. Fi-
nally, we obtain the border-crossing data from Polish border
guards [Portal, 2022] and use the number of Ukrainians cross-
ing a Poland-Ukraine border between February 24, 2022 and
August 01, 2022 as the ground truth.
Building Block Models: Since our problem formulation
requires knowing the migration time of the agents to esti-
mate their return time (Figure 1), we first apply the ABM-
TPB model [Mehrab et al., 2024a] to assign each migrant a
refugee or internally displaced (IDP) status. Then, we apply
the method proposed in [Pandey et al., 2023] to place each
refugee in one of the six neighboring countries of Ukraine
and apply our methodology on the refugees placed in Poland.
To account for the uncertainties associated with these mod-
els, we run 100 realizations of ABM-TPB model to create a
Digital Library (DL) of simulations (see supplementary ma-
terial [Mehrab et al., 2025] for details) by using Latin Hyper-
cube Sampling (LHC) over the parameter spaces for ABM-
TPB. From the DL, we select the 30 best performing simu-
lations. Then, we run our models for return migration over
each of these simulations 30 times.
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Hyperparameters: We create the agent network GA us-
ing Kleinberg’s Small World Model (KSW) [2000] using
the methods and parameters described in [Mehrab et al.,
2024b]. The same network is also used for the ABM-TPB
model. Across all the CL and CLP models, we use a con-
stant window parameter W = 7 days and the lag parameter
L ∈ {21, 30, 35, 40} days. To reduce the number of possible
covariate combinations, we also set Za = X, ∀a ∈ A for our
ABM models. Future research can explore how limiting the
scope of observation to different radii of neighboring regions
can change the outcome of the model and how this can be
done across agents of various demographic groups. Finally,
we use daily total fatalities from ACLED as the conflict con-
text to our ABMs and their surrogates and K is chosen to be
the maximum value among all conflict contexts.
Metrics: We first evaluate Normalized Root Mean Squared
Error (NRMSE), to measure accuracy of the model estima-
tion. The second metric is Normalized Average Continuous
Ranked Probability Score (NACRPS), used to quantify how
well the model can account for uncertainty in its estimation.
Finally, we also evaluate the Pearson Correlation Coefficient
(PCC) to quantify how well the model can capture the trend
in the observed data. These metrics are described in detail in
the online supplementary material [Mehrab et al., 2025].
Baseline: As baselines for our models, we create some
vanilla linear regression models LD, D ∈ {20, 30, 40, 45}.
Here, D represents the number of days of historical conflict
contexts each model uses as features. For these models, we
consider both the number of events and the fatalities of events
as conflict context. Note that these models are not probabilis-
tic in nature; so, they cannot account for uncertainties.

(a) C30P (b) Surrogate of C30P

Figure 2: Best Performing ABM and Surrogates for estimating re-
turn migrants from Poland to Ukraine. Circles represent ground
truth data. Visualizations corresponding to other models of Table 1
can be found in the online Supplement. 50% (95%) CI corresponds
to the 50% (95%) confidence interval of the model estimate.

4.2 Experimental Validation
Table 1 summarizes the performance of our proposed mod-
els against the baseline methods. We describe our main find-
ings in the next two subsections. For a more comprehensive
set of experiment results, see the online supplementary mate-
rial [Mehrab et al., 2025].
Error and Correlation: The best ABM (C30P) has a median
NRMSE of 0.089, an improvement of around 57% compared
to the best-performing regressor (L45, with an NRMSE of
0.207). Even the simplest ABM (BASE) has a 42% improve-
ment in NRMSE compared to L45. The surrogates also out-

perform the baseline methods. The best-performing surrogate
(surrogate of C30P) has a median NRMSE of 0.102, a 51%
improvement over L45. Further, our proposed models capture
the trend of the return migration better than baseline methods,
with PCC constantly being higher than 0.9. These results un-
derscore the capability of the proposed hazard-based models
to capture the scale and trend of the return migration accu-
rately. Notably, CLP models always seem to perform better
than BASE or CL, thus bringing out the importance of con-
sidering different layers of sociopolitical contexts in captur-
ing return dynamics. We elaborate on this through an ablation
study (see Supplementary material [Mehrab et al., 2025]).
Surrogate vs ABM: The proposed surrogate models are able
to produce estimates comparable to their ABM counterparts.
We take the C30P as an example, which has the best per-
formance in terms of NRMSE. Its surrogate has an NRMSE
of 0.102, which is worse only by 14.6% compared to the
NRMSE of its ABM counterpart. However, the surrogate
model takes around three seconds to generate the return es-
timate whereas the ABM takes close to 10 minutes for one
instance to execute. Such a significant improvement in com-
putation time may compensate for the penalty in accuracy.
However, it must be noted that the more sub-optimal the
ABM gets, the performance of its surrogate gets progres-
sively worse. For example, the performance drop in NRSME
of the surrogate for C35P is almost 36.1% (0.128 vs 0.094)
and for C40P is around 57%. This behavior also underscores
the importance of choosing a good lag parameter. Effect of
the lag parameter is further discussed in the online Supple-
mentary material [Mehrab et al., 2025].

4.3 Uncertainty Quantification
It is important to quantify the uncertainty associated with a
probabilistic model designed for generating return migration
estimates. To do so, we analyze the NACRPS of the mod-
els tabulated in Table 1. First, we notice that adding lay-
ers of complexity to BASE decreases NACRPS, suggesting
improvement of both point forecasts and probabilistic fore-
casts. Second, the CLP ABMs with lower NRMSE have
low NACRPS as well; thus, these models not only have rea-
sonable point prediction accuracy, but the uncertainty associ-
ated with probabilistic return estimation is also accounted for
more effectively. Third, adding layers of complexity to the
surrogate models do not necessarily improve NACRPS. As
example, when conflict context is introduced with the BASE,
the NACRPS slightly improves with a decline in NRMSE.
But, when peer influence is added, the NACRPS declines as
NRMSE improves. Thus, there is a tradeoff between accuracy
and uncertainty across these surrogate models. If we compare
the C30P surrogate with its ABM counterpart in Figure 2, we
realize that the poor NACRPS of the surrogate is due to high
uncertainty interval (shaded region) at the later period (Fig-
ure 2b), which does not happen for the ABM (Figure 2a). In
the ABM, since peer influence comes from the local neigh-
borhood of each agent, the threshold is unlikely to be met
by all agents at once. For the surrogates, peer influence is
calculated by looking at the entire population. Thus, the tran-
sition occurs for everybody simultaneously. Across multiple
simulations, uncertainty propagated by this sharp transition is
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observed intensely, leading to higher NACRPS values.

5 Case Studies
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(a) Length of migration before
return reported in IOM surveys
at different rounds (Circles) vs
model median estimate (Trian-
gles) with 50% CI (Rectangle).
Days elapsed since war is indi-
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(b) Demographic pattern of re-
turn. Each boxplot corresponds
to the calibrated hazard rate over
20 surrogate instances. The
groups are categorized based
on household composition, dis-
cussed in Table 2.

Figure 3: Two case Studies conducted using our proposed models

5.1 Return Time Estimation
For our first case study, we aim to understand an aspect of
utmost importance to policymakers. The question we want
to address is the following. What is the expected length of
displacement before someone conducts return migration? An
answer to this question helps policymakers to decide whether
the migrants require long-term integration programs or short-
term emergency responses [World Bank, 2025]. It can also
help policymakers plan for advocating a ceasefire on various
frontlines, given migrants displaced from vicinities return af-
ter a certain period [Associated Press, 2024].

To answer this question, we calculate the length of stay
across agents at different periods of the Ukraine war using
the output from the C30P ABM. Figure 3a shows distribu-
tion of the length of displacement, along with the reported
mean length of displacement provided in the IOM general
survey reports [IOM, 2022]. We can see that the reported
mean length agrees well with the model estimates. More-
over, the increase in the length of displacement before return
with the progression of the war is correctly estimated by our
model. This signifies that our proposed hazard-guided ABM
is appropriate for time-to-return modeling as this emergent
behavior matches qualitative observation and captures over-
all return migration dynamics.

5.2 Demographic Pattern of Returnees
Our second case study aims to estimate the demographic
composition of returning migrants. Since ground truth con-
taining demographic details is not available regarding re-
turn migrants, such estimates can help policymakers in tai-
loring targeted reintegration initiatives [Battistella, 2018] or
allocating social/medical services based on the psychological
needs of specific demographic groups [Migration Observa-
tory, 2011]. Here, the question we want to address is: What
is the likelihood of return for migrants from different demo-
graphic groups? Fitting hazard rate parameters across vari-
ous demographic groups can answer this question.

Group Household Description Migrant ratio (%)
M Adult males only 1.47±0.41

F Adult females only 6.07±0.23

V Elderly (and/or) children 71.64±0.34

X Adult males and females 20.81±0.16

Table 2: Group categorization based on demographic attributes.
These groups were chosen upon careful discussion with the Polit-
ical scientists in our team. Right column shows the distribution of
each group as a migrant from ABM-TPB simulation.

Therefore, we modify the surrogate of BASE as follows.
We first categorize each household into one of the four
groups outlined in Table 2. Then, we initialize hg, ∀g ∈
{M,F, V,X} and the surrogate model produces return es-
timates for the groups individually. The aggregation of re-
turn estimates of all groups is calibrated to match the total re-
turn estimates Once calibrated, the hazard rates of individual
groups in Figure 3b reveal interesting emergent properties.

First, we notice that the adult male-only households have
a high hazard rate compared to other groups. This indicates
their high propensity to return to Ukraine, which can be at-
tributed to the mandate requiring adult males to participate in
the war. Second, we observe that households with vulnera-
ble groups (i.e., elderly, children) are the least likely to re-
turn. This implies that the threat of security is greatest among
families with children and elderly. Third, we observe that
female-only households have hazard rates similar to the vul-
nerable groups compared to the male-only households, again
indicating their greater concern for security compared to adult
males. Consequently, females without partners are slightly
more likely to return than females with male partners, which
corroborates with prior findings [Sologoub, 2024], indicat-
ing the possibility of having a partner alongside to be more
motivating to settle in a new place. Finally, there is less vari-
ance in hazard rate across the V group, compared to the other
groups. Since the largest portion of migrants is comprised of
this group, a slight variation from the calibrated hazard rate
may cause a large deviation from the ground truth. Over-
all, the ability to produce demographically detailed estimates
underscores the usefulness of the model in building decision-
support tools for policymakers.

6 Concluding Remarks
We developed novel agent-based models (ABMs) for return
migration, experimentally evaluated these models and con-
ducted case studies using these models to demonstrate their
usefulness in generating policy-relevant information. Our
models can be seamlessly incorporated to work with prior
computational models that generate outflow of Ukrainian mi-
grants and subsequently place them in one of the neighboring
countries. Therefore, our work provides the path to develop
the first end-to-end ABM of forced migration that is jointly
able to capture these heterogeneous migration dynamics. Fu-
ture work can explore the return dynamics of internally dis-
placed people and consequently, address the dynamics of re-
curring migration.
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lic domain datasets.
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