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Abstract

As large language models (LLMs) continue to ad-
vance and gain influence, the development of em-
bodied AI has accelerated, drawing significant at-
tention, particularly in navigation scenarios. Em-
bodied navigation requires an agent to perceive,
interact with, and adapt to its environment while
moving toward a specified target in unfamiliar set-
tings. However, the integration of embodied nav-
igation into critical applications raises substan-
tial safety concerns. Given their deployment in
dynamic, real-world environments, ensuring the
safety of such systems is critical. This survey pro-
vides a comprehensive analysis of safety in em-
bodied navigation from multiple perspectives, en-
compassing attack strategies, defense mechanisms,
and evaluation methodologies. Beyond conduct-
ing a comprehensive examination of existing safety
challenges, mitigation technologies, and various
datasets and metrics that assess effectiveness and
robustness, we explore unresolved issues and future
research directions in embodied navigation safety.
These include potential attack methods, mitigation
strategies, more reliable evaluation techniques, and
the implementation of verification frameworks. By
addressing these critical gaps, this survey aims to
provide valuable insights that can guide future re-
search toward the development of safer and more
reliable embodied navigation systems. Further-
more, the findings of this study have broader impli-
cations for enhancing societal safety and increasing
industrial efficiency.

1 Introduction
In recent years, Large Language Models (LLMs) have gar-
nered significant attention for their remarkable capabilities in
perception, interaction, and reasoning. These advancements
have contributed to the rise of Embodied Artificial Intelli-
gence (Embodied AI), which serves as a bridge between the
virtual and physical worlds. A key aspect of Embodied AI

∗Corresponding Author

Starting point

Destination

(a) Physical Attack 

Navigable Route

Attacked Route

(b) Model-based Attack

Instruction 

to wrong 

way
Embodied AI

Jailbreak
Harmful textAdversarial Patch

Adversary

Figure 1: Examples of two types of attacks. The red circle marks
the starting point, the red triangle indicates the destination, the green
line represents the navigable route, and the yellow line shows the at-
tacked route. In the physical attack example, an adversarial patch
disrupts navigation, while in the model-based attack example, a jail-
break injects harmful instructions, leading to incorrect actions.

is embodied navigation, which enables an AI agent to per-
ceive and interact with its environment while moving toward
a target or specified location in unfamiliar settings. This re-
quires a combination of intelligent capabilities, including vi-
sual perception, mapping, planning, exploration, and reason-
ing. For example, consider an AI agent instructed to “Re-
trieve a bottle of water from the kitchen fridge.” The agent
must navigate to the kitchen, identify the fridge, pick up the
correct item, and return to the designated location. Embod-
ied navigation plays a crucial role in various real-world ap-
plications, including safety-critical scenarios such as robotic
navigation [Wang et al., 2024b] and autonomous driving [Li
et al., 2023]. Therefore, ensuring the safety and efficiency of
embodied navigation is crucial.

However, the security of Embodied AI remains a signifi-
cant concern, as it relies on deep neural networks (DNNs),
which are susceptible to adversarial attacks [Liu et al., 2020].
These vulnerabilities pose serious risks to the safety and reli-
ability of embodied navigation systems. One type of attack
alters the physical environment to mislead navigation per-
ception. For example, adversarial patches or perturbations
placed on objects or surfaces can mislead the input of the
model, causing it to misunderstand its surroundings [Chen
et al., 2024]. Another form of attack directly targets the AI
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model by injecting maliciously crafted inputs that manipu-
late its decision-making process [Liu et al., 2024]. For exam-
ple, carefully designed adversarial prompts can trick a large
model into producing incorrect or harmful outputs. As a re-
sult, the agent may misidentify barriers, take incorrect paths,
or even crash into objects (as shown in Figure 1, both physi-
cal patch attacks and model-based jailbreak attacks cause em-
bodied navigation to deviate from its original correct path).
While some existing studies focus on defense methods [Wu et
al., 2024a] or the construction of safety-related benchmarks
[Yin et al., 2024], a comprehensive survey on the safety of
embodied navigation is still lacking, which limits a holistic
understanding of the field’s development.

In this paper, we aim to explore three key research ques-
tions: (1) What risks do embodied navigation agents face?
(2) What methods can be employed to mitigate these risks
and enhance system reliability? (3) What metrics can be used
to evaluate the safety of embodied navigation agents? To ad-
dress these questions, we present a comprehensive survey that
summarizes recent advancements in three critical areas: at-
tacks, defenses, and evaluation (as illustrated in Figure 2).
First, after comprehensive investigation the safety risks, we
categorize potential threats into two primary types: physical
attacks, which are caused by environmental factors such as
adversarial patches or lighting conditions, and model-based
attacks, which exploit vulnerabilities in the navigation model
itself, particularly in large-scale models. These attack types
are further classified based on their nature, the attackers in-
volved, and the methodologies employed. Next, we system-
atically examine existing defense mechanisms for embodied
navigation, aligning them with the corresponding attack types
to provide a structured understanding of adversarial threats
and mitigation strategies. Additionally, we emphasize the
critical role of well-structured datasets and robust evaluation
metrics in ensuring the safety and reliability of embodied nav-
igation systems. Given that evaluation is a fundamental as-
pect of safety assessment, we discuss the necessity of stan-
dardized benchmarks and comprehensive testing methodolo-
gies in advancing the security of embodied AI.

Building on our comprehensive review of existing re-
search, we present some future directions in embodied AI
safety. These include advancing attack strategies, partic-
ularly in multimodal AI settings; developing more effec-
tive and adaptive defense mechanisms for real-time naviga-
tion; and establishing standardized evaluation frameworks
to enhance fairness and interpretability across diverse tasks.
Moreover, we highlight the importance of verification tech-
niques in quantifying robustness thresholds and defining the-
oretical performance bounds. We believe these efforts will
contribute to the development of safer and more reliable
embodied AI systems. Notably, [Zhang et al., 2024c;
Liu et al., 2025] are works related to us, focusing primarily
on embodied navigation (excluding safety aspects) and safety
within embodied AI in one specific area (healthcare), respec-
tively. In contrast, the central focus of our work is on safety
issues within embodied navigation across a general domain.
Our main contributions are as follows:

• We provide a systematic review of attack and defense

Safety in Embodied 

Navigation

Attack

Physical Attack

Model-based Attack

Defense

Physical Defense

Model-based Defense

Evaluation

Dataset

Metric

Figure 2: Taxonomy: Safety of Embodied Navigation

methods related to the safety of embodied navigation. To
the best of our knowledge, this is the first comprehensive
study on the safety of embodied navigation.

• We compare and analyze recent evaluation datasets and
metrics used for assessing embodied navigation safety.

• We present potential future research directions in em-
bodied navigation safety to inform and inspire further
advancements toward the development of more robust
and reliable embodied navigation systems.

2 Preliminaries
In this section, we introduce the background knowledge in
embodied navigation and safety to better illustrate the scope
of this survey.

2.1 Overview of Embodied Navigation
Embodied AI refers to intelligent systems that integrate per-
ception, decision-making, and action within a physical or
simulated environment, enabling them to interact with and
adapt to their surroundings autonomously. A crucial applica-
tion of embodied AI is embodied navigation, which enables
an agent to perceive its surroundings, plan a path, and move
toward a target while adapting to dynamic and unfamiliar set-
tings. In an embodied navigation task, an agent is placed in
a visual environment E and given an instruction I to find a
route R from a starting point S to a destination D. The route
R is a sequence of viewpoints that the agent will follow. At
each time step t, the agent observes multiple views {Vt,i};
some of these views indicate possible directions of move-
ment. Using the instruction I , its previous observations, and
previous commands {c0, c1, . . . , ct−1}, the agent selects the
next command ct. The process ends when the agent chooses
the stop command, denoted as cstop. Our survey builds upon
and extends this foundational task.

Embodied navigation focuses on enabling agents to move
and interact in physical environments using visual and sen-
sory input. Key tasks include object goal navigation (e.g.,
locating specific objects like “kitchen” in unknown set-
tings [Chen et al., 2024; Ying et al., 2023; Yang et al., 2024]),
image goal navigation (reaching a target depicted in an im-
age like “fridge” [Mezghan et al., 2022]) , visual language
navigation (VLN) (following natural language instructions to
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traverse a route [Jiao et al., 2024; Lu et al., 2024]) and inter-
active navigation (answering questions about the environment
[Liu et al., 2024]).

2.2 Safety in Embodied Intelligence
Currently, research on embodied AI safety remains relatively
limited, with different studies using various metrics to as-
sess these systems. In general, safety is understood as a
model’s ability to withstand perturbations, where greater ro-
bustness means stronger resistance to disruption. Specifi-
cally, adversarial perturbations pose a significant challenge to
embodied navigation by distorting perception and decision-
making. At time step t, the perturbed observation is defined
as V ′

t,i = Vt,i + δt,i, where δt,i represents an adversarial per-
turbation applied to the original observation Vt,i, which can
alter the agent’s perception of the environment. Humans are
usually unable to detect these disturbances. Given an input
Vt,i, a model F typically produces an output ct that aligns
with human expectations. However, when V ′

t,i is presented
instead, the model’s response may deviate significantly, lead-
ing to unexpected or even harmful consequences. As a result,
instead of selecting the correct command ct based on the orig-
inal observations, the agent chooses c′t under the perturbed
observations, where c′t ̸= ct. This incorrect decision may
cause the agent to deviate from its intended route, leading to
navigation failure and potentially unsafe outcomes.

Embodied intelligence systems face two major security
threats: physical threats and model threats. Since deep neu-
ral networks (DNNs) are highly sensitive to such disruptions,
external factors such as malicious patches [Ying et al., 2023;
Chen et al., 2024] or changes in lighting conditions [Zhang
et al., 2024b; Sun et al., 2024] can distort the system’s un-
derstanding of its surroundings, leading to navigation errors.
On the other hand, model threats arise from vulnerabilities
within large language models (LLMs). Attackers may inject
malicious instructions or exploit hallucination effects [Jiao
et al., 2024; Wang et al., 2024a; Zhang et al., 2024a;
Huang et al., 2024a; Dong et al., 2024], potentially causing
the system to generate inaccurate or even risky route plans. A
detailed discussion of these threats will be presented in Chap-
ter 3.

3 Attack
In this section, we examine attacks on embodied navigation,
broadly classified into two categories: physical attacks and
model-based attacks, with some attacks combining elements
of both. Table 1 presents different types of representative at-
tacks. However, research on the vulnerabilities of embodied
systems remains limited. To address this gap, we discuss po-
tential future attack vectors in Chapter 6.

3.1 Physical Attack
Since the introduction of achievable physical adversarial
samples [Kurakin et al., 2018], physical adversarial attacks
widely applied in various computer vision tasks, such as fa-
cial recognition [Wei et al., 2024] and traffic sign detection
[Suryanto et al., 2023].

However, research on adversarial attacks targeting embod-
ied navigation agents remains relatively limited. To estab-
lish a foundation for understanding these threats, we first re-
view physical patch attacks in 2D pixel spaces before explor-
ing their extensions to 3D settings. The early exploration of
physical attacks was initiated by [Brown et al., 2017], who
proposed a method for generating universal adversarial im-
age patches capable of attacking any scene. Later, [Chen et
al., 2018] introduced adversarial perturbations on stop signs,
causing Faster R-CNN to misclassify them and threatening
autonomous vehicles. Furthermore, some studies [Wei et al.,
2023; Li and Ji, 2021] focused on optimizing patch placement
to enhance attack effectiveness. In embodied navigation at-
tacks, the attack is achieved by [Ying et al., 2023] through
the application of agnostic perturbations to each input frame.

Due to the inherent limitations of 2D patches, researchers
have redirected their attention to investigating the impact of
patch-based attacks on 3D properties, such as rotation and
translation [Zeng et al., 2019]. [Liu et al., 2020] was an early
work on attacks against embodied navigation agents, which
focused on the physical attributes of objects in key scene
views, such as textures and 3D shapes. Meanwhile, [Atha-
lye et al., 2018; Wiyatno and Xu, 2019] introduced the Ex-
pectation Over Transformation (EOT) method, which gener-
ated robust 3D adversarial examples by simulating real-world
variations, including rotation, scaling, and blurring.

Influenced by methods such as EOT, numerous attacks
have emerged. [Xu et al., 2020] proposed attaching adver-
sarial patches to t-shirts to generate robust adversarial sam-
ples that simulate deformation effects. Similarly, [Yang et
al., 2024] explored the appearance optimization of 3D ad-
versarial objects, aiming to manipulate how objects are per-
ceived in the environment and induce the desired behav-
ior in a pretrained VLN agent, thereby achieving an attack
in embodied navigation. Additionally, some methods ex-
plored 3D adversarial camouflages by disrupting object tex-
tures within navigation scenes, particularly in autonomous
driving. [Huang et al., 2024b] developed more effective and
transferable techniques for generating targeted 3D adversar-
ial examples. [Suryanto et al., 2023] proposed camouflage
attack methods based on texture rendering, while [Wang et
al., 2021] implemented attacks on the full 3D surface of ve-
hicles.

Early research on attacks against embodied navigation
agents was constrained by viewpoint variations and environ-
mental complexity, limiting their effectiveness in real-world
settings. To address these challenges, recent studies have de-
veloped specialized attack strategies tailored for navigation
tasks. Adversarial textures for clothing [Hu et al., 2023b]
were initially explored to enhance robustness against view-
point variations. Similarly, [Chen et al., 2024] also leveraged
a multi-view approach, proposing a method that attaches ad-
versarial patches with learnable textures and opacities to ob-
jects, integrating multiple viewpoints to achieve physical at-
tacks.

In addition to patch-based physical attacks, some adversar-
ial attack strategies targeting navigation shifted their focus to
adversarial light. Initially, this approach was applied to image
classification, where a projector altered physical light condi-
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Type Paper Attacker Attack Type Technique Brief Description
[Ying et al., 2023] User White-box 2D-patch Constant image-agnostic perturbation applied to each input frame
[Wei et al., 2023] User Black-box 2D-patch Optimizing adversarial patch placement for optimal positioning

[Suryanto et al., 2023] User Black-box 3D-patch General-purpose adversarial patches for vehicle applications
[Yang et al., 2024] User White-box 3D-patch Optimized the appearance of 3D adversarial objects

[Huang et al., 2024b] User Black-box 3D-patch Transferable targeted 3D adversarial examples
Physical Attack [Hu et al., 2023b] User White-box Multi-view-patch Adversarial texture for clothes

[Chen et al., 2024] User White-box Multi-view-patch Multiview optimization strategy based on object-aware sampling
[Hu et al., 2023a] User Black-box Adversarial Light Optimizes the physical parameters of laser spots to perform physical attacks

[Zhang et al., 2024b] Third Party White-box Adversarial Light Electromagnetic Signal Injection Attacks
[Sun et al., 2024] User, Third Party Black-box Adversarial Light Dynamically tailored non-contact laser attack

[Sun et al., 2024] User, Third Party Black-box Reinforcement Learning Dynamically tailored non-contact laser attack
[Zhang et al., 2022] User Black-box Federated Learning Backdoor attack on FL-based embodied agents
[Jiao et al., 2024] User White-box LLM-Backdoor attack Backdoor attacks against embodied LLM-based decision-making systems

Model-based Attack [Wang et al., 2024a] User, Third Party Black-box LLM-Backdoor attack Backdoor attacks on VLM-based robotic manipulation
[Zhang et al., 2024a] Third Party Black-box LLM-Jailbreak attack Manipulation, alignment, and knowledge for attacks

[Lu et al., 2024] User Black-box LLM-Jailbreak attack Adversarial and meaningful suffixes with a focus on simple words
[Liu et al., 2024] User White-box LLM-Jailbreak attack Targeted attacks for controlled manipulation and untargeted attacks for random disruptions

Table 1: Different types of representative attacks: “Attacker” refers to the adversary, categorized into user and third party; “Attack type” is
classified into black-box and white-box attacks, while “Technique” corresponds to different attack methodologies.

tions to deceive classifiers [Huang and Ling, 2022]. Later,
adversarial light techniques were extended to embodied navi-
gation. Geometric light attacks distorted entire images, lead-
ing to the misinterpretation of navigation signs by vehicles
[Hu et al., 2023a]. Similarly, electromagnetic signal injection
manipulated visual inputs, affecting both classification and
navigation tasks [Zhang et al., 2024b]. Furthermore, laser
emitters were used to attack embodied navigation agents by
exploiting vulnerabilities in their perception systems [Sun et
al., 2024].

3.2 Model-based Attack
In model-based attacks, unlike physical attacks that focus on
changes in the environment, these attacks are directed specif-
ically at the model itself.

In embodied navigation tasks, reinforcement learning (RL)
can be employed to train agents on how to navigate effec-
tively. Similar to models trained in standard gaming envi-
ronments, embodied navigation systems are also susceptible
to certain attacks based on reinforcement learning [Mu et
al., 2024]. Rather than using time-consuming heuristic al-
gorithms, [Sun et al., 2024] employed reinforcement learn-
ing to optimize adversarial laser attack strategies, improving
efficiency.

Federated Learning (FL) enables multiple clients, such as
household navigation environments, to collaboratively train
navigation models without sharing raw data with a central
server, thereby preserving data privacy. In the context of em-
bodied navigation, FL facilitates decentralized learning, al-
lowing agents to adapt to different environments while main-
taining data security. However, the decentralized nature of FL
also introduces security risks. The opacity of local training
processes makes the system vulnerable to adversarial manip-
ulation [Lyu et al., 2022]. To explore these vulnerabilities,
[Zhang et al., 2022] investigated how malicious clients could
manipulate their local training data, allowing attackers to con-
trol the global model under specific conditions.

Large Language Models (LLMs) demonstrated immense
potential for navigation in embodied artificial intelligence.
With extensive common sense and advanced reasoning ca-
pabilities, these models enabled robots to better comprehend
complex language commands and execute high-level tasks

with greater understanding and adaptability [Sharan et al.,
2023]. However, large models also faced several security is-
sues, primarily jailbreak attacks and backdoor attacks. Jail-
break attacks exploit model vulnerabilities to bypass safety
mechanisms, allowing attackers to generate restricted content
using crafted prompts. Backdoor attacks embed hidden trig-
gers, making the model behave maliciously when specific in-
puts are given. Research on backdoor attacks explored vari-
ous mechanisms to compromise LLMs. Hidden triggers were
implanted into models using word-based, scene-based, and
Retrieval-Augmented Generation (RAG) techniques, demon-
strating how these methods could embed vulnerabilities into
systems [Jiao et al., 2024]. Additionally, visual-language
models (VLMs) integrated into robotic systems were exam-
ined for potential exploits, revealing that adversaries could
manipulate them to execute harmful actions in real-world en-
vironments [Wang et al., 2024a]. In addition, jailbreak at-
tacks in embodied LLM-based robots were achieved through
voice-based user interactions, effectively bypassing safety
and ethical constraints [Zhang et al., 2024a]. Another ap-
proach involved generating adversarial and meaningful sim-
ple word suffixes to influence embodied AI, enabling pre-
cise voice injections capable of causing harm in the physical
world, affecting both environments and humans [Lu et al.,
2024]. Also, both untargeted and targeted attacks were em-
ployed to execute jailbreaks in LLM-based embodied mod-
els, further highlighting their security vulnerabilities [Liu et
al., 2024].

4 Defense
In this section, we explore various defense mechanisms for
embodied navigation, which are generally classified into two
main categories: physical defenses and model-based de-
fenses. In particular, some defenses integrate elements from
both categories. Table 2 provides an overview of representa-
tive defense types.

4.1 Physical Defense
Several prior studies explored defenses against patch attacks
on pixels instead of specifically designing for embodied sys-
tems, employing both empirical strategies [Xu et al., 2023;
Wu et al., 2024b] and certified approaches [Xiang et al.,
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2021; Xiang et al., 2024]. One approach focused on “detec-
tion and removal”, where adversarial purification was applied
to mitigate the impact of adversarial patches [Xu et al., 2023].
Another method introduced a detection framework targeting
naturalistic adversarial patches with deceptive features [Wu
et al., 2024b]. Beyond empirical strategies, a small recep-
tive field CNN was used to limit the number of features that
adversarial patches could corrupt, thereby improving model
robustness [Xiang et al., 2021]. Subsequent work further en-
hanced both efficacy and robustness by refining these certified
defenses [Xiang et al., 2024].

Unlike previous passive defenses, active defense mecha-
nisms were introduced for embodied navigation, utilizing re-
current feedback to actively counter adversarial patches [Wu
et al., 2024a]. This approach leveraged environmental con-
text, addressing misaligned adversarial patches in real-world
3D settings.

4.2 Model-based Defense
We name “model-based defense” to align with model-based
attacks, as the defenses discussed here are specifically de-
signed to counter the previously mentioned attacks. By
maintaining this alignment, these defense strategies leverage
model-driven mechanisms to effectively mitigate adversarial
threats. The Embodied Active Defense (EAD) method was
introduced to tackle adversarial patches in the 3D real world,
actively integrating perception and action to interact with
and adapt to the environment, thereby enhancing decision-
making [Wu et al., 2024a]. To assess the safety of federated
embodied agents, a real-time defense mechanism was devel-
oped by [Zhang et al., 2022], implementing a Prompt-Based
Aggregation (PBA) mechanism that detects malicious clients
by analyzing vision-language alignment variance, thus pro-
viding more robust protection against federated learning at-
tacks. Some studies focused on defense strategies for em-
bodied navigation based on large language models. Vari-
ous methods were evaluated to determine their effectiveness
against backdoor attacks on embodied models [Jiao et al.,
2024]. Notably, directly deploying defense models (such as
Llama-Guard-2, Llama-Guard-3, and Harmbench) has been
a common approach. Both prompt-level and model-level de-
fenses were explored to mitigate jailbreak attacks on embod-
ied AI [Lu et al., 2024].

5 Evaluation
In this section, we focus on the safety assessment issues
in embodied navigation. Initially, we review safety-related
datasets, followed by an organization of metrics used to eval-
uate safety.

5.1 Dataset
Some of the benchmarks used in our work in Chapters 3 and
4 were not originally designed for embodied navigation (e.g.
[Chen et al., 2024]). Additionally, some works have created
their own datasets to meet their specific experimental needs
[Yang et al., 2024]. In this section, we concentrate on the
recent and representative datasets for the safety of embodied
navigation. And we categorize the benchmarks based on the

Defense
Physical
Defense

Model-based
Defense Attack Type Core Method

[Xu et al., 2023] ✓ white-box Detection and Remove
[Wu et al., 2024b] ✓ black-box Feature Aligned Learning
[Wu et al., 2024a] ✓ ✓ white-box Reinforcement learning

[Zhang et al., 2022] ✓ black-box Federated learning
[Lu et al., 2024] ✓ black-box LLM Jailbreak

[Jiao et al., 2024] ✓ white-box LLM Backdoor Attack

Table 2: Different types of representative defenses. “Attack Type”
refers to the category of attacks that this defense is designed to
counter.

number of model parameters into those designed for classic
models and those designed for LLMs.

Datasets for classic models
Based on the work of [Li et al., 2023], a physical attack nat-
uralness dataset was constructed using human ratings and
gaze data. Due to the limitations of virtual environments
in replicating object interactivity and scene scale found in
real-world settings, a photo-based 3D benchmark was later
developed [Kim et al., 2024]. By integrating authentic
scenes, objects, and room layouts, this benchmark allowed
agents to better comprehend language instructions, complete
household tasks, and operate in large-scale, multi-room real-
world environments. Efforts to enhance embodied navigation
benchmarks extended to diverse settings, including houses,
gardens, restaurants, and offices. Objects within these envi-
ronments were annotated with detailed physical and semantic
attributes, with a focus on both reinforcement learning (RL)
agents and safety concerns [Li et al., 2024]. Further advance-
ments in multimodal lifelong navigation introduced a bench-
mark designed to challenge agents in open-vocabulary navi-
gation tasks [Khanna et al., 2024]. Agents were required to
locate targets specified by category names, natural language
descriptions, or images, contributing to the development of
general-purpose navigation systems .

Datasets for LLMs
With the development of LLMs, embodied LLM agents be-
came more effective in interacting with people and making in-
formed decisions in navigation. However, as previously dis-
cussed, LLMs remain vulnerable to jailbreak and backdoor
attacks. In response, various benchmarks were introduced to
evaluate LLM-based navigation systems, particularly focus-
ing on recently developed datasets. A benchmark suite was
designed to automatically assess the task-planning capabil-
ities of LLMs [Choi et al., 2024]. Each dataset sample pro-
vided natural language instructions and an environment to the
planner. The simulator executed the planned actions and eval-
uated performance by comparing the final state with a pre-
defined target condition. While its contributions, the dataset
primarily focused on planning abilities rather than safety con-
cerns.

To explore physical risks in embodied AI, dangerous sce-
narios were generated using LLMs and diffusion models,
leading to an automated framework for risk assessment [Zhu
et al., 2024]. Various open-source and closed-source models
were evaluated within this framework. However, safety anal-
ysis was mostly restricted to the input text, treating the em-
bodied environment as an additional input rather than a core
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Evaluation Dataset Dataset Construction # Size Evaluation Metric Domain
[Li et al., 2023] Autonomous driving image 2,688 images Human-based Physical world attacks
[Kim et al., 2024] ALFRED1&Human annotation 150 scenes Formula-based Photo-realistic environments navigation
[Khanna et al., 2024] Real-world 3D scans from HM3DSem2 312 categories Formula-based Multi-modal lifelong navigation
[Choi et al., 2024] ALFRED&WAH3 308 tasks Formula-based Language oriented task planner
[Zhu et al., 2024] GPT-4o generation 2,636 samples Formula-based Physical risk task planning
[Yin et al., 2024] GPT-4 generation 750 tasks Model-based Safe task planning
[Wang et al., 2024b] GPT-4 generation&Holodeck 4,614 scenes Formula-based LVLMS for object navigation
[Wang et al., 2024a] GPT-4 generation&Human annotation 328 tasks Formula-based MLLM navigation

Table 3: Different types of representative evaluation datasets can be described by several aspects: “Dataset Construction” details the process
used to build the dataset; “# Size” indicates the size of the dataset; “Evaluation Metric” represents the three different classification types; and
“Domain” denotes the scope within which the dataset is applied.

aspect of evaluation. Recognizing this limitation, an alterna-
tive approach placed safety concerns at the center of evalua-
tion, focusing on embodied agents that directly interact with
the physical world rather than language models that only pro-
cess text. [Yin et al., 2024] addressed ten common risks af-
fecting humans and property, categorizing tasks into detailed
tasks, abstract tasks, and long-horizon tasks to explore safety
issues at various levels of abstraction and task duration.

Efforts to expand navigation-related datasets included the
introduction of tasks requiring agents to navigate to various
target objects across multiple scenarios. A dataset [Wang et
al., 2024b] covering 4,614 houses across 81 scenario types
was constructed, utilizing Holodeck4 to generate textual de-
scriptions of houses, while GPT-4 was employed to determine
layout, style, and object placement. Textual annotations were
later added to enrich the dataset’s contextual information. In
the realm of multimodal large-model embodied agents, an
evaluation framework was established to assess capabilities
across five different categories, including navigation [Cheng
et al., 2025]. Task generation was powered by LLMs, with
manual annotation and rigorous scene screening ensuring the
dataset’s high quality and reliability. Notably, unlike tra-
ditional dataset creation methods, leveraging the generative
power of LLMs in combination with human screening has
emerged as a promising direction for developing high-quality
embodied AI datasets.

5.2 Metric
The evaluation approaches for embodied navigation are di-
verse. Depending on the dataset and specific tasks, the meth-
ods can vary. Here, we primarily categorize the evaluation
methods into three groups: human-based evaluation, formula-
based evaluation, and model-based evaluation.

Human-based evaluation
Human-based evaluation is an assessment method that di-
rectly involves human judgment in evaluating a system’s per-
formance. It is the simplest evaluation approach, ensur-
ing both accuracy and reliability. [Li et al., 2023] inves-
tigated the naturalness of physical-world attacks using hu-
man ratings and gaze data. Manual annotation was widely

1https://github.com/askforalfred/alfred
2https://aihabitat.org/datasets/hm3d-semantics/
3https://github.com/xavierpuigf/watch and help
4https://yueyang1996.github.io/holodeck/

used in most studies to ensure the high quality of datasets,
as demonstrated by [Kim et al., 2024; Cheng et al., 2025;
Yin et al., 2024]. In some works, human evaluation was di-
rectly used to determine the correctness of the results (e.g.,
[Huang et al., 2022]), with the success rate serving as the
primary evaluation metric.

Formula-based evaluation

Due to the costly and time-consuming nature of human-
based evaluation, most benchmarks have begun shifting to-
wards formula-based evaluation methods. This approach re-
lies on predefined formulas and definitions to conduct the as-
sessment. Here, we introduce some commonly used meth-
ods and formulas. In the benchmarks we mentioned, com-
mon metrics include: Success Rate (SR) [Yin et al., 2024;
Kim et al., 2024], Success weighted by Path Length (SPL)
[Wang et al., 2024b; Khanna et al., 2024], Success weighted
by Episode Length (SEL) [Wang et al., 2024b], and Goal-
condition Success (GcS, abbreviated as GC) [Cheng et al.,
2025; Kim et al., 2024].

An episode is considered successful if the target object ap-
pears in the agent’s egocentric view and is within 1.5 meters
of the agent. To maintain consistent notation, we denote the
total number of episodes by M and index each episode by k
(where k = 1, 2, . . . ,M ). In this framework, sk is a binary
indicator of success (with sk = 1 if the episode is successful,
and sk = 0 otherwise), dk represents the length of the opti-
mal (i.e., shortest) path to the target, and pk is the length of
the path traversed by the agent. For metrics based on episode
length, dak and pak denote the number of actions along the opti-
mal path and the agent’s actual trajectory, respectively, while
ck indicates the number of goal conditions satisfied in episode
k, and C is the total number of predefined goal conditions.
Using these definitions, the metrics are computed as follows:
the SR is given by SR = 1

M

∑M
k=1 sk; the SPL is calculated

as SPL = 1
M

∑M
k=1 sk · dk

max(dk, pk)
; the SEL is determined

by SEL = 1
M

∑M
k=1 sk ·

da
k

max(da
k, p

a
k)

; and the GC is computed

as GC = 1
M

∑M
k=1

ck
C . If a system is considered safe, the SR,

SPL, SEL, and GC metrics should be as high as possible, re-
flecting its ability to perform tasks efficiently, securely, and
reliably. When considering navigation efficiency simultane-
ously, time t is also an important evaluation metric.
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Model-based evaluation
Beyond leveraging large models for data generation, some
benchmarks also adopt model-based evaluation for assessing
performance. In particular, abstract tasks often allow for mul-
tiple valid execution strategies rather than a single definitive
solution. To address this variability, [Yin et al., 2024] em-
ployed GPT-4 to evaluate the plausibility and effectiveness of
execution plans generated by the model. This approach en-
sures that the proposed plans align with task objectives and
maintain coherence. Building on these evaluations, perfor-
mance was further quantified by computing both the success
rate and the probability of rejection, providing a systematic
way to assess the model’s robustness and safety.

6 Future Directions
In this section, we discuss several unresolved challenges in
the safety of embodied navigation, highlighting key issues
that remain to be addressed. We aim to offer valuable insights
and propose potential research directions that could foster the
development of safer and more efficient embodied navigation
systems in the future.

6.1 Potential Attack Methods
There are three potential research directions for adversar-
ial attacks: (a) Enhancing Robustness in Dynamic Envi-
ronments: Some existing studies primarily focus on devel-
oping attack and defense strategies for specific agent tasks,
demonstrating the effectiveness of their proof-of-concept ap-
proaches. However, these methods often face significant lim-
itations when applied to real-world, complex environments.
For instance, object-trigger-based attacks require precise vi-
sual consistency across multiple viewpoints, making them
less effective in dynamic settings with varying perspectives.
(b) Expanding Attack Types: Certain attack strategies op-
erate under a black-box assumption, where the attacker lacks
prior knowledge of the model’s internal mechanisms, thereby
limiting their applicability in scenarios that require more fine-
grained adversarial optimization. As a result, expanding the
scope of attack methodologies, including white-box attacks,
remains a critical avenue for further research. (c) Adversar-
ial Attacks on Multimodal Models: Existing model-based
attack research has primarily focused on large language mod-
els. However, with the rapid advancement of multimodal
large models, traditional attack paradigms may not seam-
lessly transfer to multimodal settings. Therefore, investi-
gating attack strategies specifically designed for multimodal
models, such as cross-modal perturbations, represents an im-
portant yet unsolved direction.

6.2 Robust Defense Strategies
Currently, research on physical defenses (e.g., patch-based
defenses) in embodied navigation remains limited, leaving
significant room for further exploration. Existing defense
mechanisms are often designed for other tasks and may not
fully address the unique challenges of embodied navigation,
such as real-time decision-making and continuous interac-
tion with dynamic environments. In LLM-based naviga-
tion systems, models may inherit vulnerabilities from text-

based models, including sensitivity to prompts and suscep-
tibility to adversarial text. Strengthening the defense capa-
bilities of LLMs in embodied navigation, such as developing
more robust language understanding mechanisms, integrating
adversarial-resistant knowledge injection, or enforcing multi-
modal consistency constraints, remains a critical research di-
rection. Additionally, due to the real-time interactive nature
of embodied systems, runtime monitoring techniques could
be explored as a defense strategy to dynamically identify and
counteract adversarial threats during execution.

6.3 Reliable Evaluation
Current research often focuses primarily on qualitative as-
sessments without conducting rigorous quantitative experi-
ments. Even studies that incorporate quantitative evaluations
typically rely on different datasets or purpose-built datasets
for experimentation, lacking direct comparisons with other
security-related approaches. As a result, a more systematic
analysis of security remains an important research direction.
Moreover, evaluation methods can be transitioned to model-
based approaches, such as leveraging GPT-4 or other large
models to assess accuracy, which can automate the process
and reduce human effort. Additionally, different AI tasks,
such as visual exploration and LLM-based question answer-
ing, adopt distinct evaluation metrics, making direct compar-
isons between studies challenging. Therefore, future research
should focus on developing a more unified evaluation frame-
work to ensure fairness and interpretability across different
tasks. Furthermore, exploring new evaluation methods, such
as integrating multiple metrics or incorporating human feed-
back, could further enhance the reliability and quality of AI
task evaluation.

6.4 Verification Techniques
Current research lacks a systematic approach to the verifica-
tion of embodied navigation, making this a promising direc-
tion for further exploration. One potential avenue is quanti-
fying the range of input perturbations that do not affect the
model’s output, thereby establishing robustness thresholds.
Additionally, computing theoretical bounds under different
conditions presents another valuable research direction, as
these bounds not only provide guidance for safety research
but also serve as key metrics for evaluating system robust-
ness. These efforts would contribute to enhancing the reli-
ability and security of embodied navigation while providing
theoretical support for the development of more robust navi-
gation algorithms.

7 Conclusion
In this paper, we present a detailed overview of the safety
of embodied navigation. We review recent research advance-
ments from three key perspectives: attack strategies, defense
mechanisms, and evaluation methodologies. Finally, based
on the current state of research, we identify several promis-
ing directions for future investigation, aiming to foster the
development of safer and more robust embodied navigation
systems.
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