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Toward Informed AV Decision-Making: Computational Model of Well-being and
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Zahra Zahedi , Shashank Mehrotra , Teruhisa Misu and Kumar Akash
Honda Research Institute USA. Inc

{zahra zahedi, shashank mehrotra, tmisu, kakash}@honda-ri.com

Abstract
For future human-autonomous vehicle (AV) inter-
actions to be effective and smooth, human-aware
systems that analyze and align human needs with
automation decisions are essential. Achieving this
requires systems that account for human cognitive
states. We present a novel computational model in
the form of a Dynamic Bayesian Network (DBN)
that infers the cognitive states of both AV users and
other road users, integrating this information into
the AV’s decision-making process. Specifically,
our model captures the “well-being” of both an AV
user and an interacting road user as cognitive states
alongside trust. Our DBN models infer beliefs over
the AV user’s evolving well-being, trust, and in-
tention states, as well as the possible well-being
of other road users, based on observed interaction
experiences. Using data collected from an inter-
action study, we refine the model parameters and
empirically assess its performance. Finally, we ex-
tend our model into a causal inference model (CIM)
framework for AV decision-making, enabling the
AV to enhance user well-being and trust while bal-
ancing these factors with its own operational costs
and the well-being of interacting road users. Our
evaluation demonstrates the model’s effectiveness
in accurately predicting user’s states and guiding
informed, human-centered AV decisions.

1 Introduction
With the proliferation of autonomous vehicles (AVs), includ-
ing cars and even smaller autonomous vehicles such as deliv-
ery robots and drones, humans are bound to encounter AVs
in more places and in different forms. However, existing re-
search on automation techniques overlooks the environmen-
tal and social implications while developing these systems
[Zhuge and Zhuge, 2020]. For example, recently, some of
these new mobility modes that had been considered conve-
nient and climate-friendly have received a public perception
of being dangerous and a nuisance. For example, Paris ref-
erendum, 89% of voters supported a ban on electric scooters
[Nouvian, 2023]. One of the primary reasons for such pub-
lic sentiment is that these shared mobility modes only con-

sider the basic mobility needs of the users with disregard for
their well-being, satisfaction, and positive relationship with
other road users [Ettema et al., 2011]. Given the recent con-
vergence between automated vehicle (AV) technology and
shared mobility, new small-scale shared automated vehicle
tests are beginning to develop around the world [Stocker and
Shaheen, 2017]. Therefore, it becomes even more critical for
these AVs to holistically consider the needs of the users as
well as nearby road users. A potential paradigm to achieve
this is to account for human cognitive states while making
AV decisions. Studies have established a strong association
between driving behavior and well-being [Harris et al., 2014].
Similarly, a user’s trust influences how users perceive the
AV’s intentions and reliability, which in turn affects their will-
ingness to accept its decisions [Lee and See, 2004]. Thus, it
is necessary for the AV to quantitatively measure users’ well-
being and trust to better anticipate the impact of its actions
on both its user and others on the road. We propose to focus
on well-being as a cognitive state to account for holistic user
needs that include situational satisfaction as well as positive
relation with other road users, and to ensure successful inter-
action between the user and their AV, we incorporate user’s
trust in the AV.

In this paper, we propose a Bayesian-based model that al-
lows for the inference of well-being and trust without dis-
rupting the user’s behavior. The proposed model can con-
tinuously maintain an estimate of the user’s cognitive states
and update it based on the user’s and other road users’ latent
states. We use Lee and See’s definition of user’s trust as their
attitude toward AV/others that they will help them achieve
their goal of driving safely in a situation characterized by un-
certainty and vulnerability [Lee and See, 2004]. Well-being
is a multidimensional construct and constitutes several fac-
tors [Seligman and others, 2002]. For the mobility context,
we define well-being to comprise of positive social interac-
tions, satisfaction with travel, trust in other road users, and
general well-being of the user [Radzyk, 2014]. Furthermore,
our work introduces the novel application of incorporating
inferred well-being into decision-making processes, a unique
contribution that has not been explored in previous research.
The main contributions of the paper include:

1. Development of a quantitative computational model of
trust and well-being based on a dynamic Bayesian net-
work (DBN) that can infer user’s trust, well-being, and
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intention. The model was then trained and evaluated us-
ing the collected user study data.

2. Inference of optimal decision-making policies through
interaction to achieve desired objectives, such as max-
imizing the user’s well-being and trust as well as opti-
mizing a trade-off between the well-being of the user,
other road users, and AV costs.

2 Related Work
The consideration of cognitive states in human-automation
interactions has been an emerging research focus, particu-
larly as autonomous systems become more integrated into
everyday environments. Several studies have examined the
importance of understanding cognitive states, such as trust,
attention, workload, and situational awareness to ensure ef-
fective human-automation collaboration [Akash et al., 2020;
Azevedo-Sa et al., 2020; Wu et al., 2022]. These studies em-
phasize the need for systems that can interpret and respond to
these states, with the aim of enhancing user experience and
safety.

One key challenge is the dynamic nature of cognitive
states, which evolve over time based on the interaction con-
text. Bayesian inference and modeling have been widely
employed in various domains for modeling cognitive states,
including workload [Koppol et al., 2021; Luo et al., 2019;
Guhe et al., 2005], trust [Xu and Dudek, 2015; Guo et
al., 2020; Soh et al., 2020], distraction [Liang et al., 2007;
Liang and Lee, 2014; Zahedi et al., 2022], and emotion [Ong
et al., 2019]. These approaches have yielded valuable insights
into human behavior and decision-making processes in di-
verse domains [Mahmood et al., 2024; Zahedi et al., 2023;
Xu and Dudek, 2016; Luo et al., 2021; Deo and Trivedi,
2019].

In addition to the computational modeling of cognitive
states, the relationship between driving and well-being has
been an area of research. Various studies have explored how
factors like stress, fatigue, and emotional states affect driver
behavior and safety, providing indirect evidence of the con-
nection between cognitive states and well-being. For exam-
ple, levels of well-being are correlated with driving perfor-
mance [Hu et al., 2013; Bowen and Smith, 2019]. and levels
of driving violations [Isler and Newland, 2017]. Also, proso-
cial driving behavior promotes cooperation with other road
users and reduces incidents of aggressive and stressful driv-
ing [Harris et al., 2014]. While these studies contribute valu-
able insights, they typically rely on self-reported measures
or physiological indicators to assess well-being. Self-report
questionnaires, such as [Radzyk, 2014; Friman et al., 2013]
and physiological measurements, such as [Sauer et al., 2019;
Halkola et al., 2019] are commonly used to assess subjec-
tive states of well-being. However, these measures are po-
tentially distracting or intrusive; they may not be practical
for real-time decision-making in safety-critical environments.
Mehrotra et al. explored the factors impacting well-being and
trust and proposed a support vector machine model to under-
stand these factors [Mehrotra et al., 2023]. However, to cre-
ate a comprehensive model, we require an informed model

that incorporates cognitive structures and accounts for the dy-
namic nature of well-being and trust.

3 Problem Formulation
Our model is predicated on three key relationships: (1) rela-
tionship between the user (denoted as E) and their AV (i.e.
R), (2) relationship between the AV and the other road user
(denoted as O), and (3) relationship between the user and the
other road user. We consider a dyadic bi-directional interac-
tion that involves possible symmetric actions. At each inter-
action, either the other road user or AV can contribute toward
the other by an accommodative action, and the other is the
receiver of that. Accommodative action can be choosing a
positive prosocial action toward others (R+ for AVs as ac-
tion contributors, or O+ for others contributing to the action)
or not (R−/O−). When the AV is the contributor, the user
of the AV might have an intention for accommodative action
toward the other (I+ as positive intention toward accomoda-
tive action or not I−) that may or may not align with the one
the AV chooses (Al1 or Al0 respectively). Therefore, users
well-being, trust, and their action-alignment can affect the re-
lationship between the user and the AV.
Formally, the goal of this work is to infer the degree of user’s
wellbeing wk ∈ [0 1] (where 0 is the lowest and 1 is the
highest), trust on the AV tk ∈ [0 1] and the intention to-
wards others ik ∈ {I+, I−}, as well as other’s wellbeing
wO

k ∈ [0 1], at each interaction event k = 1 : K. We tackle
this problem by relating the latent states to observable factors
of AV’s and others accommodative actions (aRk ∈ {R+, R−}
and aOk ∈ {O+, O−} respectively). Since at any interaction
event, the user intention might not necessarily be the same as
the AV action; we consider an action-alignment state, repre-
sented by alk ∈ {Al0, Al1} where Al0 indicates not-aligned
and Al1 indicates aligned with the user’s intention.

3.1 Interaction Models
We formalize the interaction model as two Dynamic Bayesian
Networks (DBN). We could have modeled the interaction as
a 2-step Temporal Bayesian Network (2TBN), in which the
O and R alternatively contribute an accommodative action.
However, in order not to limit the framework to alternative in-
teraction between others and AV as an action contributor, we
modeled each interaction as a separate DBN, one for when
the AV is taking an action (R-DBN, or R contributor DBN),
and the other for when the other is taking an action (O-DBN,
or O contributor DBN).
At each event k, our model treats the state of user’s latent
states and others’ states as random variables and maintains
belief distributions based on various factors of the interaction
experience. Our R-DBN model relates the user’s latent states
xE
k = {wk, tk, ik} causally to the AV’s action aRk , other’s

action aOk and user’s intention alignment state with the AV
alk, and The O-DBN relates the other’s latent state xO

k = wO
k

to AV’s action aRk , their action aOk . Links to each factor in
these Bayesian models are quantified as a conditional proba-
bility distribution (CPD). How the user’s states xE

k expected
to change given the current AV’s action aRk and action align-
ment alk and possible recent others’s actions aOk−1 is reflected
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Figure 1: R-DBN (blue) and O-DBN (red) in general form in
alternative order.

as follows when AV is action contributor and when other is
action contributor respectively:

xE
k ∼ Prob(xE

k |xE
k−1, a

R
k , alk) (1)

and
xE
k ∼ Prob(xE

k |xE
k−1, a

O
k−1) (2)

Similarly, for other’s state xO
k the expected change when the

AV is contributing to the action is represented as
xO
k ∼ Prob(xO

k |xO
k−1, a

R
k ) (3)

When others are contributing to an action as
xO
k ∼ Prob(xO

k |xO
k−1, a

O
k ) (4)

This probabilistic representation allows us to infer the ex-
pected human states and other’s state at any given event, as
well as the level of uncertainty associated with each estimate.
The general graphical model of the casual and evidential vari-
able interaction are shown in Figure 1.

3.2 Bayesian Inference and Prediction
The models allow us to estimate the probabilistic belief over
the user’s latent states xE

k at event k. Inference is performed
by computing the posterior distribution of xE

k or xO
k given

past observations. Using Bayesian filtering, we recursively
compute

P (xE
k |evidence1:k) ∝ P (evidencek|xE

k )×∑
xE
k−1

P (xE
k |xE

k−1, a
R
k , alk, a

O
k−1)P (xE

k−1|evidence1:k−1) (5)

where evidencek consists of observed variables such as the
AV’s action aRk , others’ actions aOk , and the alignment state
alk.

For prediction, given an initial belief P (xE
0 ), the future

state can be estimated by marginalizing over latent states:

P (xE
k+1|evidence1:k) =∑

xE
k

P (xE
k+1|xE

k , a
R
k+1, alk+1, a

O
k )P (xE

k |evidence1:k) (6)

This enables forward simulation of potential future states,
allowing the model to anticipate user behavior under different
interaction scenarios.

4 Observational Study and Model Learning
We adopt a data-driven approach to refine the relationships
in our model by conducting an observational study in a con-
trolled setting. This empirical study allow us to analyze the
dependencies between latent states and observed actions, pro-
viding insights that helped parameterize our DBN models
based on real-user data.
Once the structural relationships are established, we param-
eterize the model by estimating the conditional probability
distributions (CPDs) for each variable given its parent nodes.
To achieve this, we employ Bayesian parameter estimation,
incorporating prior knowledge through a Dirichlet prior with
a uniform hyperparameter α.

4.1 Observational Study
In our observational study, we focus on the interaction be-
tween a self-driving scooter as the AV and delivery robots as
other road users. We investigate accommodative actions at
the strategic level, consisting of yielding (as positive proso-
cial action) and unyielding actions during a conflict of path
in an interaction. We specifically chose to examine sidewalk
interactions, where there are no formal road rules regarding
yielding or unyielding actions. This setting allows us to ex-
plore how these road users navigate shared spaces without
predefined rules, relying instead on their accommodative ac-
tions when faced with potential path conflicts.

Experiment Design. We conducted a mixed design study,
measuring the impact of delivery robot and scooter accom-
modative actions on user’s well-being and trust. The study
was designed as a 2(Other’s action) × 2(Ego’s action) exper-
iment, where the user rode a self-driving scooter and inter-
acted with a delivery robot during the ride. Other’s action had
two levels: the robot yielding to the ego O+ or unyielding to
the ego O−. Similarly, ego’s action had two levels: the ego
scooter yielding to the delivery robot R+ or unyielding to the
delivery robot R−. This study was conducted using a Wiz-
ard of Oz experiment, where human operators controlled the
scooter’s movements to simulate strategic decision-making
processes. This approach allowed us to focus on analyzing
yielding and unyielding behaviors at the action level without
the influence of specific trajectory-planning algorithms.

Events and Scenarios. Each participant interacts with two
rides, with each ride comprising a sequence of two events:
first event with delivery robot as the contributor (ego as the
receiver) and second event with ego as the contributor (deliv-
ery robot as a receiver). This two-event sequence repeats in
the second ride, with different scenarios. Four interaction sce-
narios were developed where the contributor’s accommoda-
tive action is either yielding or unyielding. Figure 2 displays
the four scenarios (S1–S4) used in the study. The yielding
actions in these scenarios only include actions such as stop-
ping for the other to go first (S1 and S3), merging (S4), or
changing the way for the other (S2). The order of scenarios
across the four events was counterbalanced based on a Bal-
anced Latin Square design.

We have two independent variables with two levels each:
robot’s accommodative actions (O+ and O−) and ego’s ac-
commodative actions (R+ and R−). These variables are ma-
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Figure 2: Four scenarios of ego-delivery robot interaction. In scenarios S1, S2, and S3, the roles of contributor and receiver are
interchanged depending on who takes the yielding or unyielding action first. In scenario S4, the scooter acts as the contributor
while the robot is the receiver. The robot and scooter switch locations in the robot-contributor scenario of S4.

Figure 3: Web-based riding environment.

nipulated as both within-subjects and between-subjects fac-
tors. Given that each ride consists of an accommodative ac-
tion by the robot followed by accommodative action by the
scooter, there are 4 (2 × 2) possible accommodative action
combinations. To reduce the number of cases, the second
ride has the same accommodative action from the robot as
in the first ride; the scooter has all four permutations of ac-
commodative actions across the two rides. This results in a
total of 32 combinations. After each event, we measure the
user’s well-being and trust using a self-report questionnaire.
During the second event in each ride, where the ego acts as
a contributor, the user’s intention toward the delivery robot is
asked before the scooter exhibits its accommodative action.
This allows to determine whether the user’s intentions align
with the scooter’s action or not.
Well-being and Trust Questionnaire. To assess user’s
well-being, we used a modified version of the social well-
being questionnaire [Radzyk, 2014] and made it situational
rather than general and more applicable to our study sce-
nario. The questionnaire was designed to measure well-being
based on four factors: (1) positive relationship, (2) satisfac-
tion with travel, (3) trust, and (4) general well-being. To cal-
culate user’s well-being, we average across all seven ques-
tions. Additionally, we asked a question specifically related
to the user’s trust in the self-driving scooter to measure trust
independently (The details of the questionnaire used in this
study are in the supplementary material.) To ensure a more
consistent users’ understanding of well-being and trust, we
defined these concepts during the introduction of the user
study to the participants. Moreover, users had access to the
definitions of specific words (such as ‘trust’) while answering
the questions.
User’s intention. To determine user’s intention in the inter-
action where the ego is the contributor, we ask them a spe-
cific question: “What action would you like your self-driving
scooter to take regarding the delivery robot?” Two options

are given, with one implying yielding action and the other
unyielding action. Based on the user’s response, we assess
whether the user’s intention aligns with the action of the self-
driving scooter in that particular event.
Participants. A total of 300 participants were recruited via
Prolific (https://www.prolific.co/), with the majority of par-
ticipants being between 25 and 55 years old (71.23%). Of
the participants, 54% identified as males, 44% as females,
and 2% as others. All participants passed attention checks
and indicated their commitment to thoughtfully answering
survey questions. Participants were compensated $3.0 for
their approximately 25-minute participation. All participants
provided informed consent. The study was approved by the
Bioethics Committee in Honda R&D (approval code: 99HM-
065H)
Stimuli. The study was conducted online, and we used
video recordings from a custom medium-fidelity driving sim-
ulator to simulate the scenarios. The simulated environ-
ments were created using Unreal Engine 4.27 (https://www.
unrealengine.com/) with AirSim [Shah et al., 2018]. To pro-
vide a realistic experience, the videos were recorded using
one front-facing camera with 133 degree horizontal field of
view. Additionally, the scooter’s speed information was over-
laid at the bottom of the screen to enhance the experience
(see Figure 3). The details of the study procedure, along with
example recordings of events and scenarios are provided in
the supplementary material. The supplementary materials, in-
cluding the dataset and source code for the models discussed
in the following sections, are available on GitHub at https://
github.com/honda-research-institute/wellbeing-trust-model.

4.2 Refinement of State Relationships
Using the collected data, we examined statistical dependen-
cies between latent states and observed variables to refine
the structural relationships within the DBN models. Specifi-
cally, we applied statistical one-tail and two-tail t-tests to as-
sess conditional independencies and validate the initial model
structure. Across all 32 conditions of the study, we grouped
the participants’ data into different groups based on three fac-
tors: (1) robot’s yielding vs. unyielding action, (2) scooter’s
yielding vs. unyielding action, and (3) alignment of partici-
pant’s intention with the scooter’s action.
Data analysis was conducted to identify correlations between

the scooter’s action aRk , the user’s intention alignment state
alk, robot delivery’s action aOk , and the evolution of the user’s
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Figure 4: Final model structure of R-DBN (blue) and O-DBN
(red)

latent states xE
k . Among these, we identified statistically sig-

nificant correlations with a p-value of < 0.05. Specifically,
we have the user’s well-being is higher (t(594.87) = 7.65,
p < 0.0001(∗∗∗∗)) when the delivery robot exhibits yielding
action toward the ego compared to unyielding action. The
user’s trust is higher when the scooter exhibits yielding action
than unyielding action toward others (t(576.114) = 5.54,
p < 0.0001(∗∗∗∗)). The users with yielding intention to-
ward others has higher well-being than those with unyield-
ing intention (t(317.49) = 2.12, p = 0.02). The user’s
well-being and their trust in the scooter are higher when the
scooter’s action toward others is aligned with the user’s inten-
tion compared to when it is not aligned (t(577.26) = 7.64,
p < 0.0001(∗∗∗∗)). User’s trust is positively correlated with
well-being (r(597) = 0.7058, p < 0.0001(∗∗∗∗)). Based on
these findings, we adjusted the structure of the DBN models
by setting the likelihood of relationships between variables
without significant correlation to zero. To capture other’s
well-being, we assume that the effect of scooter’s action on
robot is the same as robot’s actions on the user. To ensure
that the model accurately reflects the observed dependencies
in the data we adjusted the causal structure of the model. In
particular, we performed a 5-fold cross-validation to evalu-
ate candidate models and selected the best structure based
on log-likelihood scores (SC-DBN: −2854.90 and RC-DBN:
−2698.20 ). See Figure 4 for final model structure.

4.3 Bayesian Parameter Estimation
After finalizing the structure of the DBN models, we esti-
mated the conditional probability distributions (CPDs) for
each node using Bayesian parameter estimation. Given the
dataset of observed state transitions, we computed the poste-
rior distribution over CPDs using a Dirichlet prior.

To facilitate inference, we queried the propagated belief at
event k based on past experiences. To simplify CPDs, we
scaled latent state values between 0 and 1 and discretized
them into six bins (selected through ablation studies), allow-

ing representation in a tabular format.
For discrete variables, the CPDs were represented as tabu-

lar distributions, where the conditional probability of a vari-
able X given its parent variables Pa(X) is given by

P (X|Pa(X)) =
N + α∑

X N + α.k
(7)

where N is the observed count of transitions from the
dataset, α is the Dirichlet prior, and k is the number of possi-
ble states for each variable.

Using our dynamic Bayesian networks and available data,
we estimated these CPDs with the Bayesian Parameter Esti-
mator, applying a Dirichlet prior with a uniform α. We imple-
mented our DBN models using the pgmpy library in Python
[Ankan and Panda, 2015].

By leveraging Bayesian parameter estimation and dis-
cretization, our DBN effectively captures probabilistic depen-
dencies while enabling robust inference across different inter-
action scenarios.

4.4 Model Evaluation

To evaluate the model’s performance in inferring key vari-
ables, we focused on assessing its accuracy in predicting
user’s well-being, trust, and intention. Accuracy was mea-
sured as the proportion of correct inferences out of all the
inferences made during the evaluation. We employed 5-fold
cross-validation to assess the model’s generalization perfor-
mance, repeating the cross-validation procedure for 100 iter-
ations to ensure stable and reliable accuracy estimates.

The model achieved an accuracy of 77% for inferring well-
being, 67% for trust, and 95% for intention, which demon-
strates its effectiveness in capturing the dynamics of these
important variables.

In addition to accuracy, we also evaluated how well the
model could infer changes in these variables over time under
different conditions. Specifically, we examined the evolution
of well-being wk, trust tk, and other’s well-being wO

k dur-
ing 10 consecutive events of scooter interactions, where we
fixed evidence and control variables such as action alignment
and the scooter’s action. This approach allowed us to isolate
the effects of action alignment and the scooter’s actions on
the inferred variables. To further assess the model’s perfor-
mance, we analyzed how the inferred variables evolved across
these 10 events. Figure 5 illustrates the expected values for
the user’s well-being wk, trust tk, and other’s well-being wO

k
over these events. As seen in the figure, the user’s well-being
increases over time when the scooter’s action is aligned with
the user’s intention and decreases otherwise. Trust also shows
dynamic changes depending on the action alignment and ac-
commodative actions. Furthermore, other’s well-being in-
creases when the scooter takes yielding action and decreases
when it takes unyielding action.

These findings highlight the model’s capacity to infer and
capture the dynamic relationships between the variables and
the actions taken by the scooter, providing valuable insights
into user behavior over time.
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Figure 5: Expected values of inferred states over 10 events using the model given the scooter’s actions and action alignment.

5 Informed Decision Making
One of the primary applications of the proposed model is to
develop human-aware automation that can account for human
cognitive states while making AV decisions. In this section,
we will focus on the use of our model to determine the op-
timal policy or action for a self-driving scooter (AV) despite
the uncertainty in the user’s state variables.

For optimal decisions, we need to define a utility function
that we want to maximize given the model. We use causal
inference modeling (CIM) to determine a policy that the self-
driving scooter can adopt to optimize certain factors while
taking uncertainty into account. CIM is a generalization
of the Bayesian network that is used to represent decision-
making processes under uncertainty. We transform our pro-
posed dynamic Bayesian models into CIM with a casual in-
ference diagram with chance nodes, utility nodes, and deci-
sion nodes. A utility node represents the outcome or value
that a decision-maker is trying to optimize. A chance node
represents an uncertain event or variable that can affect the
outcome, while a decision node represents a point in the dia-
gram where a decision-maker has control over the value of a
variable. Depending on the factor that the scooter aims to op-
timize, the utility node may differ, such as user’s well-being,
user’s trust, other’s well-being, scooter’s costs, or a trade-off
between multiple factors. Additionally, when the generated
policy pertains to the actions the scooter should take, the de-
cision node represents the scooter’s accommodative action,
denoted as aRk . We used PyCID library in Python [James Fox
et al., 2021] to implement our casual inference modeling. We
used the conditional probability distributions of each variable
that we estimated using the data for our dynamic Bayesian
models to build the CIM.

Given our proposed model and the utility function we want
to optimize, we can use casual inference modeling to reason
over the expected utility of each action and choose the ac-
tion that maximizes the expected utility. Formally, given the
evidence ev, the policy π at event k is given by

π = argmax
aR
k ∈{Eu,Ey}

{E[U(aRk |ev)]}. (8)

Here, E[U(aRk |ev)] represents the expected utility of taking
the action aRk , which is computed as the sum over probabil-
ity of all possible outcome states of aRk , i.e., Oi(a

R
k ), given

the evidence and the action, and then multiplied by its corre-
sponding utility function U(Oi(a

R
k )|aRk ) as

E[U(aRk | ev)] =
∑

i p(Oi(a
R
k )|ev, aRk )U(Oi(a

R
k )|aRk ) (9)

By defining an appropriate utility function, we can find the
action that maximizes the expected utility. We analyze differ-

ent policies that the scooter can adopt based on its objectives:
(1) maximizing user’s well-being (Uk = wk), (2) maximiz-
ing user’s trust (Uk = tk), and (3) optimizing a trade-off of
user’s well-being, other’s well-being, and the cost of its ac-
tions (Uk = wk + wO

k + C(aRk )). With these utilities, we
can determine the optimal actions the scooter should take in
different scenarios to achieve its desired objective.
Maximizing User’s Well-being. We define the utility func-
tion as equal to the value of well-being. Using the model, we
then determine the policy that maximizes user’s well-being.
In the absence of any evidence, the optimal policy for the
scooter is to always take a yielding action. To further analyze
the policy, we conducted an analysis of which nodes have a
positive value of information (VOI) incentives. VOI incen-
tives represent the expected increase in utility that can be
achieved by acquiring additional information. VOI analysis
shows that having evidence of previous well-being (wk−1),
trust (tk−1), and current user intention (ik) can lead to better
reasoning of the optimal policy and consequently improve the
utility. Thus, we analyze the optimal policy given the avail-
ability of evidence on these variables. Results show that if the
scooter has access to information about the previous user’s
well-being, the optimal policy would be

aRk =

{
R− unyielding if 0 ≤ wk−1 ≤ 0.18

R+ yielding otherwise .
(10)

The optimal policy with information about the user’s inten-
tion is to be aligned with user’s intention, i.e.,

aRk =

{
R− unyielding if ik = I−
R+ yielding if ik = I+ .

(11)

Furthermore, the availability of previous trust information
does not alter the policy when no evidence is available.
Maximizing User’s Trust. We define the utility at event k
as the user’s trust at that event. We identify that the previous
user’s well-being wk−1, trust tk−1, and current user’s inten-
tion ik have positive VOI when the scooter aims to maximize
user trust. When no evidence is available, the optimal policy
is always to take the yielding action. However, if information
about the user’s intention is available, adopting the alignment
policy can increase trust (similar to the case Uk = wk), while
having information about user’s previous well-being and
trust does not affect the optimal policy when no evidence is
available.
Optimizing the Trade-off between User’s Well-being,
Other’s Well-being and Scooter’s Cost. In this scenario,
we consider that the cost of the scooter’s action is different
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Figure 6: Optimal accommodative policy at event k. Sensi-
tivity study results based on costs and information variables
wk−1.

depending on whether it takes a yielding or an unyielding ac-
tion. Since yielding actions usually involve changing direc-
tion or stopping, they are more costly (for example, more fuel
spent) than unyielding actions. To simplify the problem, we
assume that the cost difference is incorporated in the utility
function, which becomes:

Uk =

{
wk + wO

k if aRk = R−
wk + wO

k + C if aRk = R+
(12)

The analysis shows that the cost of actions can significantly
impact the utility and, thus, the policy. Therefore, we per-
form a sensitivity analysis of the cost values and examine how
the policy changes according to different costs. We consider
costs to be any value greater than or equal to zero. However,
since the values of well-being range between 0 and 1, we find
that the most critical costs are the ones that fall within this
range. Figure 6 illustrates how the policy changes with differ-
ent information on the user’s well-being. Analysis over other
positive VOI evidence, including, trust, intention, and others’
well-being, as well as in the absence of evidence shows that
for costs less than 0.2, the scooter should take yielding action
and for more than that should take unyielding action.

To sum up, we can see that if the cost difference between
the two types of actions is large, the optimal action for the
scooter is to always take unyielding actions. However, this
would sacrifice the well-being of the user and others. Thus,
when the cost difference is lower, we must balance the trade-
off between well-being and cost to determine the optimal pol-
icy. For a cost difference of approximately 0.2, the scooter’s
optimal policy is to mostly take yielding actions.However, for
costs between 0.2 and 0.4, the scooter should mostly take un-
yielding actions unless the user or others are in a very high
well-being state. Therefore, our proposed causal inference
model allows us to make informed decisions about the best
course of action for a scooter in order to achieve its objec-
tives while balancing various factors.

6 Conclusions and Future Work
Our paper proposes a computational model for autonomous
vehicles that infers the cognitive states such as well-being,
trust, and intentions of users and other road user’s well-being

to make informed decisions. Our DBN models provide a
structured representation of these states, enabling probabilis-
tic inference. To learn the parameters of this model, we
conducted an observational study to collect interaction data,
which was then used to refine state relationships, estimate
Bayesian parameters, and evaluate the model’s effectiveness.
By integrating this model into AV decision-making, the sys-
tem can account for well-being, trust, and cost trade-offs,
leading to safer and more user-centered interactions with po-
tential to inspire future research in autonomous vehicles.

Finally, while our proposed model provides a structured
framework for inferring trust, well-being, and intention in
human-AV interactions, the observational study conducted
for parameter learning introduces certain limitations. Since
the study consisted of only four interaction events per partic-
ipant, the collected data may not fully capture the long-term
evolution of trust and well-being. Future work will explore
longitudinal data collection to better model these temporal
dynamics. Additionally, our study focused on dyadic interac-
tions between a self-driving scooter (AV) and delivery robots
(other road users) in sidewalk environments where no formal
yielding rules exist. While this setting allowed for controlled
observation of accommodative actions, future research will
extend the model’s applicability by incorporating interactions
involving multiple road users and different mobility modes.
Despite these study-specific constraints, our work demon-
strates a step toward human-aware automation. By leverag-
ing probabilistic inference, the proposed model enables AVs
to reason about trust and well-being, ultimately contributing
to safer and more user-centered autonomous systems. Fu-
ture work can explore adapting the model by incorporating
other domain-specific variables and contextual information.
To enhance versatility, further research can investigate adjust-
ing input variables and data collection methods to suit differ-
ent interaction domains, accommodating a broader range of
decision-making processes and cognitive states.
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