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Abstract
Self-supervised learning (SSL) has garnered in-
creasing attention in electrocardiogram (ECG)
analysis for its effectiveness in resource-limited
settings. Existing state-of-the-art SSL methods rely
on time-frequency detail reconstruction, but due to
the inherent redundancy of ECG signals and indi-
vidual variability, these approaches often yield sub-
optimal performance. In contrast, discrete label
prediction becomes a superior pre-training objec-
tive by encouraging models to efficiently abstract
ECG high-level semantics. However, the continu-
ity and significant variability of ECG signals pose
a challenge in generating semantically discrete la-
bels. To address this issue, we propose an ECG pre-
training framework with a self-distillation seman-
tic tokenizer (ECG2TOK), which maps continuous
ECG signals into discrete labels for self-supervised
training. Specifically, the tokenizer extracts se-
mantically aware embeddings of ECG by self-
distillation and performs online clustering to gener-
ate semantically rich discrete labels. Subsequently,
the SSL model is trained in conjunction with mask-
ing strategies and discrete label prediction to facil-
itate the abstraction of high-level semantic repre-
sentations. We evaluate ECG2TOK in six down-
stream tasks, demonstrating that ECG2TOK effi-
ciently achieves state-of-the-art performance and
up to a 30.73% AUC increase in low-resource
scenarios. Moreover, visualization experiments
demonstrate that the discrete labels generated by
ECG2TOK exhibit consistent semantics closely as-
sociated with clinical features. Our code is avail-
able on https://github.com/YXYanova/ECG2TOK.

1 Introduction
Cardiovascular diseases (CVDs), responsible for 17.9 mil-
lion annual deaths [Kyu et al., 2018], are central to the
UN’s ”Good Health and Well-being” Sustainable Develop-
ment Goal. While electrocardiogram (ECG) analysis is criti-
cal for early CVD detection, its efficacy remains constrained

∗Corresponding author.

ECG SSL 
Model
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Self Distillation

Discrete Labels

ECG SSL 
Model

Reconstruction Loss

Masked SSL ECG2TOK

Figure 1: Comparison of ECG2TOK with other SSL methods.

in resource-limited settings due to inadequate healthcare in-
frastructure. Self-supervised learning (SSL) offers a solution
by minimizing labeled data dependency, reducing costs, and
improving diagnostic accessibility to advance healthcare eq-
uity [Krishnan et al., 2022].

Existing state-of-the-art ECG SSL methods rely on masked
reconstruction in the time-frequency domain to learn seman-
tic representations, which has notable limitations in the con-
text of ECG. The inherent characteristics of ECG signals in-
clude the periodic repetition of specific waveforms (such as
P waves, QRS complexes, and T waves), as well as sig-
nificant individual differences in amplitude, duration, and
morphology [Clifford, 2002; Yuan et al., 2024; Yuan et al.,
2025]. However, reconstruction loss tends to emphasize low-
level time-frequency features, leading to overfitting of repet-
itive waveform parts and individual-specific characteristics.
Discrete label prediction may serve as a better pre-training
objective compared to reconstruction, based on applications
in other domains [Ramesh et al., 2021; Bao et al., 2021;
Hsu et al., 2021]. This is because discrete label prediction
reduces the impact of information redundancy caused by pe-
riodic waveforms by mapping ECG signals with similar phys-
iological meanings to the same label space. Additionally,
discrete label prediction avoids over-reliance on individual-
specific low-level time-frequency features (such as ampli-
tude, duration, and morphology), allowing the model to better
learn global semantic features related to heart health.

However, applying discrete label prediction to ECG SSL
faces great challenges. On the one hand, ECG signals are
continuous and lack discrete semantic units similar to words
in natural language processing, which makes label prediction
difficult. On the other hand, ECG data exhibits a high degree
of variability, and characteristic waves show obvious tempo-
ral persistence and morphological differences. For example,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/YXYanova/ECG2TOK


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

semantically meaningful waves such as QRS complexes, T
waves, and P waves vary greatly in duration and shape, in-
creasing the complexity of extracting semantic token from
ECG signals. These challenges make it difficult to effectively
apply commonly used tokenizers (such as Vector Quantiza-
tion [Peng et al., 2022] and Clustering [Hsu et al., 2021;
Bao et al., 2021]) to discrete label generation for ECG.

To address these challenges, we propose a novel frame-
work, ECG2TOK, which integrates a self-distilled semantic
tokenizer with a SSL model, employing an iterative optimiza-
tion mechanism for ECG pretraining, as illustrated in Figure
1. Specifically, ECG2TOK utilizes a target encoder to extract
context embeddings enriched with knowledge distillation and
performs online clustering to refine the high-dimensional em-
bedding space into a semantic codebook, generating corre-
sponding discrete semantic labels. Discrete semantic label
prediction and masking strategies are then used to guide SSL
model training and enhance the ability of the context en-
coder to learn universal representations. The introduction
of knowledge distillation strengthens the expression of se-
mantics and improves the consistency of the discrete label
generation process. ECG2TOK outperforms state-of-the-art
ECG SSL methods across six downstream ECG classification
tasks. Additionally, visualization experiments reveal that the
discrete labels generated by the tokenizer exhibit consistent
semantics closely related to clinical features. This demon-
strates that ECG2TOK effectively generates discrete labels
containing high-level semantics. By predicting these labels,
the model gains the ability to overcome signal redundancy
and individual variability, achieving efficient and robust ECG
modeling and understanding.

Our contributions are as follows:

• We propose a novel ECG pretraining framework with
self-distillation semantic tokenizers, which utilizes dis-
crete label prediction loss and outperforms traditional
reconstruction loss methods, opening new avenues for
ECG pretraining.

• We provide an effective semantic tokenizer to quantize
continuous ECG features into semantically compact dis-
crete labels, facilitating future ECG pretraining and time
series pretraining work.

• Our method achieves state-of-the-art results on six
ECG classification benchmark tasks with minimal pre-
training cost, and up to a 30.73% AUC improvement
under low-resource conditions.

2 Related Work
2.1 ECG-based SSL
Recent advances in self-supervised learning for ECG have
shown strong generalization capabilities, greatly enhancing
downstream task performance [Lai et al., 2023]. Among
these, contrastive learning has gained significant attention.
CLOCS [Kiyasseh et al., 2021] promotes representation con-
sistency across spatial, temporal, and patient dimensions,
while ASTCL [Wang et al., 2023] introduces adversarial spa-
tiotemporal contrastive learning to improve robustness and
semantic invariance. Other approaches [Lan et al., 2022;

Yang and Hong, 2022] explore inter- and intra-subject repre-
sentations, as well as temporal and frequency domain align-
ment. However, contrastive learning methods often rely on
complex pair construction and prior knowledge [Zhang et al.,
2022], limiting their applicability. In contrast, masked recon-
struction methods explicitly encourage the model to capture
global contextual information by predicting masked content.
For example, CRT [Zhang et al., 2023] proposes reconstruct-
ing both temporal and frequency domain data to discover
cross-domain correlations and enhance representation learn-
ing. ST-MEM [Na et al., 2024] adopts a similar masked mod-
eling strategy. However, traditional reconstruction methods
tend to focus on low-level time-frequency detail recovery, ne-
glecting high-level semantic information, which limits their
generalization capability. This highlights the need for incor-
porating high-level semantic modeling to further enhance the
representation learning of ECG models. HeartLang [Jin et
al., 2025] treats ECG as a language with words (QRS waves)
and sentences (rhythms), facilitating representation learning
by predicting the vocabulary index of each word.

2.2 Discrete Labels-based SSL
Discrete label-based self-supervised learning (SSL) has made
significant strides in natural language processing (NLP) [Lan,
2019; Kenton and Toutanova, 2019a; Liu, 2019], computer
vision (CV) [Bao et al., 2021; Peng et al., 2022], and speech
processing [Hsu et al., 2021; Liu et al., 2023]. In NLP, BERT
[Kenton and Toutanova, 2019b] uses masked prediction to ef-
fectively learn representations from discrete input sequences.
In CV, Beit [Peng et al., 2022] introduce vector-quantized
(VQ) visual tokenizers, enabling the generation of discrete
tokens for masked image patches and the prediction of their
original tokens. Similarly, HuBERT [Hsu et al., 2021] em-
ploys iterative hidden state clustering to generate discrete la-
bels for speech SSL tasks, showcasing the versatility of this
approach across domains.

However, applying discrete label-based self-supervised
learning (SSL) methods to ECG signals presents two ma-
jor challenges. First, ECG signals are continuous-valued se-
quences, lacking discrete semantic units like phonemes in
speech or words in NLP, making it difficult to directly ap-
ply predictive loss. Second, due to significant variations in
waveform and rhythm across individuals, ECG signals con-
tain excessively larger data variations, making it challenging
to effectively capture unified semantic patterns using meth-
ods like VQ tokenizers or clustering. To address this, our ap-
proach incorporates self-distillation combined with clustering
as a discrete tokenizer, enhancing the semantic representation
capability before discretization.

3 Methodology
3.1 Overview
ECG2TOK pre-training framework integrates a semantic to-
kenizer and an ECG masked SSL model, leveraging discrete
label prediction to optimize the pre-training process. As
shown in Figure 2, the semantic tokenizer generates discrete
semantic labels from unlabeled ECG data, which are then
used to train the ECG SSL model through a combination of
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Figure 2: Overview of ECG2TOK: The target encoder, maintained as an exponential moving average of the context encoder, extracts target
features from unmasked ECG signals. High-dimensional outputs from the target encoder are processed through online clustering, while the
SSL learns to predict clusters index for each ecg patch. Both the target encoder and the clustering module (shaded areas) operate without
gradient computation.

masked prediction and discrete label prediction tasks. Dur-
ing iterative training, ECG2TOK uses knowledge distillation
to train a new semantic tokenizer, replacing the previous tok-
enizer in the next training iteration.

This process enables mutual enhancement between the se-
mantic tokenizer and the SSL model: the tokenizer learns se-
mantically rich representations from the SSL model, while
the SSL model benefits from the discrete semantic labels gen-
erated by the tokenizer. Together, they produce robust and
semantically aligned ECG representations.

3.2 Masked ECG SSL Model
We propose a masked modeling task for training ECG pre-
training models, as illustrated in the upper part of Figure
2. Unlike traditional methods that rely on reconstructing the
time-frequency details of input ECG signals for model op-
timization, our approach introduces a Transformer-based la-
bel predictor to replace the conventional decoder, predicting
patch-level discrete labels. These predicted labels are com-
bined with pseudo-labels generated by the semantic tokenizer
(detailed in Section 3.3) to compute the loss, providing an in-
novative and efficient solution for ECG model pre-training.

Input Embedding. Inspired by ST-MEM [Na et al., 2024],
the raw ECG signal I ∈ RL×12 is divided into a set of non-
overlapping patches I′ ∈ RT×(12·p), where T = L/p and p
represents the length of each patch. Subsequently, a learn-
able linear projection is applied to each patch, resulting in the
embeddings:

Ep = LinearProj(I ′) ∈ RT×dmodel , (1)

where Ep denotes the embedding for each patch, and dmodel
is the projected feature dimension.

To construct the final input, the patches embedding Ep
is combined with a temporal positional embedding Et ∈
RT×1×dmodel and a spatial positional embedding Es ∈
R1×12×dmodel :

X = Ep +Et +Es, (2)
where X represents the final input patch embedding.

Masked Prediction. Given the input patch embedding
X = {xt}Tt=1, we apply random masking to 75% of the
patches embedding. The masked positions in the patches are
denoted byM = {1, . . . , T}0.75T . Next, the unmasked patch
XU = {xt : t ∈ M}Tt=1 is fed into the ViT encoder Eθ, pro-
ducing the encoded representations RU = {rt : t ∈ M}Tt=1.
The encoded non-masked patch features are then combined
with the masked patch features, and passed to the label pre-
dictor Pθ. The predictor outputs the predicted discrete labels
Z = {zt}Tt=1. The calculation formula is as follows:

RU = Eθ(X
U ), (3)

Z = {zt}Tt=1 = Pθ(R
U , {0 : t /∈M}Tt=1), (4)

where XU is the unmasked patches embedding, RU is the un-
masked patches representation and the zero vector represents
the masked patch features.

3.3 Self-Distilled Semantic Tokenizer
We propose a self-distilled semantic tokenizer that combines
self-distillation with online clustering to quantize continuous
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ECG features into discrete semantic labels. The framework
leverages a target encoder to distill knowledge from the con-
text encoder, generating high-dimensional semantic aware
embeddings. Online clustering is then applied to these high-
dimensional embeddings from target encoder to construct a
codebook. The pseudo-labels are obtained through the code-
book indices and are used to guide the self-supervised train-
ing of the semantic network. Unlike traditional offline clus-
tering or vector quantization methods, our approach inte-
grates online clustering directly into the training process, en-
abling dynamic adaptation between semantic representations
and discrete labels. This significantly enhances the model’s
optimization efficiency and semantic consistency.

Target Encoder Parameterization. As illustrated in Fig-
ure 2, our method is inspired by data2vec [Baevski et al.,
2023] and adopts the same overall framework. The objec-
tive is to train the context encoder Eθ under the guidance of
the target encoder E∆, where both models share the same ar-
chitecture. In our work, this architecture is a 12-layer Trans-
former encoder [Vaswani, 2017].

The weights of the context encoder, denoted as θ, are up-
dated using backpropagation based on the gradient of the loss
function. The target encoder weights, represented by ∆, are
initialized to be identical to the context encoder weights at
the beginning of training. During training, the target encoder
weights are updated through an Exponentially Moving Av-
erage (EMA) of the context encoder weights, expressed as:

∆← τ∆+ (1− τ)θ, (5)
where τ is a hyperparameter that governs the update fre-
quency of the target encoder weights. The value of τ in-
creases linearly throughout training, starting from an initial
value τ0 and gradually approaching 1. This scheduling allows
the target encoder to adapt quickly during the early stages of
training while stabilizing in later stages.

Codebook Assignment. After distilling high-dimensional
semantic aware embeddings from the target encoder, we
leverage online clustering to construct a codebook (set of
centroids) E = {e1, . . . , eV }, where there are V codewords
(centroids) ei ∈ RD. To align the target encoder outputs with
the codebook, each codebook entry v is associated with a set
Z̃v , which contains the representations closest to the current
centroid ev . Formally, this is defined as:

Z̃v =

{
z̃t

∣∣∣∣ v = arg min
i∈{1,...,V }

∥z̃t − ei∥2
}
, (6)

where the set index v will be used as a pseudo label to train
the semantic network.

Codebook Update. To ensure the codebook dynamically
adapts to the target encoder outputs, each codeword ev is up-
dated using an EMA. The update rules are given by:

sv ← σsv + (1− σ)
∑

Z̃v, (7)

nv ← nv + (1− σ)
∣∣∣Z̃v∣∣∣ , (8)

ev ←
sv
nv
, (9)

where sv represents the accumulated sum of all neighboring
target representations (i.e., Z̃v as defined in Eq. 6), while
nv denotes the count of neighbors. Both terms are updated
using an EMA mechanism with a decay rate σ, enabling the
computation of the codeword ev as the weighted average of
its neighboring representations. During initialization, sv , nv ,
and ev are all set to 1.

By defining codewords based on their corresponding
neighboring representations, these codewords can be inter-
preted as semantic units derived from the target model in an
unsupervised manner. Subsequently, these units are used to
train the SSL model. The clustering approach produces dis-
crete labels for ECG based on their context, which have con-
sistent semantics. As shown in the section 5.4, the semantics
of these codewords are closely consistent with those of the
clinical patterns.

Lp =
T∑
t=1

log pψ (v|zt) . (10)

where ψ is the softmax activation over the codebook, v is the
codeword index of the corresponding patch from the target
network (i.e., z̃t ∈ Z̃v), and zt is the corresponding output
feature of the context network.

4 Experiments
4.1 Pre-training Configuration
MIMIC-IV-ECG. We use the MIMIC-ECG dataset [Gow et
al., 2023] to pre-train the proposed ECG2TOK framework.
This dataset comprises 800,035 ECG recordings collected
from 161,352 unique subjects, with each recording lasting 10
seconds and sampled at 500 Hz. To handle missing or invalid
values (e.g., ”NaN” and ”Inf”) in the ECG data, we replaced
them with the average of six neighboring points. After this
preprocessing step, we obtained a final pre-training dataset
containing 771,693 samples.

Implementation. MIMIC-IV-ECG dataset is split into
training and validation sets in a 9:1 ratio, with the validation
set used for semantic token analysis. During pre-training,
a randomly initialized transformer [Vaswani, 2017] is em-
ployed as the target encoder, and input data is processed with
a 75% random masking rate. The number of discrete seman-
tic tokens generated through online clustering is set to 128,
with a cluster center dimension of 768. The learning rate is
configured to 1.5 × 10−4, and the model is trained for a to-
tal of 7 epochs using the AdamW optimizer with momentum
parameters [0.9, 0.95]. All experiments are conducted on a
single NVIDIA A800 GPU with a batch size of 256. To en-
sure reproducibility, the random seed is fixed at 0.

4.2 Downstream Tasks Configuration
We evaluate our method on six tasks across three publicly
available ECG datasets, covering over 100 cardiac conditions.
Data splitting details are provided in the appendix.

PTB-XL. The PTB-XL dataset [Wagner et al., 2020] con-
tains 21,837 12-lead ECG recordings from 18,885 patients,
each lasting 10 seconds and sampled at 500 Hz. The dataset
supports classification into Superclass (5 classes), Subclass
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(23 classes), Form (19 classes), and Rhythm (12 classes).
We adopted the official split [Wagner et al., 2020] for train-
ing, validation, and testing.

CPSC2018. The CPSC2018 dataset [Liu et al., 2018] in-
cludes 6,877 12-lead ECG recordings with durations between
6 and 60 seconds. It contains 9 distinct labels and is divided
into 70% for training, 10% for validation, and 20% for test-
ing.

Chapman-Shaoxing-Ningbo (CSN). The CSN dataset
[Zheng et al., 2020; Zheng et al., 2022] contains 45,152 12-
lead ECG recordings, each lasting 10 seconds and sampled
at 500 Hz. After excluding samples with ”unknown” anno-
tations, the refined dataset includes 23,026 recordings across
38 labels. We used a 70%:10%:20% split for training, valida-
tion, and testing.

Implementation. For linear probing, the target encoder
remains frozen, and only the linear classifier with randomly
initialized parameters is trained. To assess the method’s per-
formance under low-resource conditions, linear probing is
conducted on each task using 1%, 10%, and 100% of the
training dataset. The training process spans 100 epochs, in-
cluding a 5-epoch warmup phase, with a base learning rate of
5.0 × 10−3, a weight decay of 0.05, and a batch size of 16.
The AdamW optimizer is utilized, with gradient clipping and
distributed evaluation omitted. Binary cross-entropy (BCE)
is employed as the loss function, suitable for multi-label clas-
sification. Macro AUC is used as the evaluation metric for
all downstream tasks. To ensure reproducibility, the random
seed is set to 0, and torch.manual seed is fixed at 42.
Test results are derived from the best-performing validation
model.

5 Results and Discussion
5.1 Main Results
Table 1 presents the linear probing performance of our pro-
posed ECG2TOK model across six tasks and three resource
configurations, compared to the current state-of-the-art SSL
methods. For each dataset, the bold numbers represent the
best performance, while the underlined numbers indicate the
second-best performance (this formatting is applied consis-
tently throughout all tables in this paper). The results demon-
strate that ECG2TOK achieves significant performance im-
provements across multiple tasks, obtaining the highest AUC
in almost all resource settings (highlighted in bold in the
table). Moreover, the AUC performance of ECG2TOK is
particularly outstanding on the PTBXL-Rhythm, CPSC2018,
and CSN datasets, with average AUC improvements of
16.4%, 9.43%, and 15.6%, respectively, over the next-best
models. These results indicate that, compared to other SOTA
methods, ECG2TOK exhibits superior representation capa-
bility, effectively extracting high-level semantic features and
adapting to various downstream tasks.

Notably, under low-resource conditions (using only 1%
and 10% of the training samples), ECG2TOK continues
to exhibit superior performance compared to other mod-
els, highlighting its strong generalization ability in resource-
constrained environments. For instance, with only 1% of the
training data, ECG2TOK achieves an AUC of 81.16 on the

PTBXL-Rhythm dataset, representing an improvement of ap-
proximately 30.73% over the next-best model, HeartLang.
Similarly, on the CSN dataset, ECG2TOK achieves an im-
provement of around 19.66% over the next-best model, Bar-
lowTwins. In some classification tasks, such as CPSC2018
and CSN, ECG2TOK outperforms other SSL methods trained
on 100% of the data, even when using only 10% of the
training data. These significant improvements suggest that
ECG2TOK learns more advanced, semantically rich, and
general representations, outperforming other self-supervised
learning methods and further validating its robustness and ef-
fectiveness under low-resource conditions.

In summary, ECG2TOK consistently achieves superior
performance across various downstream tasks, demonstrat-
ing its strong representation ability and broad adaptability
in self-supervised learning. Its remarkable performance in
low-resource scenarios underscores its robustness and ef-
fectiveness, making it highly suitable not only for large-
scale datasets but also for practical applications in resource-
constrained fields such as healthcare and health monitoring.

5.2 Pre-training Efficiency
The experimental results demonstrate that ECG2TOK sig-
nificantly outperforms existing ECG self-supervised learn-
ing methods in both pre-training efficiency and performance.
As shown in Table 2 and Figure 3, ECG2TOK achieves ex-
ceptional results with only 7 pre-training epochs, reducing
pre-training time by 28.5 times compared to HeartLang and
9.12 times compared to MERL. Notably, ECG2TOK sur-
passes HeartLang (pre-trained for 200 epochs) and MERL
(pre-trained for 50 epochs) after just 4 epochs, highlighting
its ability to quickly learn high-quality representations. Af-
ter 7 total pre-training epochs, ECG2TOK achieves an aver-
age AUC of 81.18 across six downstream tasks, significantly
outperforming both models despite their longer pre-training
periods.

The efficiency improvement of ECG2TOK can be at-
tributed to three key factors. First, ECG2TOK employs a 75%
high masking rate during pre-training. This large masking
means that a significant portion of the ECG data is excluded
before being input to the context encoder, enhancing batch
processing capabilities and leveraging parallel computing ad-
vantages to improve efficiency. Second, the reconstruction
objective in the proposed self-supervised framework differs
from traditional ECG input space reconstruction objectives.
It provides semantically rich discretized tokens (cluster cen-
ter) as pre-training targets and encourages the model to dis-
card redundant details, allowing the model to capture key fea-
tures faster, thereby accelerating the convergence of the pre-
training process. Lastly, the incorporation of self-distillation
further speeds up the learning by refining the model’s feature
representations, allowing for faster and more efficient train-
ing.

5.3 Ablation Study
Training Target. Table 3 illustrates the importance of each
component in the ECG2TOK framework. Removing the se-
mantic tokenizer (w/o semantic tokenizer), where the model
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PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN
Method 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%
random init 70.45 77.09 81.61 55.82 67.60 77.91 55.82 62.54 73.00 46.26 62.36 79.29 54.96 71.47 78.33 47.22 63.17 73.13
SimCLR[Chen et al., 2020] 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL[Grill et al., 2020] 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins[Zbontar et al., 2021] 71.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3[Chen et al., 2021] 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam[Chen and He, 2021] 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC[Eldele et al., 2021] 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS[Kiyasseh et al., 2021] 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 52.38 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL[Wang et al., 2023] 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT[Zhang et al., 2023] 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM[Na et al., 2024] 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 59.69 63.32 70.39 59.77 66.87 71.36
HeartLang[Jin et al., 2025] 78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34 60.44 66.26 77.87 57.94 68.93 82.49
ECG2TOK(Ours) 81.23 85.68 87.99 72.31 79.42 84.52 55.88 73.78 85.28 81.16 89.41 91.41 68.42 83.41 91.04 72.66 85.14 92.84

Table 1: Linear probing performance comparison between our method and other eSSL approaches. The highest AUC are highlighted in bold,
while the number underlined represents the second best.

Model Epoch Hour × GPU Speedup AUC(Mean±SE)
ST-MEM [Na et al., 2024] 800 800 1× 63.31±1.48
HeartLang [Jin et al., 2025] 200 200 4× 73.92±2.53

MERL [Liu et al., 2024] 50 64 12.5× 78.11±2.55
ECG2TOK(Ours) 7 7 114× 81.18±2.18

Table 2: Comparison of Pre-training Costs with Other SOTA eSSL
Models: All models are uniformly fine-tuned using linear methods
on downstream datasets. The results are presented as (average AUC
± standard error) across six downstream tasks in three resource set-
tings.

Figure 3: Comparison of our method (ECG2TOK) with three other
eSSL approaches in terms of pre-training epochs, with ECG2TOK
pre-trained for 10 epochs. All models are fine-tuned uniformly
across six downstream tasks, and the results are averaged over the
evaluation sets.

reverts to a traditional masked reconstruction of raw sig-
nals, results in the most significant performance drop of
10.1%. Excluding self-distillation (w/o self-distillation),
where ECG’s continuous input space is directly discretized
into labels without knowledge compression from a target
model, leads to a performance decrease of 4.13%. Finally, re-
moving the clustering module (w/o clustering), which shifts
the training objective to reconstructing the abstract feature
rather than clustering-based discretization, results in a drop of
3.79%. Overall, the full ECG2TOK model achieves the best
performance (average AUC: 81.18), demonstrating the com-

plementary contributions of these components in effectively
capturing and leveraging ECG signal representations.

Model Training Targets AUC(Mean±SE)
w/o semantic tokenizer input reconstruction 72.98±2.25

w/o self-distilltion discrete label prediction 77.82±2.21
w/o clustering features reconstruction 78.10±2.39

ECG2TOK(Ours) discrete label prediction 81.18±2.18

Table 3: Ablation Study of EEG2TOK Components: ’Mean’ refers
to the average AUC calculated from 18 results across six down-
stream tasks in three resource settings, while ’SE’ denotes the stan-
dard error.

Masking Ratio. We investigate the impact of random
masking rates during pre-training. The masking rate largely
determines the number of unmasked patches accessible to the
predictor during training, which directly affects the complex-
ity of the pre-training task. Figure 4 illustrates how fine-
tuning performance on downstream tasks changes with dif-
ferent masking rates. Notably, when the masking rate is set to
75%, our proposed ECG2TOK model achieves the best fine-
tuning performance, indicating that at this moderately high
masking rate, the model is able to effectively transfer and
optimize downstream tasks while maintaining a higher pre-
training task complexity.

Figure 4: AUC at different masking ratios. The x-axis represents
masking ratios, and the y-axis shows the corresponding average
AUC values. The error bars represent standard deviations. The or-
ange bar highlights the best-performing ratio.
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Cluster size 1% 10% 100%
32 71.29 ± 3.72 82.45 ± 1.88 88.31 ± 1.31

128 71.94 ± 3.51 82.74 ± 2.06 88.85 ± 1.29
512 68.49 ± 3.62 79.08 ± 2.26 86.10 ± 1.55
1024 69.35 ± 3.55 79.68 ± 2.32 86.88 ± 1.41

Table 4: Performance comparison with varying codebook size V.

Number of Clusters. We investigate the impact of differ-
ent codebook sizes (Cluster size) on the performance of the
ECG2TOK model. The results in Table 4 show that code-
book size significantly affects model performance. A small
codebook (e.g., 32) leads to lower performance, likely due
to insufficient feature representation. Performance improves
with larger codebooks, peaking at a size of 128, which bal-
ances feature representation and computational complexity.
However, further increasing the codebook size to 512 or 1024
results in a slight decline, possibly due to dispersed features
and reduced generalization. In conclusion, a codebook size
of 128 is found to be the most optimal, as it effectively cap-
tures data features and provides the best performance under
varying resource conditions.

5.4 Visualization

To validate whether the semantic tokenizer in ECG2TOK
captures clinically valuable information, we perform infer-
ence on the MIMIC-IV test set, which includes annotated
clinical text reports and ECG signals from diverse patients.
We cluster the ECG patches and visualize the 10 patches clos-
est to each cluster center from different subjects, displaying
their corresponding clinical reports for comparison. Each la-
bel is presented as ”P xx(ID xx):...xxx...”, where ”P” denotes
the ECG patch index, ”ID” is the subject ID, and ”...xxx...” is
the clinical report. By comparing the ECG waveforms with
the associated clinical reports, we assess whether the discrete
labels accurately reflect clinical features, thus confirming the
effectiveness of the semantic tokenizer.

As shown in Figure 5, ECG patches sharing the same label
or cluster center exhibit consistent semantic patterns aligned
with clinical phenomena. For example, patch ”37” shows ST
segment changes, indicative of myocardial ischemia, while
”47” demonstrates QT interval prolongation, a sign of ar-
rhythmias or drug effects. Patch ”67” presents normal wave-
forms, indicating a healthy heart. These results suggest that
the generated labels capture clinically relevant ECG features
and contain meaningful, consistent semantic information.

The consistent semantic patterns across different subjects
further indicate that the pseudo-labeling process is robust and
generalizes well across clinical scenarios. This validates that
the semantic tokenizer effectively captures high-level clinical
patterns, not just memorizing patient-specific data, confirm-
ing the generated discrete labels reflect the clinical semantics
of the ECG signals and are useful for ECG analysis.

In conclusion, these findings demonstrate that the seman-
tic tokenizer in ECG2TOK effectively capture consistent and
clinically relevant patterns in ECG signals, validating the
practicality of ECG2TOK for ECG analysis.

Figure 5: Visualization of the correspondence between discrete la-
bels and input ECG patches. ”P” represents the patch index, ”ID”
denotes the subject ID, and the text following the ”:” is the cor-
responding ECG report. ECG patches with the same label exhibit
consistent semantic patterns.

6 Conclusion

In this paper, we present ECG2TOK, a novel ECG pretraining
framework that incorporates a self-distillation semantic tok-
enizer. Unlike conventional approaches that focus on time-
frequency signal reconstruction, ECG2TOK leverages dis-
crete label prediction to drive the model towards higher-level
semantic abstraction. The key innovation of ECG2TOK lies
in the self-distillation semantic tokenizer, which transforms
continuous ECG signals into a compact semantic space and
generates discrete labels for self-supervised learning. Our
experimental results demonstrate that ECG2TOK surpasses
state-of-the-art methods across six downstream classification
tasks, achieving up to a 30.73% improvement in AUC under
low-resource conditions. Furthermore, the self-distillation
framework contributes to enhanced pretraining efficiency, ac-
celerating the learning process without sacrificing perfor-
mance. Visualization analysis further highlights that the se-
mantic tokenizer produces discrete labels with consistent and
meaningful semantics. These findings underscore the poten-
tial of self-supervised learning with discrete label prediction
in overcoming challenges such as individual variability and
redundancy in ECG analysis, providing innovative solutions
to improve healthcare access and efficiency, particularly in
resource-limited settings.
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