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Abstract

Spread through air spaces (STAS) represents a
newly identified aggressive pattern in lung can-
cer, which is known to be associated with ad-
verse prognostic factors and complex pathologi-
cal features. Pathologists currently rely on time-
consuming manual assessments, which are highly
subjective and prone to variation. This highlights
the urgent need for automated and precise diag-
nostic solutions. 2,970 lung cancer tissue slides
are comprised from multiple centers, re-diagnosed
them, and constructed and publicly released three
lung cancer STAS datasets: STAS-CSU (hospi-
tal), STAS-TCGA, and STAS-CPTAC. All STAS
datasets provide corresponding pathological fea-
ture diagnoses and related clinical data. To address
the bias, sparse and heterogeneous nature of STAS,
we propose an scale-aware multiple instance learn-
ing(SMILE) method for STAS diagnosis of lung
cancer. By introducing a scale-adaptive attention
mechanism, the SMILE can adaptively adjust high-
attention instances, reducing over-reliance on lo-
cal regions and promoting consistent detection of
STAS lesions. Extensive experiments show that
SMILE achieved competitive diagnostic results on
STAS-CSU, diagnosing 251 and 319 STAS sam-
ples in CPTAC and TCGA, respectively, surpassing
clinical average AUC. The 11 open baseline results
are the first to be established for STAS research,
laying the foundation for the future expansion, in-
terpretability, and clinical integration of computa-
tional pathology technologies. The datasets and
code are available at https://github.com/panlian
grui/IJCAI2S.

1 Introduction

Spread Through Air Spaces (STAS) is recognized as a newly
described invasive pattern in lung cancer. Onozato et al.
[Onozato et al., 2013] first noted tumor cells occupying alve-
olar spaces in 2013. The World Health Organization (WHO)
later defined STAS as tumor cells (e.g., micropapillary clus-

ters, solid nests, or single cells) that spread within air spaces
beyond the main tumor [Chae et al., 2021]. Using three-
dimensional reconstruction, tumor islands initially appearing
separate were found to be connected to the main tumor on
different planes [Warth et al., 2015], implying an aggressive
invasion mode correlated with higher tumor grade, KRAS
mutations, and poorer recurrence-free survival. Numerous
studies have shown that STAS frequently coexists with other
high-risk pathological features, including pleural invasion,
vascular invasion, larger tumor size, and higher stage, which
collectively indicate a worse prognosis [Eguchi er al., 2019;
Shiono and Yanagawa, 2016].

Histopathological images remain the gold standard for
diagnosing STAS. Nevertheless, identification of STAS re-
lies heavily on pathologists’ manual observation, leading
to considerable subjectivity and dependence on individual
expertise. The resultant workload can be overwhelming
when processing large-scale slides, which risks both extended
turnaround times and potential diagnostic inconsistencies.
STAS status is also pivotal for surgical decision-making, such
as choosing between lobectomy and sub-lobectomy, as intra-
operative removal of STAS-affected regions improves patient
survival [Khalil et al., 2023; Zhou et al., 2022]. Howeyver,
manual diagnostic approaches reportedly achieve about 74%
accuracy (AUC = 0.67) [Wang et al., 2023], underscoring the
urgent need for more objective and efficient diagnostic meth-
ods.

Artificial intelligence has shown tremendous promise in as-
sisting pathological diagnoses, with notable successes in tu-
mor classification, lesion boundary detection, and survival
prediction. However, The diagnosis of STAS remains chal-
lenging. As an invasive pattern that has only recently been
incorporated into pathology reports, STAS lacks a univer-
sally accepted diagnostic standard across clinical and pathol-
ogy communities. This inconsistency leads to variations in
diagnostic agreement and sensitivity among different insti-
tutions. Additionally, the availability of high-quality, multi-
center annotated pathology datasets for STAS have not yet
appeared, restricting the breadth and depth of related re-
search. As illustrated in Figure 1, STAS is characterized by
tumor cell dissemination along the small airways, often pre-
senting as scattered, minute lesions. These lesions vary in
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Figure 1: Three common pathological features of STAS in lung cancer histopathology images. STAS is mainly distributed outside the main
tumor body in the form of solid cell nests, micropapillary clusters, and single cancer cells.

size, morphology, and exhibit significant heterogeneity, mak-
ing comprehensive identification through conventional man-
ual examination particularly difficult. Traditional pathologi-
cal diagnostic approaches have inherent limitations in detect-
ing STAS, especially in distinguishing subtle lesions and ir-
regular morphological patterns, which can introduce diagnos-
tic errors. Furthermore, accurate STAS assessment requires
an in-depth understanding of tumor dissemination pathways
within air spaces, further complicating the diagnostic process
for pathologists. These challenges highlight the urgent need
to refine diagnostic strategies to enhance the consistency, ef-
ficiency, and interpretability of STAS identification.

To address the aforementioned challenges, we downloaded
all lung cancer histopathological images from The Cancer
Genome Atlas (TCGA) and the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) projects. Three pathologists
cross-diagnosed the STAS status and the types of dissemi-
nation foci for each slide, establishing the STAS-TCGA and
STAS-CPTAC datasets. Importantly, we collected and cu-
rated histopathological images from STAS lung cancer pa-
tients at the Second Xiangya Hospital of Central South Uni-
versity and constructed the STAS-CSU dataset. Given the
sparsity and heterogeneity of STAS pathological features,
which typically appear as isolated cells or small clusters be-
yond the primary tumor body and are often difficult to de-
tect in histopathological images, we propose SMILE, a novel
scale-aware multiple instance learning method designed for
STAS whole-slide image (WSI) classification. This approach
introduces a scale-aware strategy to reduce the model’s over-
reliance on high-attention instances, thereby enhancing its
ability to capture sparse and heterogeneous features and im-
proving STAS recognition accuracy. Our main contributions
are as follows:

* This study conducted STAS diagnosis on lung cancer pa-
tients from TCGA and CPTAC, and for the first time,

constructed and publicly released three STAS datasets:
STAS-CSU, STAS-TCGA, and STAS-CPTAC, compris-
ing a total of 2,970 histopathological images.

* We introduce a scale-adaptive attention mechanism that
optimizes the SMILE to focus more evenly on instances
in the bag by dynamically adjusting the attention to
high-attention instances, thus improving the accuracy of
STAS prediction in histopathology images.

* We conduct benchmark evaluations of 11 multi-instance
learning algorithms across Three STAS datasets, deliver-
ing comprehensive baseline results to advance research
on STAS-assisted diagnosis.

2 Related Work

2.1 Lung Cancer Histopathology Image Datasets

Currently, publicly accessible lung cancer histopathological
image data mainly come from large-scale projects such as
TCGA, CPTAC, and Cancer Digital Slide Archive (CDSA),
as well as various datasets on the Kaggle platform [Gutman
et al., 2017; Borkowski et al., 2019; Heath et al., 2021;
Lu et al., 2017]. The TCGA initiative provides WSIs and
corresponding molecular data for both lung adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC) via the Ge-
nomic Data Commons portal [Han et al., 2021]. The CPTAC
program offers digital pathology images for multiple cancer
types, including lung cancer, while integrating proteomic data
to facilitate multimodal research. On Kaggle, a well-known
dataset titled “Lung and Colon Cancer Histopathological Im-
ages” includes hundreds of samples, 750 of which (250 be-
nign lung tissue, 250 LUAD, and 250 LUSC) are labeled and
suitable for classification or segmentation'. The CDSA also

"https://www.kaggle.com/datasets/andrewmvd/lung-and-colon
-cancer-histopathological-images
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provides digital pathology slides; notably, the National Lung
Screening Trial subset features 1,225 high-quality WSIs?. In
addition, certain national cancer centers possess lung can-
cer histopathological datasets for domestic research, typically
containing image, radiological, molecular, and clinical infor-
mation. Although STAS has been repeatedly noted by the
WHO as an invasive malignancy manifestation, most publicly
available datasets do not specify STAS annotations in their
diagnostic records. To address this gap, we re-invited three
experienced pathologists to cross-diagnosis STAS labels for
all lung cancer WSIs in the TCGA and CPTAC datasets, thus
enriching the data foundation for STAS research and intelli-
gent diagnostic modeling.

2.2 STAS Diagnosis

STAS in the lung correlates strongly with the surgical ap-
proach and poor prognosis in early-stage lung adenocarci-
noma [Lin et al., 2024; Feng et al., 2024]. Preoperative
STAS prediction is therefore critical for surgical planning, yet
STAS detection remains challenging due to false positives,
low inter-observer agreement, and limited quantitative analy-
sis. One STAS-DL model extracted solid-component features
through a solid component gating (SCG) mechanism and
achieved an AUC of 0.82 and 74% accuracy, surpassing both
STAS-DL without SCG (70% accuracy) and physician per-
formance (AUC = 0.68) [Lin et al., 2024]. Another ResNet-
18-based deep learning method yielded an AUC of 0.841.
A hybrid model combining deep learning and radiomics im-
proved performance by 3.50% and 4.60% compared to either
component alone. The STASNet approach computes semi-
quantitative STAS parameters (density and distance) and ob-
tained 0.93 patch-level detection accuracy with 0.72 AUC at
the WSI [Feng et al., 2024]. Similarly, researchers have lever-
aged machine learning and deep learning to build STAS pre-
diction models using radiological-histological features (AUC
= 0.764 in training, 0.776 in testing), while integrating clini-
cal data raised the AUC to 0.878. A ResNet50-based model
further reached 0.918 AUC. In terms of graph modeling, Cen
et al. introduced Ollivier-Ricci curvature-based graph the-
ory to enhance accuracy and explainability via primary tumor
margin features [Cen et al., 2024]. Pan et al. then proposed
VERN, a feature-interactive siamese encoder that performs
effectively on both frozen sections (FSs) and paraffin sec-
tions (PSs) [Pan er al., 2024]. Although most deep learning-
based STAS diagnostics currently focus on radiomics and
well-designed STAS datasets,, their performance has yet to
reach clinical-grade levels. In contrast, computational pathol-
ogy for STAS remains a burgeoning focus of research.

2.3 Multiple Instance Learning

Given the importance of weakly supervised learning in digital
pathology, Multiple instance learning (MIL) is widely em-
ployed for WSI analysis using only slide-level labels with-
out labor-intensive pixel annotations. MIL models typically
fall into two groups: one predicts directly at the instance
level and aggregates these outputs for bag-level decisions
[Li et al., 2021; Hou et al., 2016; Shao et al., 2021]; the

*https://cdas.cancer.gov/datasets/nlst/

other extracts instance features, then combines these into
a bag representation for classification [Yao er al., 2020;
Zhang et al., 2022; Zhao et al., 2020; llse et al., 2018;
Lin et al., 2023]. While mean-pooling or max-pooling are
straightforward ways to aggregate instance probabilities, they
often perform worse than bag embedding methods [Zhang et
al., 2022; Wang et al., 2022]. Bag embedding learns a high-
level representation for the entire bag, producing more robust
features. Most bag-embedding-based techniques employ at-
tention mechanisms, as seen in ABMIL, which sums instance
features with learned attention weights. These weights can
be determined by a side network [Ilse et al., 2018], by cosine
distance to key instances [Hou er al., 2016], or by a trans-
former architecture that encodes inter-instance relationships
[Shao et al., 2021]. Various extensions of ABMIL and Trans-
MIL have pushed MIL research further in pathology image
analysis [Shi er al., 2024; Lu et al., 2023; Jaume et al., 2024;
Wang er al., 2022]. Given that STAS histopathological im-
ages typically exhibit high resolution, sparsity, complex tex-
tures, and pronounced heterogeneity, we proposes a MIL-
based diagnostic approach for STAS using a scale-adaptive
attention mechanism to improve WSI analysis and advance
the clinical application of computational pathology.

3 Lung Cancer STAS Datasets

3.1 Dataset Construction

As illustrated in Figure 2, We compiled three STAS datasets
for this study, comprising STAS-CSU from the Second Xi-
angya Hospital, STAS-TCGA from the U.S. National Cancer
Institute, and STAS-CPTAC from the CPTAC. All histopatho-
logical data were reviewed by three experienced pathologists,
who determined the STAS label for each WSI by observing
the tissue under a microscope. Following a double-blind ex-
perimental protocol, we employed cross-diagnosis to obtain
accurate labels and minimize pathologist bias, as well as re-
duce the risk of missed or incorrect diagnoses. Based on
our research objectives, we only included WSIs from patients
meeting the following criteria: (1) diagnosed with LUAD, (2)
availability of corresponding routine pathological slides con-
taining both the primary tumor and adjacent non-tumor tis-
sue, (3) detailed TNM staging, (4) high-quality slides with-
out bending, wrinkling, blurring, or color distortion, and (5)
exclusion of slides containing the primary tumor but lacking
adjacent non-tumor tissue. Below, we provide a detailed de-
scription of our dataset.

STAS-CSU: From April 2020 to December 2023, we se-
lected 356 patients at the Second Xiangya Hospital who
underwent pulmonary nodule resection and were diagnosed
with lung cancer (particularly those with STAS) to form a
retrospective lung cancer cohort. We comprehensively col-
lected each patient’s clinical and pathological data, includ-
ing age, tumor size, lymph node metastasis, distant metas-
tasis, clinical stage, recurrence time and status, as well as
survival time and status. Two experienced pathologists inde-
pendently reviewed the pathology data for every patient, in-
cluding frozen and paraffin-embedded hematoxylin and eosin
(H&E) stained slides, immunohistochemical (IHC) slides,
confirming the presence or absence of STAS, the specific
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pathological subtype of any disseminated foci, the detailed
histological subtype of lung cancer, and the expression of key
proteins (PD-L1, TP53, Ki-67, and ALK). Within this cohort,
there were 150 non-STAS patients and 206 STAS patients.
Each patient’s tumor specimen was sectioned by pathologists
into multiple paraffin blocks, each corresponding to multiple
H&E slides. In total, we collected and scanned 1,290 FSs
and PSs and 1,436 THC slides. Of these, 247 FSs comprised
81 STAS and 158 non-STAS FSs, while 1,043 PSs contained
585 STAS and 436 non-STAS PSs. All FSs and PSs were
digitized into WSIL.

STAS-TCGA: We downloaded relevant LUAD WSIs from
the TCGA website’. Based on our inclusion and exclusion
standards, we collected 541 WSIs of PS from an unspecified
number of patients. All WSIs underwent cross-diagnosis by
three experienced pathologists to determine STAS status, type
of dissemination foci, and tumor type. We found that STAS
was positively correlated with the status and duration of sur-
vival. Finally, following the inclusion and exclusion criteria,
the STAS-TCGA dataset consists of 155 STAS WSIs and 269
non-STAS WSIs, along with corresponding patient survival
times and statuses, and 117 WSIs were excluded.
STAS-CPTAC: We obtained 1,139 WSIs from the CPTAC*.
According to our inclusion and exclusion criteria, 304 WSIs
of PS were labeled as STAS, 191 were labeled as non-STAS,
and 640 WSIs were excluded. The included image data was
Cross-diagnosed by three pathologists to obtain the patholog-
ical type, including the STAS status. These images were then
used to evaluate the performance of our model. Moreover,
this dataset also provides multi-omics data and clinical data
related to lung cancer.
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Figure 2: The process of constructing the three STAS datasets.

3.2 Data Preprocessing

This stage primarily involves WSI digitization, followed by
applying the OTSU algorithm to segment tissue regions, de-
tect background, and identify blurred areas [Jothi and Ra-
jam, 2016]. All WSIs are automatically processed to gener-
ate thumbnails, masks, and overview images. Next, we seg-
ment each WSI (at 20x magnification) into patches of size
256x256 pixels, recording the coordinates and position of
each patch. To mitigate the impact of dataset quality on model

3https://portal.gdc.cancer.gov/
*https://www.cancerimagingarchive.net/collection/cptac-luad/

generalization, we employ a GAN based on pathological im-
age features to enhance the patches [Xue e al., 2021].

4 Method

4.1 Problem Definition

In the MIL framework, each bag is treated as a labeled unit,
while instances within the bag may possess different feature
representations. Consider a binary classification task where
abag X = {x1,x9,...,x,} contains n instances, and each
instance z; can be predicted as positive (y; = 1) or negative
(y; = 0). If at least one instance z; in the bag is classified
as positive (y; = 1), the bag is labeled positive (Y = 1);
otherwise, if all instances are negative (Z Yi = 0) , the bag is
labeled negative (Y = 0). Formally,

Y{o it 3,y =0, 0

1 otherwise.

When applying the MIL framework to STAS prediction,
each WSI is viewed as a bag labeled either STAS or non-
STAS. Due to the high resolution and large size of a WSI,
it cannot be directly fed into a MIL model. Thus, the WSI
is usually divided into multiple smaller patches that serve as
instances, each containing local information about the WSI.
Within the MIL paradigm, if at least one instance z; is identi-
fied as STAS (y; = 1), the entire WSI (bag) is labeled STAS.
If no instance is STAS (Vi, y; = 0), then the WSI is labeled
non-STAS.

4.2 Scale-aware Multiple Instance Learning

As illustrated in Figure 3(a), our proposed STAS predic-
tion process based on scale-aware multiple instance learning
(SMILE) involves three key steps: (1) Instance-Level Fea-
ture Extraction: For each instance x;, extract a feature vector
©(x;). (2) Feature Fusion: Aggregate all instance-level fea-
tures from bag X = {x1,za,...,2,} into a single bag-level
feature representation ¢(X). (3) Bag-Level Prediction: Use a
bag-level classifier g to predict the label Y based on the fused
feature ¢(X ). Formally,

¥ = g(elen), plaz), . p(@a))
Vie{l,2,...,n}. )

4.3 Instance-Level Feature Extraction

Given a bag X = {z1,22,...,2,} € RM*X256x256X3 " ye

first extract a high-dimensional feature representation for
each instance, capturing local information and properties.
Formally,

H=o(X) = {hi,ha,... I}, 3)

where H € R"*? is the feature matrix of bag X, and h; is
the feature vector of the ¢-th instance.

As illustrated in Figure 3(b), the feature extraction is di-
vided into two stages: offline and online. During the offline
phase, we use a backbone network called CTransPath,
which combines convolutional neural network and Trans-
former architectures [Wang et al., 2022]. After pretrain-
ing CTransPath with semantic contrastive learning, its


https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/collection/cptac-luad/

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Scale-adaptive Attention Mechanism

b Joint Instance Feature

okl

|
Instance Features /~ Attention Scores A E : Representation
1 i 1 2 2 ma | ma | ma Threshold 1 1 1 Instance Feature
a a a3 1 5 3 : %
ad | a5 | a6 M} n;a n;a l‘(;a _)Q(_x(_ 1 1 1 I
| ma | ma | ma |
a7 | a8 | a9 7 18|09 Step(T") 1 1 1 :
| y
Bag Feature D -+ X : E LLitneew
) D
——D)e—o)
/ \Z/ 2 FA 1 E F S l I BatchNorm 1d
actor |
g fal | fa2 | fa3 1 1 1 0[O0 1 | e
PR ) 8 [ \
Prediction Softmax «—— fad4 | fa5 | fa6 1 1 1 = 1 0 1 I 2
- | e CTranm
i=}
NOn-STAS fa7 | fa8 | fa9 1 1 1 1 0ol o | |
|
|
|

P
.
Z/

.CF. [
L/ -

Point-wise Multiplication/Addition/Subtraction X Scalar Multiplication

Instance

12 Sum of Vectors

Figure 3: (a) Overall workflow of the proposed SMILE approach. (b) The process of feature preprocessing. We process the given bag
through a joint feature representation module to transform them into instance features. These features are then processed through a scale-
adaptive attention module to obtain scaled bag-level feature representations. Finally, the final STAS prediction results are obtained through

the classifier g.

weights are frozen for all subsequent stages. The patches are
fed into CTransPath, which subsequently outputs the fea-
ture vector representations of these patches. Formally,

T = CTransPath(X). 4)
In the online phase, we apply three layers: BatchNormld,

Linear, and ReLU. These layers continue to be trainable,
allowing fine-tuning of the extracted features:

R =BatchNorml1d(T), )

H =ReLU(Linear(R)), (6)
where T = {ti,ta,...,t,} € R and R =
{ri,ma,..., )} € RWXL

4.4 Scale-adaptive Instance Space

During instance feature fusion, we introduce an attention
module that takes the instance-level feature matrix H as input
and outputs an attention weight for each instance:

A=W, (tanh(VaH) © U(UaH)) = {a1,as, ..., an},
@)

where A € R™*! represents the unnormalized attention
scores; V, € ReXd U7, € Re*? and W, € R'*¢ are learn-
able matrices; tanh(-) and o(-) denote the tangent and sig-
moid activation functions, respectively; © is the element-wise
multiplication operator.

To enable the model to learn more generalizable fea-
ture representations, we designed a scale-adaptive attention
mechanism that scales high attention scores exceeding a cer-
tain threshold based on the attention scores A. Specifically,
after applying Max_Min normalization to A, we clamp the
values exceeding a preset threshold by a factor, mitigating the
model’s over-dependence on certain high-attention instances.
Mathematically,

S = P(Max,Min(A) © (Threshold @ E)), 8)

0 ifz <0,
T(@) = {1 if 2 >0, ©)
4 ~ x—min(z)
Max_Min(z) = max(z) — min(z) (10)
SA = Softmax(A ® ((EeS) @ (Factor ® S)))
= {say, sag, ..., san}, (11)

where E € R™*! is a vector of ones, ® denotes element-wise
multiplication by a scalar, and &, & denote element-wise ad-
dition and subtraction, respectively. Threshold and Factor
represent the threshold value and scaling factor, respectively.

Finally, we compute a global representation by aggregating
all instance features with the scaled attention weights:

n
Z = E saihi.
i=1

For bag-level classification, we use a linear layer with a sig-
moid activation:

(12)

Y = o (Linear(z)). (13)

4.5 Loss Function

To optimize the parameters of SMILE, we adopt the standard
cross-entropy loss. Given a predicted probability distribu-
tion ¢ and the ground-truth label y € {0,1,...,C—1} for
C classes, the cross-entropy loss is defined as

C—-1

Lcg = — Z yelog (9c),

c=0

(14)

where 9. denotes the predicted probability for class c¢. For
binary classification (C' = 2), this reduces to

Low = ~[ylog (7) + 1 =) log (1-9)]. ()
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Minimizing L£cg encourages the model to assign higher con-
fidence scores to correct classes, thus improving overall clas-
sification performance.

S Experiments

5.1 Experimental Setups

Dataset setup. We used three STAS datasets in total—STAS-
CSU, STAS-TCGA, and STAS-CPTAC—for training and
evaluation. For each dataset, we applied five-fold cross-
validation, partitioning the dataset into five subsets, training
on four subsets and using the remaining subset for validation.
After performing five-fold cross-validation, we obtained five
best-performing prediction models. The experimental results
use the average value of five-fold cross-validation as the sta-
tistical value.

Evaluation metrics. We utilize the area under the receiver
operating characteristic curve (AUC), accuracy, precision, re-
call, and F1-Score as evaluation metrics to comprehensively
assess model performance from multiple perspectives.
Implementation details. All models were trained on the Py-
Torch framework using two NVIDIA RTX 4090 GPUs. The
experiments employed the Ranger optimizer to adjust model
parameters, with a learning rate of 2e~*, weight decay of
le~®, over 100 training epochs, and a batch size of 12. The
threshold was set to 0.5 with a scaling factor of 0.5. [ was
768, the feature compression dimension d was 256, and the
attention mechanism parameter e was 64.

5.2 Comparison of STAS Diagnosis Methods

In our experiment, we considered 11 STAS diagnostic meth-
ods. Since each method needs to be run on a multicenter
STAS dataset, we only selected those methods that have pub-
licly available code and corresponding MIL models.

* Maxpooling represents a slide by selecting the instance
with the maximum activation, thereby mimicking the fo-
cus on the most prominent lesion.

* Meanpooling aggregates all instance features by com-
puting their mean, thus treating each patch equally in
the overall representation.

* ABMIL [Ilse et al., 2018] employs an attention mecha-
nism to assign weights to instances, effectively prioritiz-
ing diagnostically relevant regions.

e TransMIL [Shao et al., 2021] is a transformer-based
MIL framework that leverages both morphological and
spatial correlations among instances to enhance visual-
ization, interpretability, and performance in WSI pathol-
ogy classification.

* CLAM-SB [Lu et al., 2021] is a clustering constraint-
based attention multiple instance learning method that
employs a single attention branch to aggregate instance
features and generate a bag-level representation.

* CLAM-MB [Lu et al., 2021] is the multi-branch ver-
sion of the CLAM model, computing attention scores
for each class separately to produce multiple unique bag-
level representations.

e DTFD-MIL [Zhang et al., 2022] addresses the chal-
lenge of limited WSI samples in MIL by introducing
pseudo-bags to virtually enlarge the bag count and im-
plementing a double-tier framework that leverages an
attention-based derivation of instance probabilities to ef-
fectively utilize intrinsic features.

* ACMIL [Zhang et al., 2024] mitigates overfitting by
employing multiple branch attention and stochastic top-
K instance masking to reduce attention value concentra-
tion and capture more discriminative instances in WSI
classification.

e ILRA [Xiang and Zhang, 2023] incorporates a
pathology-specific Low-Rank Constraint for feature em-
bedding and an iterative low-rank attention model for
feature aggregation, achieving enhanced performance in
gigapixel-sized WSI classification.

* DGRMIL [Zhu et al., 2024] models instance diversity
by converting instance embeddings into similarities with
predefined global vectors via a cross-attention mecha-
nism and further enhances the diversity among these
global vectors through positive instance alignment and
a determinant point process-based diversified learning
paradigm.

5.3 Results and Analysis

Table 1 compares SMILE with ten state-of-the-art (SOTA)
models using evaluation metrics across the three proposed
STAS datasets. All models learn weak labels of lung cancer
WSI to diagnose STAS. Overall, we observed performance
variations across the three datasets for all models.
STAS-TCGA: For accuracy, methods like CLAM-SB
(0.6017) and ABMIL (0.5991) attain competitive results. Our
method achieves an accuracy of 0.6064 and an AUC of
0.5736. Although the DGRMIL approach shows a slightly
higher AUC (0.6084), our overall performance remains in a
comparable range. This indicates that our approach can main-
tain reasonable accuracy while balancing the trade-off with
AUC.
STAS-CPTAC: SMILE achieves the highest accuracy
(0.645) among all listed models and also yields a leading
AUC value of 0.6517. The improvement in these two met-
rics highlights the advantages of the scale-adaptive atten-
tion mechanism and the MIL framework in learning STAS
pathological features. By contrast, alternative methods (e.g.,
CLAM-MB, TransMIL, DGRMIL) show lower accuracy and
AUC, highlighting that combining local instance features and
global context can significantly enhance STAS classification.
STAS-CSU: SMILE obtains an accuracy of 0.5655 with
an AUC of 0.5979. Some methods (e.g., Maxpooling and
DTFD-MIL) yield higher accuracy or AUC in certain cases,
but not consistently across both metrics. Notably, CLAM-
MB achieves accuracy = 0.5687 (higher than ours by a small
margin), though with a similar AUC (0.5946). Overall, the
results suggest that further refinements or domain adaptation
strategies might improve the robustness of our model on this
particular dataset.

In summary, the proposed SMILE achieves the high-
est combined accuracy and AUC performance on STAS-
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STAS-TCGA STAS-CPTAC STAS-CSU
Method ACC AUC F1 Recall Precision ACC AUC F1 Recall Precision ACC AUC F1 Recall Precision
Maxpooling ~ 0.5661 0.5201 0.5801 0.5904  0.5904  0.5850 0.5940 0.5667 0.5850  0.5850  0.5751 0.6055 0.5639 0.5751 0.5751
Meanpooling  0.5971 0.5845 0.5098 0.5971 0.5971 0.5875 0.6026 0.5502 0.5875 0.5875 0.5655 0.5963 0.5527 0.5655 0.5655
ABMIL 0.5991 0.5008 0.5151 0.5991 0.5991 0.5950 0.6379 0.5738  0.595 0.595 0.5582 0.5764 0.5582 0.5582  0.5582
TransMIL 0.5966 0.5926 0.5609 0.5966  0.5966  0.5925 0.5996 0.5707 0.5925  0.5925  0.5422 0.5569 0.5395 0.5422  0.5422
CLAM-SB 0.6017 0.5542 0.5262 0.6017  0.6017  0.5800 0.5850 0.5508 0.6000  0.6000  0.5574 0.5730 0.5648 0.5574  0.5574
CLAM-MB  0.5658 0.5395 0.5044 0.5658  0.5658  0.6275 0.6136 0.6137 0.6275  0.6275  0.5687 0.5946 0.5633 0.5687  0.5687
DTFD-MIL  0.5900 0.4792 0.4434 0.5900  0.5900 0.6100 0.5033 0.5887 0.6100 0.6100  0.5767 0.5625 0.5742 05767  0.5767
ACMIL 0.5493 0.5754 0.5473 0.5493  0.5523  0.5670 0.5889 0.5640 0.5670  0.5718  0.5469 0.5851 0.5406 0.5469  0.5508
ILRA 0.4723 0.5271 0.4953 0.5414  0.6056  0.5219 0.6239 0.6437 0.6939  0.6765  0.5390 0.5967 0.6007 0.6368  0.6124
DGRMIL 0.5621 0.6084 0.5841 0.5963  0.6347  0.6050 0.6198 0.6230 0.6444  0.6401 0.5116 0.5854 0.6048  0.651 0.5939
SMILE(our) 0.6064 0.5736 0.5079 0.6064 0.6064  0.6450 0.6517 0.6242 0.645 0.6450  0.5655 0.5979 0.5567 0.5655  0.5655

Table 1: Baseline results of SOTA MIL and SMILE methods on STAS-TCGA, STAS-CPTAC and STAS-CSU datasets.

CPTAC, and competitive results on STAS-TCGA and STAS-
CSU. Given the complexities of STAS classification and the
variability of histopathological data, these results demon-
strate that incorporating multi-instance learning with a scale-
adaptive attention mechanism can effectively capture the fine-
grained patterns essential for STAS diagnosis. Future work
may focus on improving domain adaptation and interpretabil-
ity to further enhance the model’s performance across diverse
datasets.

5.4 Ablation Study

In this section, we explore the impact of different thresholds
and scaling factors on model performance. We conducted
experiments on three representative datasets and recorded
changes in key metrics including accuracy, AUC, and F1
scores under various threshold and scale-factor settings. To
ensure the reliability of our results, cross-validation was em-
ployed on each dataset to reduce potential biases stemming
from data splits. Table 2 presents the experimental findings.

Threshold Factor STAS-TCGA STAS-CPTAC
Acc AUC F1 Acc AUC F1
w/o w/o  0.6091 0.5595 0.5190 0.6325 0.6595 0.6129
0.5 0.3 0.6137 0.5841 0.5148 0.6425 0.6531 0.6240
0.4 0.6064 0.5747 0.5056 0.6350 0.6560 0.6155
0.5 0.6064 0.5736 0.5079 0.6450 0.6517 0.6242
0.6 0.6164 0.5536 0.5368 0.6325 0.6574 0.6123
0.7 0.6041  0.5693 0.5227 0.6375 0.6586 0.6149
0.8 0.6042 0.5631 0.5156 0.6250 0.6551 0.6036
0.6 0.3 0.6112 0.5703 0.5295 0.6350 0.6523 0.6150
0.4 0.5898 0.5627 0.4838 0.6350 0.6467 0.6127
0.5 0.6039 0.5611 0.5106 0.6450 0.6526 0.6245
0.6 0.5967 0.5619 0.5102 0.6400 0.6569 0.6196
0.7 0.6016  0.5650 0.5114 0.6300 0.6600 0.6091
0.8 0.5971  0.5603 0.5029 0.6350 0.6552 0.6141
0.8 0.3 0.5969 0.5757 05106 0.6325 0.6414 0.6115
0.4 0.6064 0.5691 0.5179 0.6425 0.6473 0.6227
0.5 0.6089 0.5667 0.5179 0.6400 0.6520 0.6204
0.6 0.6041 0.5624 0.5167 0.6375 0.6538 0.6182
0.7 0.5969 0.5654 0.5028 0.6400 0.6569 0.6200
0.8 0.6042 0.5589 0.5031 0.6325 0.6587 0.6132

Table 2: The impact of different scale factors and thresholds on
model performance (w/o indicates no threshold or scale-factor ad-
justments).

By examining the data in Table 2, we find that thresh-
olds and scaling factors significantly and intricately affect the
model’s performance. In particular, for the STAS-TCGA and

STAS-CPTAC datasets, accuracy, AUC, and F1 tend to in-
crease when we reduce threshold and scaling-factor values.
When the threshold is 0.5 and the scale factor is 0.5, our
method reaches a local optimum on STAS-CPTAC, whereas
for STAS-TCGA, a local optimum is observed at threshold
= 0.5 and factor = 0.6. These results indicate that striking a
balance between threshold-based filtering and scaling-based
adjustments can effectively boost model performance.

6 Discussion and Conclusion

In this study, we propose a scale-aware multiple instance
learning framework to address the challenges of diagnos-
ing STAS in lung cancer WSIs. Our experiments con-
ducted on the STAS-TCGA, STAS-CPTAC, and STAS-
CSU datasets demonstrate that scale-adaptive attention-based
feature aggregation significantly improves diagnostic per-
formance. The proposed method achieves notable accu-
racy (0.6450) and competitive AUC (0.6517) on the STAS-
CPTAC, highlighting the effectiveness of our approach in
capturing STAS patterns within heterogeneous histopatho-
logical images. Ablation studies reveal that both threshold
and scaling factors substantially impact performance metrics.
This finding emphasizes the importance of tailoring hyper-
parameters for different datasets, considering inherent vari-
ability in image quality, staining conditions, and pathologi-
cal subtypes. Furthermore, scale-adaptive adjustment miti-
gates the issue of over-attention to high-salience instances.
By selectively scaling attention scores above thresholds, our
method achieves more balanced focus on subtle and promi-
nent local features, enhancing its robustness in identifying
sparse or heterogeneous STAS manifestations.

Despite these positive outcomes, two main limitations per-
sist. First, the proposed model shows slightly inferior perfor-
mance on the STAS-CSU compared to STAS-CPTAC, sug-
gesting the need for domain adaptation or data augmenta-
tion. Second, while the scale-adaptive mechanism improves
diagnostic accuracy compared to SOTA MIL approaches,
further research is required to bridge the gap between vi-
sual heatmaps and precise pathologist-level annotations. The
complex pathological features of STAS underscore the impor-
tance of more refined and interpretable modeling techniques,
potentially involving graph-based WSI representations.
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