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Abstract
Precise 3D hand posture is essential for learning
musical instruments. Reconstructing highly precise
3D hand gestures enables learners to correct and
master proper techniques through 3D simulation
and Extended Reality. However, exsiting meth-
ods typically rely on precisely calibrated multi-
camera systems, which are not easily deployable
in everyday environments. In this paper, we focus
on calibration-free multi-view 3D hand reconstruc-
tion in unconstrained scenarios. Establishing corre-
spondences between multi-view images is particu-
larly challenging without camera extrinsics. To ad-
dress this, we propose A3-Net, a multi-level align-
ment framework that utilizes 3D structural repre-
sentations with hierarchical geometric and explicit
semantic information as alignment proxies, facil-
itating multi-view feature interaction in both 3D
geometric space and 2D visual space. Specifi-
cally, we first perfrom global geometric alignment
to map multi-view features into a canonical space.
Subsequently, we aggregate information into pre-
defined sparse and dense proxies to further inte-
grate cross-view semantics through mutual interac-
tion. Finnaly, we perfrom 2D alignment to align
projected 2D visual features with 2D observations.
Our method achieves state-of-the-art results in task
of multi-view 3D hand reconstruction, demonstrat-
ing the effectiveness of the proposed framework.

1 Introduction
While accurate note-playing forms the fundamental basis of
musical instrument performance, the mastery of proper hand
techniques—particularly seamless fingering transitions and
refined hand control—ultimately plays a pivotal role in trans-
forming musical expression into fluid artistry and advancing
toward professional level of sophistication. Online videos are
popular for learning these hand techniques, but is limited by
fixed view points. Exsiting Mixed Reality (MR) applications
enable immersive instrumental learning in 3D virtual scenes

*Corresponding Author.

Device 1

Device 2

Figure 1: Extrinsic-calibration-free multi-view 3D hand reconstruc-
tion for musical instrument playing in everyday scenario. Players
can capture multi-view data using their daily devices, which can be
either fixed or handheld.

(such as PianoVision1), but only provide highlighted indica-
tors on the keyboards. Recent studies [Labrou et al., 2023;
Liu et al., 2023] found it effective to learn and correct hand
movements under MR environment through following the 3D
hand postures reconstructed from the teacher. Consequently,
reconstructing presice 3D hand postures during instrument
performance is significant for enhancing learning outcomes.

Single-view 3D hand reconstruction [Zimmermann and
Brox, 2017; Park et al., 2022; Boukhayma et al., 2019;
Chen et al., 2021; Ge et al., 2019] is convenient to use, but
provides a limited accuracy due to depth and scale ambigu-
ities as well as prevalent occlusions. Multi-view hand re-
construction methods [Iskakov et al., 2019; Ma et al., 2021;
Qiu et al., 2019; Tu et al., 2020; He et al., 2020] are more typ-
ically used in such scenarios, facilitating more robust and ac-
curate results with explicit disambiguation clues provided by
multi-view images. However, these methods are significantly
influenced by the precision of extrinsic calibration, necessi-
tating the complex calibration of multiple cameras, which are
not easily deployable in everday environments. Furthermore,
these methods are not applicable in uncontrolled mobile cam-
era environments where extrinsics are unavailable.

Previous methods for multi-view pose estimation can be

1https://www.pianovision.com/
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Figure 2: Comparison with other methods (a) and overview of the proposed alignment-proxy based A3-Net (b), which leverages predefined
alignment proxies (meshes and joints) to build multi-view feature correspondence semantically and geometrically. It first leverages an
encoder-decoder model for initial hand pose estimation and 2D visual feature extraction within each view. Geometric alignment are applied
on meshes and joints to project them into the canonical space. Finally, it iteratively adopts multi-view feature alignment in both 3D point
cloud space and 2D image space. For simplicity, only one iteration is shown.

broadly categorized into two categories: 2D-based meth-
ods and 3D-based methods. 2D-based methods perform
cross view fusion by epipolar geometry [He et al., 2020;
Zhang et al., 2021c; Ma et al., 2021] or learned fusion
weight [Qiu et al., 2019]. Although epipolar geometry re-
duces the solution space for multi-view feature matching,
this method does not fully utilize 3D spatial structure in-
formation. 3D-based methods involve the process of re-
projecting features into a 3D voxel space and extracting fea-
tures through a 3D convolution [Iskakov et al., 2019; Tu et al.,
2020] or 3D pictorial structure models [Burenius et al., 2013;
Qiu et al., 2019]. This approach enables the explicit inter-
action of features from different views in 3D space, which
can effectively extract 3D geometric structure information.
However, converting the feature into voxel representation
inevitably introduces quantization artifacts and requires a
large amount memory, which hinders the extraction of high-
resolution features. Both 2D-based and 3D-based methods
rely heavily on manually calibrated camera extrinsics, which
can be problematic in real-world scenarios due to the com-
plexity of camera calibration and the unsatisfactory perfor-
mance with unreliable extrinsics. This reliance on accurate
calibration leads to difficulties in establishing multi-view cor-
respondences and results in degraded performance when ex-
trinsics are unreliable or missing.

Consequently, calibration-free multi-view hand pose esti-
mation has emerged as a significant trend, as it avoids errors
associated with unreliable or missing extrinsics, resulting in

better generalization in real-world applications. However, it
is hard to build multi-view feature correspondences without
extrinsic calibration. To solve this issue, we propose using
3D structural representations with hierarchical geometric and
explicit semantic information as alignment proxies for robust
multi-view correspondences. As shown in Figure 2(a), unlike
existing 2D-based and 3D-based methods that first extract
features and then establish multi-view correspondences
dynamically, our approach utilizes predefined alignment
proxies and infuses them with the extracted features, which
avoids the computational burden of dynamically matching
features across different views and simplifies the optimization
process by focusing on refining fixed proxy correspondences
rather than exhaustively searching for feature alignments.
Moreover, this approach does not require maintaining the en-
tire voxel space, thereby reducing overall complexity. Joints
and meshes not only carry strong semantic significance,
but also exhibit robust geometric correlations that enable
efficient interaction between high-level semantic structures
and detailed geometric information. Using joints and meshes
as alignment proxies offers greater cross-view consistency
and, by incorporating these semantically defined proxies as
priors, significantly reduces the model’s optimization space,
reducing the risk of overfitting and improving robustness.

Effectively utilizing alignment proxies to aggregate multi-
view information and addressing challenges such as self-
occlusion remains complex, due to the need to encoding com-
plementary information across different views at varying lev-
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els (such as 2D and 3D) within a framework. To tackle
these challenges, as illustrated in Figure 2(b), we introduce
A3-Net, which employs a multi-level optimization strategy
and contains three key modules: geometric Alignment at the
global level, 3D feature Alignment in point cloud space, and
2D feature Alignment in image space. This layered design
allows for a more hierarchical learning process by address-
ing alignment at different levels of abstraction, thus reduc-
ing overall complexity and improving accuracy. Specifically,
we first predict the 3D hand mesh from each view and con-
struct the 3D point cloud. To reduce the difficulty of find-
ing correspondences between different views and facilitate
multi-view feature interaction, we begin with the geometric
alignment stage, where the 3D point cloud of each view is
transformed into a canonical space. Next, in the 3D align-
ment stage, we achieve finer-grained alignment by leveraging
the spatial relationships between joints and meshes. This in-
volves interactions from “mesh-to-joint” and “joint-to-mesh”.
For multi-view fusion, we connect features based on their
anatomical semantics and fuse them using a Graph Convolu-
tional Network (GCN). Finally, in the 2D alignment stage, to
mitigate image-mesh misalignment, we project the spatially-
aware multi-view features onto the 2D image space, aligning
them with the 2D visual features and performing local fea-
ture refinement. As shown in Figure 1, our method facilitates
convenient uncalibrated multi-view hand reconstruction us-
ing multiple everyday portable devices, thereby offering de-
tailed hand information to enhance music instruction.

In summary, our main contributions are threefold:
• We propose a new uncalibrated multi-view hand recon-

struction framework that eliminates the dependency on
camera extrinsics by aggregating information on prede-
fined alignment proxies such as joints and meshes.

• We propose a multi-level alignment approach that incor-
porates geometric alignment of hand meshes, 3D align-
ment with predefined proxies, and 2D alignment for lo-
cal feature refinement, leveraging both geometric and se-
mantic information enhance overall performance.

• Our method achieves state-of-the-art (SOTA) results
on two challenging multi-view hand-object interaction
datasets, DexYCB [Chao et al., 2021] and HanCo [Zim-
mermann et al., 2022].

2 Related Work
2.1 Multi-View 3D Pose Estimation With Camera

Extrinsics
Methods with known camera extrinsics can be further di-
vided into 3D-based and 2D-based methods. 3D-based meth-
ods use camera parameters to re-project features of different
view into 3D voxel representation [Iskakov et al., 2019], and
use 3D CNN [Tu et al., 2020] or Pictorial Structure Model
(PSM) [Qiu et al., 2019] to fuse the multi-view features. 2D-
based methods [He et al., 2020; Ma et al., 2021] typically
fuse the multi-view features in 2D space according to epipo-
lar geometry. Additionally, POEM [Yang et al., 2023] di-
rectly operates on 3D points embedded in multi-view stereo
for hand mesh reconstruction, effectively leveraging the 3D

geometrical information. Despite the effectiveness of these
methods, they rely heavily on the accuracy of the camera ex-
trinsics, resulting in poor performance in real-world scenarios
where camera extrinsics are unavailable or unreliable.

2.2 Multi-View 3D Pose Estimation Without
Camera Extrinsics

Camera-extrinsics-free methods typically use body semantic
prior to aggregate features from different views. For dense
alignment proxy, these methods generally employ mesh or
pixel-level alignment. Although they can capture fine-grained
details, they often suffer from high computational costs and
complexity, which limits their scalability. PaFF [Jia et al.,
2023] fuses pixel-aligned features on mesh vertices, allowing
the regressor to iteratively align the body mesh with each in-
put view. In [Yu et al., 2022], they also use vertices of the
human model as a semantic template for multi-view align-
ment, mapping visual features to the model and employing
self-attention for pose estimation, which captures detailed in-
formation but increases computational load.

For sparse alignment proxy, these methods typically use
joints as the alignment proxy. They are more computation-
ally efficient but may lack the granularity of dense align-
ment methods. FLEX [Gordon et al., 2022] utilizes the view-
invariance characteristic of bone lengths and rotation angles
between skeletal parts to reconstruct human pose. MTF-
Transformer [Shuai et al., 2022] uses Transformer to model
the relative positions between multiple views based on joints.
FusionFormer [Cai et al., 2024] uses joints as the alignment
proxy and models both spatial and temporal relationships,
even outperforming most methods that require camera param-
eters. However, for tasks requiring full mesh reconstruction,
these methods cannot directly use meshes as the alignment
proxy due to high computational demands, thereby limiting
their applications. In contrast to these methods, we use both
joints and meshes as alignment proxies. To reduce computa-
tional load, we enable interaction between these two align-
ment proxies in 3D space, allowing for efficient exchange
and aggregation of information, balancing the granularity and
computational efficiency.

3 Method
In this paper, we propose an alignment proxies-based (i.e.,
joints and meshes) framework to fuse multi-view features ge-
ometrically and semantically without requiring camera ex-
trinsic calibration. As shown in Figure 2(b), to better in-
teract and aggregate information into the proxies, we divide
the entire framework into three stages to reduce initial spa-
tial discrepancies, facilitate information flow between differ-
ent proxies, and mitigate the image-mesh gap in geometric
alignment stage, 3D alignment stage and 2D alignment stage,
respectively. Given RGB images as input, A3-Net first pre-
dicts hand mesh of each view and construct the point cloud
base on the surface of hand mesh, incorporating hand priors
from the MANO [Romero et al., 2017] model. After con-
structing geometry-aware initial 3D point feature, we geo-
metrically align the point cloud from different views to the
canonical space by predicting transformation matrices. In 3D
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Figure 3: The process of feature alignment in 3D point cloud space,
including (a) mesh-to-joint interaction, (b) multi-view fusion and (c)
joint-to-mesh interaction.

point cloud space, we use an efficient local feature extraction
module to extract spatially-aware feature and fuse multi-view
feature of the key regions, achieving feature alignment in 3D
point cloud space. Subsequently, the multi-view features are
projected to each view to promote the refinement of local fea-
tures in 2D image space.

3.1 Single-View Hand Reconstruction
To obtain fine-grained visual features, we use an encoder-
decoder network [Park et al., 2022; Ren et al., 2022] as
our backbone. The encoder extracts a global feature fglobal,
which is used to predict the pose parameters θ and shape pa-
rameters β of the MANO model. For N views, we regress the
initial mesh V independently. Following [Ren et al., 2022],
we predict pixel-wise representations O to obtain hand joints
J and visual features Fvis that are strongly correlated with
hand regions. The 3D point cloud P is constructed from the
surface vertices of the hand mesh V.

3.2 Geometric Alignment
To simplify interaction and facilitate multi-view feature fu-
sion, we propose to geometrically align proxies from differ-
ent views. However, this process is not straightforward due to
the lack of camera extrinsics. To overcome this challenge, we
designate the space of the first view as the “canonical space”.
Proxies of the other views are geometrically aligned to this
space using predicted transformation matrices Ti,j between
view i and view j by Multi-Layer Perceptron(MLP) accord-
ing to the difference of features fglobal.

Ti,j = MLP(f iglobal − f jglobal) (1)

Finally, we apply the predicted Ti,j to project the joints J
and mesh point clouds P into the canonical space.

3.3 Feature Alignment in 3D Point Cloud Space
To achieve spatially and semantically-aware feature align-
ment in 3D point cloud space, it is crucial to model 3D spa-
tial structure. However, previous methods either interact with
multi-view information in 2D image space or in large voxel-
based 3D space, which suffered from quantization errors and

expensive computational costs. Furthermore, hands are suf-
fered from complex articulated structures, hand-object occlu-
sions and self-occlusions, making direct one-step 3D align-
ment challenging. Joints provide sparse, high-level struc-
tural information, while meshes offer dense, detailed geo-
metric features. To efficiently harness these complementary
strengths, we can only keep lightweight 3D features and im-
plement dual-proxy interaction, which breaks down the 3D
alignment process into several steps. This approach reduces
the complexity of learning 3D spatially-aware features for
key regions, optimizes memory usage, and preserves crucial
spatial and semantic details for robust hand pose estimation.

Single-View Geometry-Aware Initial Feature Construc-
tion. Constructing effective initial point feature Fpoint is es-
sential. Previous methods [Ma et al., 2021; He et al., 2020;
Yu et al., 2022] focused solely on visual information, ne-
glecting 3D geometric details. To gather 3D spatially-aware
2D visual features F2d, we project the 3D point cloud P
onto the 2D image plane and sample the K1 closest ele-
ments from Fvis similar to [Ren et al., 2023]. To incorpo-
rate 3D geometric information, we use linear transformation
with batch normalization to encode the coordinates of points
P as position information F3d and embed fglobal into global
features Fglo. The final point feature is then computed as
Fpoint = ReLU(F2d + F3d + Fglo). Similarly, by replacing
P with J, we obtain anchor features Fanchor. For geometric
alignment, as fglobal encodes MANO parameters, including
root wrist positions and axis angles which offers crucial in-
formation for predicting inter-view rotations, we leverage it
to estimate transformation matrices in Eq. 1.

Mesh-to-Joint Interaction. As illustrated in Figure 3(a),
we first aggregate the local spatial information of neighboring
points into joints of each view geometrically and semantically
using ball query [Qi et al., 2017]. Subsequently, we obtain
the regional spatially-aware features through traditional MLP
and max pooling:

Fi
region = Pool(ϕ1(Concat(di,j ,F

i,j
diff )), |j = 1, ...,K2)

(2)
where Fi

region represents the features of region i, with each
region being a collection of points centered around anchor i.
Here, ϕ1 and ϕ2 are Fully-Connected (FC) layers followed by
batch normalization and activation. di,j is the relative coor-
dinate between anchor i and point j, and Fi,j

diff is the feature
difference between them. Finally, the anchor point features
Fi

anchor are updated using the regional features:

F̂i
anchor = ϕ2(Concat(Fi

anchor,F
i
region)) (3)

Multi-View Fusion. As illustrated in Figure 3(b), we
achieve 3D feature alignment through multi-view feature in-
teraction and fusion based on anchors(joints). To leverage
the hand prior for enhancing spatial structure information, we
connect anchor points across views according to the anatom-
ical structure of the hands. These multi-view joint features
are then fused along both the joint and view dimensions us-
ing a hierarchical GCN with pooling layers. Similar to [Cai
et al., 2019], a U-shaped GCN is employed to construct a
multi-view graph based on the skeletal and semantic corre-
spondences among hand nodes.
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Figure 4: Local feature alignment in 2D image space.

Joint-to-Mesh Interaction. As illustrated in Figure 3(c),
the updated anchor features are propagated to the original
point cloud similar to [Qi et al., 2017]. Specifically, we first
select K3 anchor points closest to each point and carry out
feature interpolation according to the distance. The interpo-
lated features are then concatenated with the original point
features Fpoint and pass through point-wise MLP [Qi et al.,
2017] to obtain 3D spatially-aware point cloud features F̂3d.

Finally, we regress point-wise representation Pp from the
updated point cloud features F̂3d. We obtain the 3D hand
pose from the point-wise representation using a weighted av-
erage algorithm, and regress the MANO parameters by pass-
ing the global features F̂glo through the MLP.

3.4 Feature Alignment in 2D Image Space
For multi-view hand reconstruction, aligning the re-
projections of hand mesh with observations from each view
is crucial, as it provides strong regularization for accurate 3D
hand reconstruction. Although initial point cloud features
are derived from 2D visual feature maps, relying solely on
3D alignment is insufficient. This is because interacting and
refining features in 3D space alone can lead to misalignment
between the predicted hand meshes and the 2D images due to
the lack of explicit constraints. To address this, we propose
incorporating 2D image space alignment to ensure consistent
feature alignment across both 3D and 2D domains.

Specifically, as illustrated in Figure 4, we first project the
refined 3D features F̂3d onto the 2D image plane for each
view and concatenate them with F2d to obtain updated vi-
sual features F̂i

vis for view i. These updated features are then
refined locally using 2D CNNs:

F̂i
vis = ϕi

3(Concat(Projecti(F̂3d),Fvis)) (4)

To further enhance joint-image alignment, we adopt pixel-
wise regression as an auxiliary task which encodes F̂i

vis into
pixel-level representations O2d and generates 2D and 2.5D
heatmaps to introduce hand anatomy priors for better align-
ment. The aligned 2D image features F̂i

2d are then obtained
by performing a weighted sum on the refined 2D feature map
F̂i

vis, using a weight map W derived from O2d:

F̂i
2d =

∑
(Softmax(W) · F̂i

vis) (5)

Finally, 2D features F̂i
2d of each view are concatenated and

fused by convolution to get updated 2D features F̂2d.

Unlike PyMAF [Zhang et al., 2021a], which continuously
samples features from the static feature map, A3-Net project
the updated 3D multi-view features F̂3d to each view and
refine the 2D features using 2D CNN. By incorporating 3D
spatially-aware multi-view features, A3-Net mitigates visual
feature degradation caused by occlusion, leading to more
robust local visual features.

3.5 Iterative Feature Alignment and Loss
To fully capture both 3D geometric structures and 2D visual
information for more accurate 3D pose and hand reconstruc-
tion results, we propose to repeat the above alignment stages
several times. After aligning the features in both 3D point
cloud space and 2D image space, we iteratively update the
point cloud features by F̂point = ReLU(BN(W3F̂3d) +

BN(W4F̂2d)+BN(W5F̂glo)), where W3, W4 and W5 are the
learnable parameters matrices. The updated point features are
then passed to next 2D and 3D alignment stage.

4 Experiments
4.1 Datasets and Experimental Settings
DexYCB [Chao et al., 2021] is a large-scale dataset that
records the pose of the hand grasping on objects, which
contains 582K images with 20 objects selected from the
YCB-Video dataset. It provides 4 ways to divide the dataset,
and we evaluat our method using default “S0” split. To con-
struct a multi-view scene with a total of n = 3 viewpoints,
we selected one primary viewpoint and randomly chose
n − 1 auxiliary viewpoints from the remaining viewpoints.
The random selection of n cameras is intended to simulate
a dynamic camera scenario, where it is impossible to deter-
mine the extrinsic parameters of each camera. However, the
intrinsic parameters of the cameras are easily obtained.

HanCo [Zimmermann et al., 2022] consists of 1517 videos
with multiple views and camera calibration. As it does not
provide official partition of the training and testing sets, we
divide it in an 8:2 ratio. According to recent methods [Zheng
et al., 2023], the first 1200 sequences are used for train-
ing, while the remaining 317 sequences are used for testing.
Viewpoints are selected similar to DexYCB.

4.2 Training Details
We implement our method by PyTorch framework. All
experiments are conducted on an NVIDIA RTX 4090 GPU.
We train our network using AdamW optimizer with the initial
learning rate of 1e-4 and divided by 10 every 10 epochs. The
whole training process takes 30 epochs with batch size of 32.
We adopt random translation, random rotation, and random
scaling for training augmentation. We crop the hands from
the input images by 2D keypoints and resize them to resolu-
tion 256 × 256 during training and testing. During the train-
ing phase, each monocular image is treated as a primary view-
point, and n-1 auxiliary viewpoints are randomly selected
from other viewpoints to ensure uniform dataset sampling.

4.3 Comparisons with State-of-the-Arts
To the best of our knowledge, there are few previous works
for multi-view 3D hand reconstruction. Following the multi-
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Dataset DexYCB HanCo
Method MPJPE↓ P-MPJPE↓ MPVPE↓ P-MPVPE↓ MPJPE↓ P-MPJPE↓ MPVPE↓ P-MPVPE↓

PPT [Ma et al., 2022] 9.22 4.97 / / 6.61 6.10 / /
Voxel [Iskakov et al., 2019] 7.81 4.34 / / 4.92 3.63 / /
MMI [Ren et al., 2022] 7.93 4.71 8.32 5.15 5.54 3.90 6.24 4.78
MVP [Zhang et al., 2021b] 6.23 4.26 9.77 8.14 / / / /
Ours * 6.62 3.93 6.81 4.12 4.02 3.01 4.35 3.24

Table 1: Comparison with SOTA methods of MPJPE(mm), P-MPJPE(mm), MPVPE(mm) and P-MPVPE(mm) on the DexYCB & HanCo
datasets. ‘*’ denotes calibration-free method.

Initial

S1

S2

S3

GT

Figure 5: Qualitative visualization of the iterative alignment. We
present results from the initial single view estimation, alignment
stage(S1-S3) and the ground truth.

Method MPJPE↓ MPVPE↓ P-MPJPE↓ P-MPVPE↓
Visual 7.95 4.63 8.02 4.94
+Position 7.02 4.23 7.41 4.57

+Global 6.62 3.93 6.81 4.12

Table 2: Comparison of the effects of different initial features on the
DexYCB dataset.

view 3D human pose estimation method, we construct sev-
eral baselines for fair comparison, including PPT [Ma et al.,
2022], MVP [Zhang et al., 2021b], Volumetric Triangula-
tion [Iskakov et al., 2019] and MMI [Ren et al., 2022]. We
conducted experiments on DexYCB and HanCo datasets re-
spectively, as shown in Table 1. For each methods, we ran-
domly select 3 views to simulate in the wild scenario. Even
without camera extrinsics, our method can achieve compara-
ble results with MVP [Zhang et al., 2021b] and outperform
the other methods.

4.4 Ablation Study
Effectiveness of the Initial Features Construction
In order to illustrate the importance of spatial information, we
use different combinations of visual, positional, and global

ID Method MPJPE P-MPJPE MPVPE P-MPVPE
1 Procrustes 7.00 4.20 7.32 4.50

Geo. 2 Learning 6.62 3.93 6.81 4.12
3 Extrinsics 6.31 3.83 6.52 4.01
4 MLP 7.11 4.22 7.33 4.55

3D 5 Transformer 6.80 4.08 7.02 4.31
6 Pool-GCN 6.62 3.93 6.81 4.12
7 W/o Align 7.52 4.53 7.95 4.82
8 W/o Sup. 7.01 4.22 7.34 4.38

2D 9 Seg. 6.83 4.08 7.12 4.10
10 2.5D Hmp. 7.22 4.31 7.53 4.42
11 2D Hmp. 6.62 3.93 6.81 4.12

Table 3: Quantitative comparison of the different alignment meth-
ods on the DexYCB dataset. ‘Sup’ is short for supervision. ‘Seg’
and ‘Hmp’ represent supervision by segmentation and heatmap, re-
spectively.

Iteration MPJPE↓ MPVPE↓ Params(M) FLOPs(G)
1 6.93 7.08 25.18 8.93
2 6.71 6.90 27.88 11.03
3 6.62 6.81 30.58 13.11
4 6.70 6.83 33.28 15.21

Table 4: Comparison of different iterations of alignments on the
DexYCB dataset.

features to construct initial features and carry out multi-view
feature interaction. As shown in Table 2, adding position in-
formation significantly enhances the accuracy of 3D pose es-
timation by almost 1mm MPJPE. In addition, incorporating
global features can further improve the performance.

Effectiveness of the Geometric Alignment
We aims to reduce spatial differences between views in the
geometric alignment stage. In A3-Net, we use an MLP to
predict transformation matrices between views. Additionally,
Procrustes alignment or camera extrinsics can also be used
for alignment. We analyze the impact of different geometric
alignment strategies on 3D hand reconstruction, as shown in
Table 3 from ID1 to ID3. Among them, the extrinsic-based
alignment (ID3) achieves the highest accuracy. However, our
proposed learning-based method (ID2), even without camera
extrinsics, performs comparably to ID3 and significantly out-
performs the Procrustes-based method (ID1).

Effectiveness of Fusion Methods in 3D Feature
Alignment
We analyze different multi-view anchor (joint) feature fu-
sion methods, as shown in Table 3, from ID4 to ID6.
Semantically-aware and geometrically-aware 3D feature
alignment rely significantly on effective multi-view feature
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fusion. Therefore, we propose to use pool-GCN (ID6) for
multi-view feature interaction. This interaction module can
also be replaced with commonly used MLP (ID4) or Trans-
former (ID5). MLP-based fusion (ID4) concatenates features
of anchors sharing the same semantic information and di-
rectly fuses multi-view features at the channel level. How-
ever, this approach lacks the capability to facilitate interac-
tions between distant regions in the point cloud, leading to
the worst performance. Transformer-based fusion (ID5) im-
proves upon this by performing self-attention between anchor
features, enabling interaction across remote regions. Despite
incorporating global information, the absence of prior struc-
tural information during feature interaction results in less ac-
curate hand mesh predictions. In contrast, pool-GCN (ID6)
not only efficiently fuses multi-view features but also effec-
tively incorporates global context, leading to more accurate
hand mesh reconstruction, with MPJPE reduced by 0.5 mm
and 0.2 mm compared to ID4 and ID5, respectively. There-
fore, pool-GCN is adopted in our proposed method to achieve
superior multi-view feature fusion.

Effectiveness of 2D Feature Alignment
To demonstrate the effectiveness of our 2D feature alignment,
we conduct ablation experiments to investigate the necessity
of employing 2D alignment and the selection of auxiliary
tasks. as illustrated in Table 3 from ID7 to ID11. First, we ob-
serve that simply applying 2D features alignment without su-
pervision (ID8) significantly improves the performance com-
pared to that without aligning 2D features (ID7). More impor-
tantly, when 2D feature alignment is carried out, the perfor-
mance can be further improved if we use auxiliary tasks (ID9-
ID11) to guide the process of feature alignment. Among these
tasks, using 2D heatmap as supervision yields the best perfor-
mance. Therefore, A3-Net adopts 2D heatmap as the supervi-
sion of 2D alignment to facilitate the local feature refinement.

Effectiveness of the Number of Iteration Stages
To reduce the difficulty of hand pose reconstruction, we ap-
ply 3D and 2D alignment multiple times to better capture the
3D structural information and 2D visual cues across multi-
ple views for iterative correction. We explore the impact of
different iteration stages on model performance as shown in
Table 4, and observe that increasing the number of iterations
generally improves performance of the whole network. To
balance computational cost and performance, we adopt three
iterations in the final model. Figure 5 demonstrates the grad-
ual reduction in error between predicted joints and ground
truth as alignment stages progress.

5 Discussion
5.1 Real-World Pipeline
We build a full pipeline to preliminarily validate the effec-
tiveness of our method under everyday scenario (Figure 6).
The teacher records two videos from both sides of the piano,
using a smartphone and a tablet without professional extrin-
sic calibration. We first use a finetuned YOLOv7 [Wang et
al., 2023] to track 2D bounding boxes of both hands. Then,
we apply A3-Net for calibration-free multi-view hand recon-
struction. Finally, we reproduce the entire gestures in a Unity

Mobile Phone

Tablet

View From 
Mobile Phone

View From 
Tablet

(a)

(b)

3D Simulation Mixed Reality Comparasion

Figure 6: Visualization results for in-the-wild experiment. The
player use a mobile phone and a tablet to capture multi-view im-
ages (a). The reconstruction results are then utilized for virtual 3D
simulation, Mixed Reality follow-along learning and hand posture
evaluation (b).

application and perform virtual projection on a Mixed Reality
headset. The learner can observe the 3D virtual hands from
any viewpoints and follow the hand movements as instruc-
tional guidance for skill acquisition.

5.2 Use Cases

Shared 3D Instrument Learning. For instrumental perfor-
mance, everyone can be a teacher or a learner. Using our
method, users can easily model accurate 3D hand postures
during preformance with two (or more) of their daily devices
without extrinsic calibration. They can share their processed
3D performance data, which others can access and use for 3D
immersive follow-along learning.

Hand Performance Review. Our method allows perform-
ers to comprehensively record and reconstruct their 3D per-
formance process with multiple daily devices, enabling more
detailed analysis and review of their hand gestures, fingering,
and other hand techniques. They can identify issues such as
incorrect key presses or unattractive hand postures.

6 Conclusion
Accurate 3D hand reconstruction is significant for musical
instrument learning. In this paper, we propose A3-Net for
multi-view 3D hand pose estimation in unconstrained scenar-
ios without camera extrinsics. To address the challenge of
searching for the correspondences between different views,
we introduce a multi-level alignment strategy that utilizes
hand meshes and joints as alignment proxies and performs
geometric alignment, 3D alignment and 2D alignment, re-
spectively. Our method can achieve efficient interaction of
multi-view features without camera extrinsics. To evaluate
the effectiveness of our method, we conduct extensive exper-
iments on challenging hand-object interaction datasets. The
state-of-the-art performance demonstrates the superiority of
our method.
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