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Abstract
Healthcare data frequently contain a substantial
proportion of missing values, necessitating effec-
tive time series imputation to support downstream
disease diagnosis tasks. However, existing imputa-
tion methods focus on discrete data points and are
unable to effectively model sparse data, resulting
in particularly poor performance for imputing sub-
stantial missing values. In this paper, we propose a
novel approach, ImputeINR, for time series impu-
tation by employing implicit neural representations
(INR) to learn continuous functions for time series.
ImputeINR leverages the merits of INR in that the
continuous functions are not coupled to sampling
frequency and have infinite sampling frequency, al-
lowing ImputeINR to generate fine-grained impu-
tations even on extremely sparse observed values.
Extensive experiments conducted on eight datasets
with five ratios of masked values show the superior
imputation performance of ImputeINR, especially
for high missing ratios in time series data. We also
validate that applying ImputeINR to impute miss-
ing values in healthcare data enhances the perfor-
mance of downstream disease diagnosis tasks.

1 Introduction
Healthcare data inherently exhibit a temporal structure, as
they are often collected sequentially over time in the form
of physiological signals, electronic health records, and clin-
ical monitoring data, making time series analysis a funda-
mental approach for understanding and predicting health-
related outcomes [Schaffer et al., 2021; Wang et al., 2018;
Li et al., 2023a; Li et al., 2023b]. However, real-world health-
care data are frequently compromised by a substantial amount
of missing values, which arise from various sources, such
as sensor malfunctions, transmission errors, or irregular re-
porting intervals. The presence of missing values poses a
significant challenge to disease diagnosis, as incomplete or
corrupted data can distort model training and lead to unre-
liable predictions. Consequently, the imputation of missing

∗Corresponding authors.
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Figure 1: The illustration of INR applied to time series data.

data becomes a critical step in disease diagnosis. By filling
in the gaps, imputation enables the restoration of a complete
dataset, allowing diagnostic models to perform without the
biases or inaccuracies that would otherwise result from miss-
ing information.

However, most existing imputation methods do not high-
light the cases of extremely sparse observed values. These
works assume that the proportion of masked values requir-
ing imputation does not exceed 50%, which means that these
methods still require a certain amount of known informa-
tion. But in real-world healthcare data, the proportion of
missing values is likely to be even higher. For example, the
MIMIC-III dataset [Johnson et al., 2018], a public health-
related database, contains 63.15% missing values. The Phys-
ioNet 2012 and 2019 challenges [Silva et al., 2012; Reyna et
al., 2019], which involved intensive care unit (ICU) patient
data, reported a missing data rate of 79.67%, highlighting
the prevalence of high missing rates in real-world healthcare
datasets. Although some recent studies try to address imputa-
tion tasks in sparse scenarios [Alcaraz and Strodthoff, 2022;
Tashiro et al., 2021], most work relies on diffusion-based
methods, which involve the simulation of high-dimensional
stochastic processes and multi-step iterative procedures. Con-
sequently, these approaches are typically time-consuming and
require a large number of training iterations, and their lim-
ited effectiveness in achieving accurate imputation can signif-
icantly impair the performance of downstream disease diag-
nosis tasks. How to perform imputation in extremely sparse
scenarios remains challenging.

Recently, implicit neural representation (INR) has emerged
as an effective method for continuously encoding diverse sig-
nals [Liu et al., 2023b; Molaei et al., 2023]. As shown in Fig-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ure 1, it learns continuous functions from discrete data points,
mapping coordinates to signal values. By representing com-
plex structures in a compact form, INR is not coupled to sam-
pling frequency anymore, which allows for multi-sampling
frequency inputs enabling effective feature extraction even
with absent observed samples. Additionally, as a continuous
function, INR has infinite sampling frequency, which means
it can be queried at any coordinate. This capacity for infi-
nite sampling frequency interpolation sets it apart from other
imputation methods, making it a promising approach for fine-
grained imputation.

In this paper, we propose a novel time series imputation
approach, named ImputeINR, which achieves effective im-
putation even in extremely sparse scenarios and the imputed
data can further enhance the performance of downstream dis-
ease diagnosis tasks. Generally, we learn an INR continuous
function for the target time series data and enable fine-grained
interpolation with infinite sampling frequency. The param-
eters of the INR function are predicted by a transformer-
based feed-forward network conditioned with sparsely ob-
served values. More specifically, an adaptive group-based
form of the INR function is proposed for capturing complex
temporal patterns and cross-channel correlation features. It is
a multilayer perceptron (MLP) composed of global layers and
group layers. The former focuses on correlation information
across all channels, while the latter emphasizes correlation
information among variables within a single group. We ob-
serve that INR exhibits the strongest representational capac-
ity when partitioning variables with similar distributions into
the same group. Therefore, variable clustering is applied to
determine the variable partition. Additionally, a multi-scale
feature extraction module is incorporated to capture patterns
at various temporal scales, achieving better fine-grained im-
putation. Experimentally, ImputeINR achieves state-of-the-
art performance on eight imputation benchmarks with various
ratios of masked values. Moreover, we demonstrate that the
imputed data with ImputeINR, compared to other methods,
significantly improves the performance of downstream dis-
ease diagnosis tasks. The major contributions of this paper
are summarized as follows:

• We propose ImputeINR, which learns INR continuous
function to represent the continuous time series data. It
achieves effective imputation in extremely sparse sce-
narios and the imputed data can improve the perfor-
mance of downstream disease diagnosis tasks.

• We design an adaptive group-based form of the INR con-
tinuous function to effectively capture intricate temporal
patterns and cross-channel correlation features.

• We apply variable clustering to determine the variable
partition, allowing our group-based architecture to learn
correlation information across all variables and among
variables with similar distributions.

• Extensive experiments show that ImputeINR outper-
forms other baselines on eight datasets under five ratios
of masked values. We also demonstrate that using Im-
puteINR for healthcare data imputation significantly en-
hances disease diagnosis performance.

2 Related Work
2.1 Time Series Imputation
The earliest time series imputation methods are based on the
statistical properties of the data, using mean/median values
or statistical models to fill in missing values, such as Sim-
pleMean/SimpleMedian [Fung, 2006] and ARIMA [Afrifa-
Yamoah et al., 2020]. Then, machine learning methods learn
data patterns, showing greater adaptability and accuracy.
Prominent works of these approaches include KNNI [Altman,
1992] and MICE [Van Buuren and Groothuis-Oudshoorn,
2011]. Although these methods are easy to interpret, their
limitations lie in capturing the complex temporal and vari-
able information inherent in time series data. Recently, there
has been widespread interest in using deep models to capture
complex temporal patterns for imputation of missing values,
due to their powerful representation capabilities. Common ar-
chitectures include RNN-based methods (e.g., M-RNN [Yoon
et al., 2018], NRTSI [Shan et al., 2023], and BRITS [Cao
et al., 2018]) , CNN-based methods (e.g., TimesNet [Wu et
al., 2023]), MLP-based methods (e.g., DLinear [Zeng et al.,
2023], TimeMixer [Wang et al., 2024]), transformer-based
methods (e.g., SAITS [Du et al., 2023], FPT [Zhou et al.,
2023], iTransformer [Liu et al., 2024], ImputeFormer [Nie et
al., 2024]), diffusion-based methods (e.g., CSDI [Tashiro et
al., 2021], SSSD [Alcaraz and Strodthoff, 2022]).

2.2 Implicit Neural Representations
INR uses neural networks to model signals as continuous
functions rather than explicitly representing them as discrete
points. It captures complex high-dimensional patterns in data
by learning a continuous mapping from input coordinates to
output values. Various scenarios have seen successful ap-
plications, such as 2D image generation [Saragadam et al.,
2022; Liu et al., 2023a; Zhang et al., 2024], 3D scene re-
construction [Yin et al., 2022; Liu et al., 2023b; Yang et
al., 2024], and video representations [Mai and Liu, 2022;
Guo et al., 2025]. Since INR learns a continuous function,
it is not coupled to the resolution, which implies that the
memory needed to parameterize the signal does not depend
on spatial resolution but rather increases with the complex-
ity of the underlying signal. Also, INR has infinite reso-
lution, which means it can be sampled at an arbitrary sam-
pling frequency. Therefore, we leverage this characteristic of
INR to perform time series imputation tasks. Sampling from
the continuous function of INR enables fine-grained impu-
tation even with extremely sparse observed data. To learn
the INR for target signal, there are mainly two typical strate-
gies: gradient-based meta-learning methods [Lee et al., 2021;
Liu et al., 2023a] and feed-forward hyper-network predic-
tion methods [Chen and Wang, 2022; Zhang et al., 2024]. In
this work, we use a transformer-based feed-forward method
to predict the INR for time series data since it can be easily
adopted to an end-to-end imputation framework.

2.3 Implicit Neural Representations on Time
Series Data

Several works have explored the use of INR to model time
series data. INRAD [Jeong and Shin, 2022] leverages INR
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Figure 2: The overall workflow of the proposed method. The input data with missing values is imputed using the ImputeINR model, and the
imputed data is then fed into the disease diagnosis model to obtain the diagnostic results. In ImputeINR, the INR tokens are predicted using
a transformer encoder. These tokens serve as the parameters for the INR continuous function, which takes the timestamp t as input.

to reconstruct time series data for anomaly detection. TSINR
[Li et al., 2024] takes advantage of the spectral bias prop-
erty of INR, prioritizing low-frequency signals and exhibiting
reduced performance on high-frequency anomalous data to
identify anomalies. However, these methods are specifically
designed for anomaly detection tasks and are not suitable for
imputation tasks. Currently, only a few works have attempted
to leverage INR for time series imputation tasks, but each
of these approaches has its own limitations. For example,
HyperTime [Fons et al., 2022] utilizes INR to learn a com-
pressed latent representation to capture the underlying pat-
terns in time series for imputation and generation. However,
it uses a permutation-invariant set encoder to extract features,
leading to an insufficient representation of the underlying pat-
terns in the time series. In addition, TimeFlow [Naour et al.,
2023] utilizes continuous-time-dependent modeling and INR
enhanced by a meta-learning-driven modulation mechanism
for imputation and forecasting. However, treats each vari-
able as an individual sample, thereby ignoring crucial inter-
variable correlations. Moreover, it fits the entire time series at
once becoming computationally inefficient, particularly when
dealing with long time series.

3 Methodology
3.1 Problem Formulation
Imputation with Missing Data
Denote time series data with N variables and T timestamps
as X = {x1,x2, . . . ,xN} ∈ RN×T . The time series data
X is incomplete and the mask rate is r ∈ [0, 1]. The cor-

responding binary mask matrix can be defined as M =
{mn,t} ∈ {0, 1}N×T , where mn,t = 1 if xn,t is observed,
and mn,t = 0 if xn,t is missing. The imputation task is to
predict the missing values Xmiss such that the predicted val-
ues X̂ satisfy X̂ = Fθ(X,M), where Fθ mentions the model
with parameters θ. The goal is to minimize the reconstruction
error between the masked data and the imputed data:

L(X̂,Xgt) =
1

|Mmiss|

N∑
n=1

T∑
t=1

(1−mn,t) · (x̂n,t − xn,t)
2
,

(1)
where |Mmiss| is the total number of missing values in X and
Xgt is the ground truth.

Disease Diagnosis
Let Ximputed represent the imputed version of X, where the
missing values in X are imputed and the non-missing values
in X are retained. The task is to utilize Ximputed for disease
diagnosis, where a model G(·) is trained to predict disease
labels ŷ ∈ {0, 1} based on Ximputed:

ŷ = G (Ximputed ) , (2)

where ŷ = 0 denotes normal, and ŷ = 1 indicates the pres-
ence of disease.

3.2 Method Overview
The core idea of ImputeINR is to leverage the inherent
capability of INR to learn continuous functions, allowing
for fine-grained imputation of time series data by query-
ing at arbitrary timestamps. By leveraging this flexibility,
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Figure 3: The four architectures we test to evaluate the representation capability of the INR continuous function for the synthetic time series
dataset. The synthetic dataset consists of four variables, generated from two distinct distributions. The results prove that the representation
capability of INR is strongest when variables from the same distribution are fitted by the same group.

ImputeINR can generate smooth and accurate estimates for
missing data points, even with extremely sparse observed
data. However, since time series data has inherently in-
tricate temporal patterns and multi-variable properties, us-
ing a simple MLP as the INR continuous function to fit it
is challenging. To address these issues, we design a novel
form of INR continuous function specifically for time se-
ries data. Following the previous work [Fons et al., 2022;
Li et al., 2024], this form includes three components to cap-
ture the trend, seasonal, and residual information to deal with
the unique temporal patterns. Furthermore, to enhance the
ability of ImputeINR to model multi-variable data, we pro-
pose an adaptive group-based architecture to learn compli-
cated residual information. Each group focuses on variables
with similar distributions. And we use a clustering algorithm
to determine the variable partition. To further enhance the
imputation capability of ImputeINR, we incorporate a multi-
scale module to capture information at different scales, im-
proving fine-grained imputation performance.

Figure 2 demonstrates the overall workflow of the pro-
posed method. The masked data is first reordered based on
the variable clustering results so that variables with similar
distributions are placed adjacent to each other. This is to
enable the subsequent representation of variables within the
same cluster using the same group-based MLP in the INR
continuous function. Then the reordered masked data is stan-
dardized and segmented into patches to prepare the data to-
kens. Simultaneously, we initialize the INR tokens, which are
learnable vector parameters. The processed data tokens are
input into convolutional layers of different scales to extract
multi-scale features. Subsequently, these extracted features
and the initialized INR tokens are fed together into the trans-
former encoder to predict the INR tokens. These INR tokens
are essentially the parameters of the INR continuous function.
Based on these parameters, the INR continuous function takes
the timestamp t as input and predicts the masked values. Fi-
nally, the imputed data is then fed into the disease diagnosis
model to obtain the diagnostic results.

3.3 Variable Clustering
We adopt a clustering algorithm C to cluster the variables of
the time series data X ∈ RN×T based on the similarity matrix
S ∈ RN×N , which partitions the variables into K clusters:

C : RN×N → {C1, C2, . . . , CK} , (3)

where Ck is a subset of the total variable set
{x1,x2, . . . ,xN} and its cardinality |Ck| denotes the
number of variables in this cluster. The objective of the
clustering function C is defined as follows:

argmax{C1,C2,...,CK}

K∑
k=1

∑
xi,xj∈Ck

S (xi,xj) , (4)

where S(xi,xj) represents the similarity between variables
xi and xj . Then we obtain the permutation matrix P ∈
RN×N :

Pij =

{
1, if j = π(i),

0, otherwise,
(5)

where π is the permutation vector that orders the variables
according to the clusters. Finally, the reordered matrix X′

with columns permuted according to π is given by:

X′ = X · P. (6)

In this reordered matrix X′, rows (i.e., variables) are grouped
according to the clusters.

3.4 Multi-scale Feature Extraction
To further capture features from different scales for fine-
grained imputation, the reordered data X′ ∈ RN×T is fed to
multiple convolutional layers with varying scales. Each con-
volutional layer l refers to kernel size kl, stride sl, padding pl,
and the number of output channels cl. For each output chan-
nel i in the lth convolutional layer, the convolution operation
can be formulated as:

Φl (X
′)i,t =

kl∑
j=1

Wl,i,j ·X′
t+j−pl

+ bl,i, (7)

where W and b denote the weight matrix and bias matrix re-
spectively. Then these features of different scales Φl (X

′) ∈
Rcl×(T−kl+2pl+1) are concatenated to obtained the multi-
scale features Ẋ ∈ R

∑L
l=1 cl×(T ′−kl+2pl+1). Finally, these

features are fed to the transformer encoder together with the
initialized INR tokens to predict the INR tokens.

3.5 INR Continuous Function
INR continuous function f maps the timestamp t to time se-
ries data:

f : t ∈ R 7→ X(t) ∈ RN , (8)
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where X(t) represents the output values of N variables at
timestamp t. To effectively capture the complicated temporal
patterns and successfully model the multiple variables, we
design a novel form of INR continuous function. Following
the previous work [Fons et al., 2022; Li et al., 2024], our
INR continuous function includes three components to model
trend, seasonal, and residual patterns separately. It can be
defined as follows:

X̂(t) = f(t) = ftre(t) + fsea(t) + fres(t), (9)

where t is the input timestamp and f(t) denotes the output
(i.e., imputed data). The parameters in the INR continuous
function are predicted by the transformer encoder (i.e., INR
tokens).

Trend and Seasonal
The trend represents the long-term movement or direction of
the time series data. It is typically smooth and reflects gradual
shifts in the level of the time series, free from noise or short-
term fluctuations. Mathematically, it can be modeled as a
polynomial function:

ftre(t) =
m∑
i=0

αit
i, (10)

where αi denotes the coefficients and m refers to the degree
of the polynomial. In addition, the seasonal component fo-
cuses on the repeating patterns or cycles in the time series
data, representing predictable fluctuations due to seasonality
or recurring events. These regular, cyclical, and short-term
fluctuations are modeled with a periodic function:

fsea(t) =

⌊T/2−1⌋∑
i=1

(
βi sin (2πit) + γi+⌊T/2⌋ cos (2πit)

)
,

(11)
where βi and γi are Fourier coefficients.

Residual: Adaptive Group-based Architecture
The residual component represents the unexplained variation
after removing the trend and seasonal effects, often modeled
as a stochastic process. It is challenging to capture this com-
plex information. As discussed in Figure 3, we find that re-
gardless of the order of the variables, using a single MLP
is not effective in modeling multiple variables from different
distributions. However, if variables from the same distribu-
tion are represented using the same set of MLP layers, the
performance will significantly improve. We define such a set
as a group. In addition, the layers in the MLP that extract in-
formation across all variables are called global layers, while
the layers within groups are referred to as group layers. The
number of groups and their outputs are determined by the re-
sults of variable clustering, which allows our architecture to
adapt to datasets with various characteristics. It is worth not-
ing that when variables with different distributions are in the
same group, the representation capability is significantly re-
duced. This proves the importance of the correlation infor-
mation between the variables.

Theoretically, for any given timestamp t, we design L1

global layers, L2 group layers, and K groups. K is deter-
mined by the results of variable clustering. The global layers

are given as follows:
h(0) = t, (12)

h(l1) = σ
(
W (l1)h(l1−1) + b(l1)

)
, (13)

where l1 ∈ [1, L1], h(l1) is the output of the lth1 global layer,
W and b are weight matrix and bias matrix. Then, for group
gk, the input is the output of the last global layer:

x̂(0)
gk

= h(L1), (14)

x̂(l2)
gk

= σ
(
W (l2)

gk
x̂(l2−1)
gk

+ b(l2)gk

)
, (15)

where l2 ∈ [1, L2], x̂l2
gk

refers to the output of the lth2 group
layer in group gk, W and b are weight matrix and bias matrix.
x̂L2
gk

∈ R|Ck| and |Ck| is the number of variables in the kth

cluster. The final output is the concatenation of the outputs
from the last group layer of each group:

fres(t) = x̂(L2)
g1 ⊕ x̂(L2)

g2 ⊕ . . .⊕ x̂(L2)
gK . (16)

4 Experiments
4.1 Experimental Setup
Datasets and Baseline Methods
We use eight time series imputation benchmark datasets
to validate the performance of ImputeINR, including ETT
[Zhou et al., 2021], Weather [Institute, 2020], BAQ [Zhang
et al., 2017], IAQ [Repository, 2008], Solar [Laboratory,
2006], Phy2012 [Silva et al., 2012], Phy2019 [Reyna et al.,
2019]), and MIMIC3 [Johnson et al., 2018]. Further, we se-
lect the Phy2012, Phy2019, and MIMIC3 healthcare datasets
to validate the effectiveness of the imputation results pro-
duced by ImputeINR for downstream disease diagnosis tasks.
To verify the superiority of ImputeINR, we compare our
method to nine state-of-the-art imputation methods, including
RNN-based methods (BRITS [Cao et al., 2018]), CNN-based
methods (TimesNet [Wu et al., 2023]), MLP-based methods
(TimeMixer [Wang et al., 2024]), transformer-based methods
(SAITS [Du et al., 2023], FPT [Zhou et al., 2023], iTrans-
former [Liu et al., 2024], ImputeFormer [Nie et al., 2024]),
and diffusion-based methods (CSDI [Tashiro et al., 2021],
SSSD [Alcaraz and Strodthoff, 2022]).

Experimental Settings
We apply the same data processing techniques and param-
eter settings. A sliding window approach is used, with a
fixed window size of 48 for the Phy2012, Phy2019, and
MIMIC3 datasets, and 96 for all other datasets. These set-
tings follow those used in previous work [Wu et al., 2023; Du,
2023]. To evaluate the imputation performance, we use the
same masking strategy as previous works [Wu et al., 2023;
Zhou et al., 2023], which randomly mask values in Xgt based
on the mask rate r. For the imputation results, the multi-scale
feature extraction module uses three parallel convolutional
layers with kernel sizes of 3,5,7 respectively. The adaptive
group-based architecture in the INR continuous function in-
volves one global layer and one group layer within the resid-
ual component, with hidden dimensions set to 16. The trans-
former encoder consists of 6 blocks. We use the agglomera-
tive clustering method to achieve variable clustering since it
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Methods ImputeINR ImputeFormer TimeMixer iTransformer FPT TimesNet SAITS BRITS SSSD CSDI
Mask Rate MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T

10% 0.020 0.098 0.021 0.091 0.035 0.115 0.042 0.141 0.017 0.087 0.018 0.088 0.021 0.100 0.021 0.089 0.022 0.098 0.019 0.087
30% 0.027 0.109 0.023 0.098 0.041 0.125 0.066 0.180 0.030 0.110 0.031 0.111 0.030 0.114 0.028 0.110 0.027 0.109 0.024 0.097
50% 0.028 0.111 0.034 0.116 0.054 0.143 0.109 0.234 0.041 0.130 0.035 0.123 0.031 0.116 0.040 0.130 0.029 0.112 0.034 0.112
70% 0.039 0.134 0.050 0.142 0.077 0.170 0.124 0.246 0.085 0.181 0.057 0.155 0.043 0.135 0.068 0.181 0.044 0.135 0.049 0.135
90% 0.095 0.214 0.122 0.218 0.223 0.276 0.247 0.336 0.272 0.309 0.231 0.295 0.213 0.218 0.251 0.358 0.154 0.254 0.124 0.216

W
ea

th
er

10% 0.026 0.063 0.032 0.076 0.029 0.069 0.036 0.081 0.028 0.064 0.028 0.064 0.031 0.073 0.027 0.063 0.036 0.069 0.039 0.065
30% 0.030 0.072 0.033 0.080 0.032 0.080 0.051 0.113 0.035 0.075 0.031 0.073 0.035 0.077 0.031 0.073 0.039 0.073 0.043 0.074
50% 0.031 0.073 0.037 0.084 0.037 0.076 0.069 0.144 0.043 0.076 0.036 0.076 0.041 0.091 0.035 0.077 0.040 0.075 0.048 0.076
70% 0.036 0.082 0.074 0.097 0.045 0.086 0.078 0.147 0.053 0.087 0.043 0.084 0.047 0.096 0.042 0.085 0.053 0.086 0.057 0.093
90% 0.065 0.123 0.082 0.126 0.076 0.126 0.124 0.191 0.089 0.129 0.073 0.125 0.066 0.124 0.090 0.130 0.089 0.128 0.088 0.127

B
A

Q

10% 0.083 0.169 1.050 0.747 0.165 0.172 0.235 0.258 0.215 0.224 0.262 0.266 1.085 0.748 0.208 0.175 0.306 0.357 0.201 0.171
30% 0.096 0.171 1.096 0.749 0.205 0.193 0.308 0.321 0.231 0.229 0.292 0.267 1.088 0.749 0.210 0.186 0.368 0.365 0.203 0.174
50% 0.101 0.172 1.106 0.750 0.274 0.237 0.404 0.399 0.285 0.242 0.318 0.269 1.112 0.750 0.211 0.191 0.392 0.401 0.209 0.183
70% 0.117 0.181 1.119 0.751 0.359 0.289 0.556 0.488 0.325 0.262 0.341 0.280 1.124 0.751 0.230 0.206 0.462 0.424 0.229 0.192
90% 0.122 0.185 1.129 0.752 0.503 0.367 0.803 0.615 0.430 0.301 0.427 0.317 1.127 0.752 0.411 0.308 0.671 0.532 0.322 0.218

IA
Q

10% 0.007 0.061 1.340 0.725 0.139 0.171 0.592 0.466 0.228 0.264 0.248 0.286 1.277 0.735 0.164 0.210 0.144 0.185 0.064 0.116
30% 0.008 0.062 1.377 0.738 0.244 0.242 0.639 0.503 0.237 0.271 0.262 0.290 1.442 0.755 0.224 0.243 0.199 0.192 0.074 0.122
50% 0.009 0.063 1.424 0.753 0.375 0.306 0.783 0.556 0.291 0.305 0.274 0.297 1.461 0.757 0.241 0.273 0.213 0.216 0.101 0.144
70% 0.010 0.068 1.466 0.757 0.527 0.377 0.907 0.618 0.426 0.357 0.304 0.314 1.472 0.761 0.504 0.355 0.343 0.280 0.238 0.225
90% 0.029 0.116 1.478 0.761 0.847 0.498 1.205 0.767 0.811 0.504 0.720 0.477 1.493 0.764 0.981 0.505 0.941 0.523 0.657 0.428

So
la

r

10% 0.022 0.074 0.768 0.771 0.024 0.079 0.060 0.167 0.075 0.173 0.048 0.132 0.770 0.772 0.023 0.075 0.122 0.143 0.023 0.075
30% 0.023 0.075 0.770 0.772 0.034 0.107 0.071 0.181 0.084 0.185 0.049 0.133 0.771 0.773 0.024 0.076 0.128 0.147 0.025 0.078
50% 0.024 0.078 0.772 0.773 0.052 0.143 0.079 0.189 0.101 0.202 0.052 0.139 0.772 0.774 0.026 0.080 0.145 0.159 0.026 0.080
70% 0.025 0.079 0.773 0.774 0.075 0.173 0.088 0.200 0.139 0.243 0.061 0.151 0.773 0.775 0.030 0.085 0.211 0.228 0.036 0.084
90% 0.026 0.081 0.774 0.775 0.166 0.249 0.120 0.250 0.435 0.444 0.121 0.211 0.774 0.776 0.052 0.100 0.426 0.312 0.041 0.085

Ph
y2

01
2 10% 0.072 0.096 0.200 0.153 0.104 0.115 0.097 0.108 0.087 0.104 0.080 0.101 0.200 0.163 0.097 0.100 0.080 0.098 0.656 0.514

30% 0.079 0.101 0.205 0.155 0.117 0.120 0.099 0.111 0.099 0.111 0.103 0.108 0.203 0.168 0.108 0.105 0.107 0.102 0.828 0.585
50% 0.092 0.107 0.210 0.158 0.142 0.124 0.109 0.115 0.105 0.118 0.145 0.118 0.208 0.173 0.117 0.116 0.139 0.108 0.923 0.601
70% 0.071 0.112 0.229 0.169 0.148 0.129 0.124 0.120 0.132 0.131 0.149 0.128 0.237 0.195 0.125 0.123 0.149 0.118 0.994 0.670
90% 0.127 0.124 0.232 0.170 0.179 0.143 0.160 0.135 0.167 0.145 0.177 0.144 0.214 0.159 0.163 0.139 0.226 0.157 1.068 0.705

Ph
y2

01
9 10% 0.071 0.102 0.199 0.159 0.100 0.116 0.072 0.104 0.082 0.111 0.075 0.105 0.199 0.168 0.089 0.103 0.083 0.109 0.718 0.579

30% 0.079 0.109 0.206 0.160 0.104 0.120 0.098 0.122 0.091 0.116 0.084 0.111 0.203 0.169 0.099 0.110 0.085 0.114 0.813 0.648
50% 0.087 0.115 0.209 0.164 0.109 0.125 0.100 0.123 0.102 0.124 0.094 0.118 0.204 0.175 0.109 0.118 0.098 0.118 0.956 0.657
70% 0.098 0.120 0.211 0.172 0.119 0.132 0.112 0.129 0.116 0.133 0.109 0.128 0.205 0.178 0.122 0.124 0.167 0.142 0.985 0.673
90% 0.121 0.131 0.214 0.174 0.152 0.149 0.123 0.132 0.153 0.152 0.149 0.149 0.206 0.180 0.151 0.142 0.226 0.173 1.061 0.761

M
IM

IC
3 10% 0.019 0.041 0.149 0.142 0.049 0.077 0.052 0.085 0.031 0.055 0.043 0.070 0.150 0.148 0.031 0.045 0.036 0.045 0.096 0.067

30% 0.023 0.044 0.150 0.143 0.081 0.079 0.055 0.089 0.033 0.057 0.051 0.072 0.151 0.149 0.039 0.046 0.094 0.050 0.157 0.084
50% 0.027 0.048 0.151 0.144 0.075 0.082 0.061 0.100 0.040 0.063 0.076 0.074 0.152 0.150 0.066 0.057 0.102 0.058 0.216 0.088
70% 0.033 0.056 0.161 0.145 0.083 0.086 0.084 0.113 0.081 0.068 0.093 0.080 0.155 0.153 0.083 0.059 0.110 0.064 0.220 0.114
90% 0.062 0.070 0.178 0.148 0.126 0.097 0.136 0.130 0.098 0.080 0.134 0.094 0.169 0.156 0.112 0.077 0.128 0.078 0.354 0.201

Average 0.054 0.102 0.496 0.371 0.158 0.164 0.232 0.238 0.161 0.176 0.148 0.166 0.499 0.376 0.142 0.146 0.186 0.178 0.325 0.260

Table 1: Imputation results. The best results are in Bold. And the second ones are underlined.

adopts diverse inputs without the need to pre-specify the num-
ber of clusters. For the downstream disease diagnosis task, we
employ the default Long Short-Term Memory (LSTM) clas-
sifier provided by the official benchmark [Harutyunyan et al.,
2019] as the disease diagnosis model.Experiments are per-
formed using the ADAM optimizer [Kingma, 2014] with an
initial learning rate of 10−3. All experiments are conducted
on a single 24GB GeForce RTX 3090 GPU.

4.2 Imputation Task
Main Results
We compare our ImputeINR method to nine state-of-the-art
imputation methods with five different mask rates r. As
shown in Table 1, our ImputeINR achieves the best per-
formance in most conditions in terms of both MSE and
MAE metrics. Overall, across all datasets and mask rates,
our method achieves an average MSE reduction of 62.0%

compared to the second-best results. These results demon-
strate that our proposed ImputeINR can effectively deal with
datasets of various sizes. In addition, we observe that the
performance of most methods declines as the mask rate r
increases. This aligns with our expectations, as fewer sam-
ples are captured leading to incomplete information, which
increases the difficulty of imputation. However, ImputeINR
is still effective even with an extreme mask rate. When 90%
of the data is masked, the average MSE of our method is re-
duced by 68.2% compared to the second-best ones. This in-
dicates that ImputeINR can learn continuous functions from
very few data points, achieving fine-grained imputation.

Ablation Studies
In this section, we conduct ablation studies to evaluate the
effectiveness of the multi-scale feature extraction block, vari-
able clustering, and adaptive group-based architecture. We
set mask rate r to be 50% for the ablation study, as it provides
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Multi-scale Variable Adaptive ETT Weather BAQ IAQ Solar Phy2012 Phy2019 MIMIC3
Features Clustering Group MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

✗ ✗ ✗ 0.039 0.135 0.038 0.083 0.227 0.262 0.018 0.092 0.036 0.106 0.099 0.114 0.098 0.119 0.038 0.062

✗ ✗ ✓ 0.036 0.130 0.035 0.081 0.222 0.258 0.015 0.084 0.034 0.098 0.099 0.113 0.096 0.117 0.036 0.056
✗ ✓ ✗ 0.036 0.129 0.036 0.080 0.218 0.259 0.015 0.083 0.033 0.096 0.098 0.113 0.097 0.118 0.035 0.057
✓ ✗ ✗ 0.035 0.127 0.035 0.082 0.209 0.252 0.017 0.088 0.033 0.100 0.097 0.114 0.095 0.117 0.037 0.055

✗ ✓ ✓ 0.029 0.115 0.032 0.074 0.192 0.243 0.010 0.066 0.031 0.092 0.093 0.108 0.088 0.111 0.028 0.049
✓ ✗ ✓ 0.034 0.124 0.034 0.079 0.203 0.248 0.012 0.077 0.031 0.094 0.095 0.113 0.093 0.116 0.033 0.053
✓ ✓ ✗ 0.033 0.123 0.033 0.078 0.199 0.244 0.014 0.081 0.032 0.096 0.096 0.113 0.094 0.117 0.035 0.051

✓ ✓ ✓ 0.028 0.111 0.031 0.073 0.101 0.172 0.009 0.063 0.024 0.078 0.092 0.107 0.087 0.115 0.027 0.048

Table 2: The ablation studies of each module in ImputeINR. The best results are in Bold.

Dataset ImputeINR ImputeFormer TimeMixer iTransformer FPT TimesNet SAITS BRITS SSSD CSDI Mean Zero

Phy2012 0.8382 0.8238 0.8304 0.8305 0.8230 0.8286 0.8299 0.8289 0.8215 0.8325 0.8175 0.8023
Phy2019 0.7346 0.7050 0.6923 0.6737 0.7117 0.6964 0.6743 0.6968 0.6818 0.6980 0.7095 0.6871
MIMIC3 0.8604 0.8482 0.8570 0.8564 0.8540 0.8533 0.8500 0.8527 0.8096 0.8526 0.8472 0.8419

Table 3: The disease diagnosis results. The AUROC values are reported and the best results are in Bold.

a moderate level of missingness that effectively highlights the
impact of each model component while maintaining stability
and representativeness in the results. Table 2 presents the im-
putation results for all conditions. First, the model without
any of the three modules exhibits the lowest performance.
Building on this, adding any one of the modules will enhance
the imputation capability of the model. This individually val-
idates the effectiveness of each of the three modules. Fur-
thermore, the permutation of any two modules will lead to
higher performance. Among them, the combination of vari-
able clustering and adaptive group-based architecture yields
the best results. This is as expected, since the variable cluster-
ing determines the variable partition and its outcomes corre-
spond directly to the number of groups. Therefore, these two
modules can support each other, facilitating better represen-
tational learning. Finally, the model using all three modules
displays the highest imputation performance as each module
contributes complementary strengths.

4.3 Downstream Disease Diagnosis Task

To evaluate the effectiveness of our proposed ImputeINR
method in real-world healthcare applications, we conduct
disease diagnosis using the imputed data. Specifically, we
first apply ImputeINR to impute missing values in health-
care datasets and then use the imputed data for disease di-
agnosis. As shown in Table 3, the performance is compared
against commonly used imputation methods, including zero
imputation, mean imputation, and other state-of-the-art im-
putation techniques. For evaluation, we employ the stan-
dard metric of area under the receiver operating character-
istic curve (AUROC). The results demonstrate that the im-
puted data from ImputeINR consistently leads to superior di-
agnostic performance across all metrics. This indicates that
our model not only effectively reconstructs missing values but
also preserves critical disease-related patterns, enhancing the
downstream diagnostic capability.

Figure 4: A bubble chart reporting running time vs. imputation per-
formance. The size of each bubble refers to the model size.

4.4 Efficiency Analysis
We evaluate the efficiency of the ImputeINR method, with the
results presented in Figure 4. On the x-axis, we plot the run-
ning time per iteration, while the y-axis represents the average
MSE. The size of each bubble is proportional to the number of
model parameters.This figure shows that ImputeINR achieves
accurate imputation results while requiring relatively little
running time. Moreover, the corresponding bubble size sug-
gests that ImputeINR has a relatively small number of model
parameters, further emphasizing its efficiency. These results
prove that ImputeINR strikes a favorable balance between
computational efficiency and imputation accuracy.

5 Conclusion
In this paper, we propose ImputeINR, which achieves effec-
tive imputation in extremely sparse scenarios and the imputed
data can further enhance the performance of downstream
disease diagnosis tasks. In contrast to existing imputation
approaches, ImputeINR leverages the sampling frequency-
independent and infinite-sampling frequency capabilities of
INR to achieve fine-grained imputation with sparse data.
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Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskio-
tis, Patrick Gallinari, and Vincent Guigue. Time se-
ries continuous modeling for imputation and forecast-
ing with implicit neural representations. arXiv preprint
arXiv:2306.05880, 2023.

[Nie et al., 2024] Tong Nie, Guoyang Qin, Wei Ma, Yuewen
Mei, and Jian Sun. Imputeformer: Low rankness-induced
transformers for generalizable spatiotemporal imputation.
In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 2260–
2271, 2024.

[Repository, 2008] UCI Machine Learning Repository. Air
quality data set. https://archive.ics.uci.edu/dataset/360/
air+quality, 2008. Accessed: 2025-05-27.

[Reyna et al., 2019] MA Reyna, C Josef, R Jeter,
SP Shashikumar, MB Westover, S Nemati, GD Clif-
ford, and A Sharma. Early prediction of sepsis from
clinical data: the physionetcomputing in cardiology
challenge 2019. Critical Care Medicine, 48(2):210–217,
2019.

[Saragadam et al., 2022] Vishwanath Saragadam, Jasper
Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok
Veeraraghavan. Miner: Multiscale implicit neural repre-
sentation. In European Conference on Computer Vision,
pages 318–333. Springer, 2022.

[Schaffer et al., 2021] Andrea L Schaffer, Timothy A Dob-
bins, and Sallie-Anne Pearson. Interrupted time series
analysis using autoregressive integrated moving average
(arima) models: a guide for evaluating large-scale health
interventions. BMC medical research methodology, 21:1–
12, 2021.

[Shan et al., 2023] Siyuan Shan, Yang Li, and Junier B
Oliva. Nrtsi: Non-recurrent time series imputation. In
ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023.

[Silva et al., 2012] Ikaro Silva, George Moody, Daniel J
Scott, Leo A Celi, and Roger G Mark. Predict-
ing in-hospital mortality of icu patients: The phys-
ionet/computing in cardiology challenge 2012. Computing
in cardiology, 39:245, 2012.

[Tashiro et al., 2021] Yusuke Tashiro, Jiaming Song, Yang
Song, and Stefano Ermon. Csdi: Conditional score-
based diffusion models for probabilistic time series impu-
tation. Advances in Neural Information Processing Sys-
tems, 34:24804–24816, 2021.

[Van Buuren and Groothuis-Oudshoorn, 2011] Stef Van Bu-
uren and Karin Groothuis-Oudshoorn. mice: Multivariate
imputation by chained equations in r. Journal of statistical
software, 45:1–67, 2011.

[Wang et al., 2018] Haishuai Wang, Jia Wu, Peng Zhang,
and Yixin Chen. Learning shapelet patterns from network-
based time series. IEEE transactions on industrial infor-
matics, 15(7):3864–3876, 2018.

[Wang et al., 2024] Shiyu Wang, Haixu Wu, Xiaoming Shi,
Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
JUN ZHOU. Timemixer: Decomposable multiscale mix-
ing for time series forecasting. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[Wu et al., 2023] Haixu Wu, Tengge Hu, Yong Liu, Hang
Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series
analysis. In The Eleventh International Conference on
Learning Representations, 2023.

[Yang et al., 2024] Yiying Yang, Fukun Yin, Wen Liu, Ji-
ayuan Fan, Xin Chen, Gang Yu, and Tao Chen. Pm-inr:
Prior-rich multi-modal implicit large-scale scene neural
representation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 6594–6602, 2024.

[Yin et al., 2022] Fukun Yin, Wen Liu, Zilong Huang, Pei
Cheng, Tao Chen, and Gang Yu. Coordinates are not
lonely-codebook prior helps implicit neural 3d represen-
tations. Advances in Neural Information Processing Sys-
tems, 35:12705–12717, 2022.

[Yoon et al., 2018] Jinsung Yoon, William R Zame, and Mi-
haela van der Schaar. Estimating missing data in temporal
data streams using multi-directional recurrent neural net-
works. IEEE Transactions on Biomedical Engineering,
66(5):1477–1490, 2018.

[Zeng et al., 2023] Ailing Zeng, Muxi Chen, Lei Zhang, and
Qiang Xu. Are transformers effective for time series fore-
casting? In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 37, pages 11121–11128, 2023.

[Zhang et al., 2017] Shuyi Zhang, Bin Guo, Anlan Dong,
Jing He, Ziping Xu, and Song Xi Chen. Cautionary tales
on air-quality improvement in beijing. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 473, 2017.

[Zhang et al., 2024] Shuyi Zhang, Ke Liu, Jingjun Gu, Xi-
aoxu Cai, Zhihua Wang, Jiajun Bu, and Haishuai Wang.
Attention beats linear for fast implicit neural representa-
tion generation. In European Conference on Computer Vi-
sion, pages 1–18. Springer, 2024.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi
Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan-
cai Zhang. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pages 11106–11115, 2021.

[Zhou et al., 2023] Tian Zhou, Peisong Niu, Liang Sun,
Rong Jin, et al. One fits all: Power general time series
analysis by pretrained lm. Advances in neural information
processing systems, 36:43322–43355, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://archive.ics.uci.edu/dataset/360/air+quality
https://archive.ics.uci.edu/dataset/360/air+quality

