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Abstract

Space situational awareness (SSA) plays an im-
perative role in maintaining safe space operations,
especially given the increasingly congested space
traffic around the Earth. Space-based SSA offers a
flexible and lightweight solution compared to tradi-
tional ground-based SSA. With advanced machine
learning approaches, space-based SSA can extract
features from high-resolution images in space to
detect and track resident space objects (RSOs).
However, existing spacecraft image datasets, such
as SPARK, fall short of providing realistic camera
observations, rendering the derived algorithms un-
suitable for real SSA systems. In this work, we
introduce SpaceDet, a large-scale realistic space-
based image dataset for SSA. We consider accu-
rate space orbit dynamics and a physical camera
model with various noise distributions, generating
images at the photon level. To extend the avail-
able observation window, four overlapping cameras
are simulated with a fixed rotation angle. SpaceDet
includes images of RSOs observed from 19km to
63, 000km, captured by a tracker operating in LEO,
MEO, and GEO orbits over a period of 5,000 sec-
onds. Each image has a resolution of 4418 x 4418
pixels, providing detailed features for developing
advanced SSA approaches. We split the dataset
into three subsets: SpaceDet-100, SpaceDet-5000,
and SpaceDet-full, catering to various image pro-
cessing applications. The SpaceDet-full corpus in-
cludes a comprehensive dataloader with 781.5G B
of images and 25.9M B of ground truth labels. Fur-
thermore, we adapted detection and tracking algo-
rithms on the collected dataset using a specified
splitting method to accelerate the training process.
The trained model can detect RSOs from real-world
space observations with zero-shot capability.

1 Introduction

Space Situational Awareness (SSA) [Wang e al., 2022] plays
a crucial role in ensuring the safety of space assets by provid-
ing real-time information perception and risk evaluation for
space operations, such as spacecraft navigation [Hein, 2020]

and debris mitigation [Usovik, 2023]. Conventional SSA sys-
tems, like those used by the Japanese Space Agency (JAXA)
[Harris er al., 2021], rely on observing resident space ob-
jects (RSOs) and determining their orbits using ground-based
facilities equipped with large telescopes and radars. These
systems necessitate extensive site areas, high costs, and spe-
cific geographical locations [Jia er al., 2024]. Given the com-
putational limitations of satellites, current space-based SSA
systems, which involve complex numerical calculations, typ-
ically depend on the space-ground network for data process-
ing and information fusion. This reliance results in substan-
tial communication loads and delays.

With the advancements in artificial intelligence (AI)
[Pisutsin et al., 2024] and high-performance edge comput-
ing [Xiao et al., 2024], an onboard vision-based SSA system
presents a more flexible and lightweight alternative to tra-
ditional ground-based SSA for RSO detection and tracking.
One of the primary challenges in SSA is providing accurate
position and orientation vectors (observations) of targets to
determine their orbits. Methods such as Gauss’s method [Val-
lado, 20011, which requires at least three observations for pre-
liminary orbit determination, and Lambert’s method [Engels
and Junkins, 1981], which needs only two position vectors
with temporal information, are used for this purpose. Essen-
tially, increasing the number of observations enhances the ac-
curacy of orbit determination, highlighting the importance of
the object detection and tracking (ODT) component in SSA.
To develop precise and practical ODT algorithms, extensive
high-resolution space imagery is essential. However, most
existing spacecraft image generation techniques [Musallam et
al., 2021a] rely on high-fidelity simulators that ignore space
camera models and the cosmic background, resulting in unre-
alistic images (see Figure 1) and ODT algorithms unsuitable
for real SSA systems.

In this work, we present SpaceDet, a large-scale realistic
space-based image dataset for SSA (project in https://github.
com/NTU-ICG/SpaceDet). This dataset considers accurate
space orbit dynamics and a physical camera model with vari-
ous noise distributions, generating images at the photon level.
To extend the observation window, we simulate four overlap-
ping cameras with a fixed rotation angle. SpaceDet comprises
images of RSOs observed from distances ranging from 19 km
to 63,000 km, captured by a tracker operating in Low Earth
Orbit (LEO), Medium Earth Orbit (MEO), and Geostation-
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Figure 1: Comparison of our SpaceDet images with SPARK im-
ages [Musallam er al., 2021a] and real-life observed images. (a)
SpaceDet images at timestamp O (four cameras from left top to
right bottom), which show the realistic exposure with noise distribu-
tion; (b) A simulated spacecraft image from SPARK; (c) The real-
life space observation image from the telescope and sensor network
(EGTN"). The similar streaks due to the exposure of fast-moving
RSOs and the hot pixels induced by the noises in (a) and (c¢) demon-
strate the realistic images in our SpaceDet dataset.

ary Orbit (GEO) over 5,000 seconds. Each image boasts
a resolution of 4418 x 4418 pixels, providing detailed fea-
tures for the development of advanced SSA approaches. We
have divided the dataset into three subsets: SpaceDet-100,
SpaceDet-5000, and SpaceDet-full, catering to various im-
age processing applications. The SpaceDet-full corpus in-
cludes a comprehensive dataloader with 781.5 GB of images
and 25.9 MB of ground truth labels. To the best of our knowl-
edge, SpaceDet is the first image dataset to offer four-camera
observations with realistic image generation from space for
space ODT. The key contributions and features of this dataset
are summarized as follows:

Realistic Image Generation: Incorporating accurate space
orbit dynamics and a physical camera model with various
noise distributions to produce photon-level realistic space im-
ages.

Multiple Camera Observations: Simulating four overlap-
ping cameras with fixed rotation angles to extend the obser-
vation window.

Large Range Tracker Observation: Covering RSO im-
ages observed from 19km to 63,000km for the tracker op-
erating in LEO, MEO, and GEO orbits.

Automated Label Generation with Bearing Angle: Pro-
viding accurate ground truth labels with bearing angle in-
formation generated by the simulator through an automated
transformation and annotation process.

Extensive Benchmarks: Benchmarking the dataset us-
ing state-of-the-art (SOTA) algorithms, including YOLOVS,
YOLOvVS, YOLOv10, DINO, etc., on SpaceDet-100 with a
specified splitting method to expedite the training process.
Additionally, various object tracking methods are compared
on SpaceDet-100 to explore its applications.

2 Related Dataset Work

Publicly available image datasets for space object imagery
are predominantly ground-based, such as SatNet and SatSim
[Fletcher er al., 2019]. Existing space-based image datasets,
such as BUAA-SID-POSE 1.0 [Qiao et al., 2022], SPEED
[Kisantal et al., 2020], SPEED+ [Park et al., 2023], and

Dataset #Images #Objects  Resolution  Object/Image Public?
BUAA-SID-share 1.0 9.2k 20 320%240 single yes
SPARK 30k 11 1440x 1080 single request
RSONAR 429 3 1024 x 1024 multiple no
SpaceDet-100 100 56 4418 x 4418 multiple yes
SpaceDet-5000 Sk 414 4418 x 4418 multiple yes
SpaceDet-full 20k 673 4418 x 4418 multiple yes

Table 1: Comparisons of SpaceDet with existing datasets.

URSO [Proenga and Gao, 2020], primarily emphasize space-
craft pose estimation [Pauly er al., 2023]. These datasets typi-
cally feature a limited number of RSOs in the images and lack
comprehensive annotations such as bounding boxes, which
are essential for broader SSA applications beyond pose esti-
mation. Since space-borne real data is often challenging and
expensive to acquire, simulated datasets have become the pre-
dominant approach for developing methods for SSA tasks.
BUAA-SID-share 1.0 [Zhang et al., 2010] features various
satellite models created using 3dsMax but lacks simulation of
the space environment. The SPARK [Musallam er al., 2021a]
dataset includes simulated models of different satellites and
space debris but lacks realistic camera observations. An an-
notated dataset derived from the RSO Near-Space Astromet-
ric Research (RSONAR) mission is provided by [Suthakar et
al., 2023], which collected data using a low-resolution, wide-
field-of-view imager on a stratospheric balloon.
Additionally, some datasets have been generated by re-
searchers to simulate space conditions and RSOs, facilitat-
ing algorithm development and testing [Tang et al., 2023;
Chen et al., 2023; Shen et al., 2024]. However, these datasets
are often inaccessible and lack comprehensive reality anal-
ysis. Table 1 provides a summary of statistics for existing
space-based RSO detection image datasets as well as our
SpaceDet dataset. SpaceDet captures more RSOs in the im-
ages and has a higher resolution compared to prior datasets.

3 Data Curation Process

3.1 Data Generation

The SpaceDet dataset is collected from a real-time high-
fidelity simulator based on precise space orbit dynamics and
physical camera models. Since the space-based observer op-
erates at an altitude of 500 km, the effects of the atmosphere
and related noise are not included in the modeling process.
The space environment model simulates a catalog of RSOs
in orbit around the Earth, along with other celestial bodies in
the sky. The RSO simulation is based on the United States
18th SDS Space Catalog 2, which is fetched in Two-Line El-
ements (TLEs) format for the desired simulation epoch and
propagated using an SGP4 propagator. The propagator pro-
vides the positions and velocity vectors of all objects in the
TEME coordinate system, which is used to populate the 3D
environment.

The modeling of environmental noise expected for a sensor
is also incorporated. Under favorable imaging conditions, the
sensor’s payload is oriented away from the sun and perpen-
dicular to the orbit, allowing the primary background noise

"https://exoanalytic.com/space-domain-awareness
*http://space-track.org/
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Figure 2: Overall framework of the data curation process.

source to be the Earth’s limb—the bright edge of the Earth’s
horizon. This background noise is modeled using data from
the Hubble Space Telescope * and the NEOSSAT mission
[Thorsteinson, 2018]. The camera captures a circular im-
age on the image plane, and the detector on the focal plane
records the digital image.

To detect which RSOs crossing the field of view (FOV) can
be identified by the sensor, a photometric detection model is
applied. The sensor detects an object only when its signal-to-
noise ratio (SNR) exceeds a specified threshold, typically set
at 5. The received signal is calculated assuming 100% diffuse
reflection, where the fraction of incident sunlight reflected to
the sensor is given by:

2ur?

3T R?

where p is the object’s reflectivity, r is the object’s radius, R
is the distance between the object and the telescope, and ¢ is
the phase angle of reflection. The solar flux, considered as the
solar constant at 1 AU from the sun, is assumed to be uniform
across all objects, as the variation in distance from the sun is
negligible. The brightness data from the star catalog is used
to determine the signal level from stars, which is distributed
across a Gaussian spot formed on the detector.

The model for projecting star/object positions onto the im-
age is based on a pinhole camera model, supplemented by a
compound distortion model (radial and tangential), similar to
the Brown-Conrady model [Zhang, 2000]. To calculate the
noise electrons, three noise sources are modeled: shot noise
with a random distribution, sensor noise (e.g., dark current)
modeled with a Poisson distribution, and read noise modeled
with a normal distribution. Additionally, background noise
is modeled with a Poisson distribution. Relative illumination
is implemented as a quadratic function to account for roll-off
and vignetting effects in the image. These signal and noise
models provide the number of photoelectrons collected by
each pixel on the sensor, which are then converted into 16-bit
digital values (0-65535). Note that four cameras (60°, 75°,
90° and 105° azimuth angle for Cam1 to Cam4, respectively)
are adopted to generate the images simultaneously.

X (sing + (m — ¢) cos ), (1)

Reflection Factor =

3https://hst-docs.stsci.edu/stisihb/chapter-6-exposure-time-
calculations/6-5-detector-and-sky-backgrounds

The overall framework for the data curation process is il-
lustrated in Figure 2. The datasets generated by the simulator
are in the forms of images (TIFF format) and a set of meta-
data (CSV format). All state information (including position,
velocity and attitude) of RSO is propagated with the public in-
catalog TLEs. The data collection is free of any ethical issue
or participation risk. The space orbit propagation program
is developed based on the Standards of Fundamental Astron-
omy (SOFA) [TAU, 2021] package and SGP4 model [Vallado
and Crawford, 2008]. With camera specifications such as lens
parameters, sensor parameters, and camera pointing direction
angles (elevation and azimuth angles in the RSW coordinate
frame), the physical camera model can generate pixel values
of images at each timestep based on the aforementioned rela-
tive illumination and noise distributions. The physical camera
model used for generating realistic space-based images in-
cludes several key components, including the pinhole camera
model, lens distortion, and noise modeling. Each 3D point X
in the space is projected onto the image plane using the pin-
hole camera model, then distorted based on the lens distortion
model, and finally, various noise distributions as mentioned
are added to simulate the physical conditions of space imag-
ing. For instance, we model the noise as a combination of
Poisson noise (sensor noise) and Gaussian noise (read noise):

TLoisy(u,v) = Poisson(I(u,v)) + N(0,0%),  (2)

where I(u,v) is the intensity value at pixel (u,v),
Poisson(I(u,v)) represents the Poisson noise, and N (0, o)
represents the Gaussian noise with mean 0 and variance o2.
The exposure time (I second) is reflected in the image gener-
ation as we overlap the images over the exposure time into
one image. The ground truth bounding box is calculated
with the bearing angles (6, and 65) of a target with respect
to the tracker as defined in Figure 2. By selecting the start-
ing time (YYYY-MM-DD HH:MM:SS in UTC) and simulation
duration, we can generate desired images and metadata over
a certain period. The specified simulation time is from 2023-
01-01 0:00:00 to 2023-01-01 1:23:20 with a 1-second time
difference for the successive images (this time difference is
the exposure time and is optimized for object detection).

3.2 Dataset Validity and Uniqueness

Currently, there are fewer than six datasets available in this
field, and they are all based on simulations, as NASA’s
database is not publicly accessible. The dataset presented in
this work is the first large-scale, realistic, space-based image
dataset at the photon level, aiming to bridge the gap between
simulated and real-world data. Most existing datasets, such as
BUAA-SID-share 1.0 [Zhang et al., 2010], SPARK [Musal-
lam et al., 2021b], and the Space Target Dataset [Zhang et
al., 2022c¢], are primarily generated for satellite pose estima-
tion and space target classification in ideal simulation con-
ditions. These datasets focus on capturing targets from close
distances and multiple angles to emphasize single-target char-
acteristics. In contrast, our dataset captures targets at various
distances based on realistic space-based camera observations.
We have compared our images with the real observed images
with a ground-based telescope (see project website), where
the starfield and captured positions at various timestamps are
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first compared to show the accuracy of the simulator. These
imaging results then clearly validate the realistic characteris-
tics of our simulated images.

3.3 Data Annotation

All images in the SpaceDet dataset are annotated with classes
indicating LEO, MEO, and GEO (low, medium, and high
accordingly), as well as 2D bounding boxes for the labeled
parts (see Figure 3). To ensure high-quality annotations, all
classes and bounding box information are automatically de-
rived from the orbital and positional information of space
objects, rather than being manually labeled. All the orbital
and positional information of these space objects is generated
from the aforementioned orbit propagation simulator contain-
ing a semi-major axis (SMA) and two bearing angles.

Classes Annotation: SMA, a key parameter for describ-
ing orbital ellipses, determines the size and shape of the
orbit. Targets are classified as LEO (SMA < 8413km),
MEO (8413km < SMA < 42240km) , and GEO (SMA >
42240km) based on their SMA.

Bounding Box Annotation: Bounding boxes are derived
from two bearing angles 6; 65 of space objects. The bearing
angle information is defined in the camera frame, while the
pixel position is defined in the pixel coordinate system (origin
at the upper left, x-axis to the right, y-axis downward). The
transformation from bearing angles to pixel positions is given
as follows:

focal_length
Tpixel = <tan(91) OCEEnE

b number +0.5) -width, (3)

focal_length

Ypixel = (taH(QQ) . tb_number N 05> . (7W1dth), (4)
where tb_number is the effective sensor size, and width is the
number of pixels in the image’s width. The transformations
provide the position of the space object at a specific moment
in the image. Since each image has a 1-second exposure time,
the objects appear as a path showing their movement during
that second. To find the bounding box, we calculate the pixel
coordinates of the space object at the start and end of the ex-
posure. These two points form the diagonal corners of the
bounding box, which helps us accurately determine the size

and location of each bounding box.

3.4 Image Slicing

The original image size is 4418 x4418 far beyond the pro-
cessing capabilities of YOLO and most GPUs. To address
the issue of large image dimensions, the images are initially
sliced into smaller sections measuring 260x260 pixels each
(see Figure 3 (c)). Multiple split sizes were tested, and
260x260 was selected as the optimal size based on experi-
mental results. This slicing process includes an adjustable
overlap in both horizontal and vertical directions, serving as
a strategy for data augmentation. The last slices are aligned
to the image’s edge and then cut to the predefined size. Addi-
tionally, the annotations of the labels are accurately adjusted
to match the newly sliced dimensions. Given the inherent

4418x4418 4418x4418 260x260 260x260

(@) (b) (c)

Figure 3: The image sample from the SpaceDet dataset. (a) The
original image generated from the simulator with 1 second exposure
time; (b) The post-processed image to show the observed image and
RSOs with reference IDs; (c) The sliced image batch and annota-
tions.

sparse labeling of the dataset, 96% of the sliced images do not
contain the target. Addressing the risk of overfitting caused
by a high proportion of negative samples (images without
targets), the training and validation datasets are selectively
pruned to remove a substantial number of negative samples.
This strategy is directed towards creating a more balanced
dataset, aiming for an approximate 0.9: 0.1 ratio between im-
ages with and without targets. For the test dataset, selective
pruning is omitted to maintain the accuracy and validity of
model evaluation.

3.5 Dataset Release

The release of the SpaceDet dataset is structured into three
distinct subsets, namely SpaceDet-100, SpaceDet-5000, and
SpaceDet-full (see Table 1), to cater to varying levels of im-
age processing and analysis requirements.

SpaceDet-100: This is the minimal dataset intended for
preliminary training and testing purposes. It includes 100
high-resolution images that provide a foundational basis for
algorithm development and initial performance assessments.
This subset is ideal for quick iteration cycles and for re-
searchers who are beginning their work on SSA without re-
quiring extensive computational resources. SpaceDet-100 is
particularly useful for initial model training and validation,
performance benchmarking of new methods, and educational
purposes, allowing students and new researchers to get hands-
on experience with SSA data.

SpaceDet-5000: This subset expands the dataset to 5000
images, all captured from Camera 2. It is designed to of-
fer a more comprehensive dataset that can be used for more
rigorous training and testing of machine learning models.
SpaceDet-5000 provides a larger sample size to improve the
robustness of algorithms and to ensure that the models are
exposed to a wider variety of scenarios and conditions en-
countered in space-based observations. It is intended for
detailed algorithm development and refinement, robustness
testing across a larger set of scenarios, and intermediate-
scale projects that require significant but manageable com-
putational resources.

SpaceDet-full: This is the full version of the SpaceDet
dataset, featuring 5000 images captured from each of the four
simulated cameras, resulting in a total of 20,000 images. This
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Figure 4: Histogram of observation range for four cameras in
SpaceDet-full.
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Figure 5: Positional distribution of targets across four camera
datasets, categorized by orbital type (LEO, MEO, GEO). (a) Camera
1; (b) Camera 2; (c) Camera 3; (d) Camera 4.

comprehensive dataset is collected for advanced research and
development objectives. It supports the training and vali-
dation of complex models that require multi-view observa-
tions to accurately detect and track RSOs. The multi-camera
setup allows researchers to develop and test algorithms capa-
ble of leveraging spatial information from different perspec-
tives, enhancing the accuracy and reliability of SSA systems.

4 SpaceDet Dataset Analysis

Statistical Features of Individual Images: Here, we pro-
vide a specific quantitative description of images of size
4418 x 4418 pixels (/16-bit, 39.1MB in storage). After test-
ing, the average signal-to-noise ratio (SNR) and average root
mean square (RMS) contrast [Peli, 1990] of SpaceDet-full
images are 1.94 dB and 4.67, respectively (typical values
for general images are 30 dB for SNR and 80 for contrast).
With a threshold pixel value of 2000, the bright point ratio is
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Figure 6: The size distributions for all observed objects categorized
by orbital type (LEO, MEO, GEO)

0.47. This large image size ensures high resolution and clar-
ity, which is beneficial for detailed analysis and visualization
in various applications. However, hardware or applications
such as edge computing in satellites may have difficulty han-
dling images with such high resolution. In such cases, we
suggest compressing the images before using this dataset. In
real-space environments, various types of noise, such as op-
tical and electromagnetic interference, can be present, which
manifest in the SNR parameter of this dataset. Generally, a
smaller SNR indicates a greater amount of noise in the images
(see Figure 3 (b)). This suggests that the image information
in this dataset more closely aligns with real-world conditions
but poses challenges for feature extraction. Additionally, due
to variations in the distance between the targets and the cam-
eras, the brightness of different targets varies, which is a nat-
ural phenomenon in imaging. The targets appear brighter
when they are closer to the camera and dimmer when they
are farther away. As some applications may have specific
requirements for image brightness, some image processing
algorithms may be needed to enhance brightness.

Statistical Features of the Whole Dataset: Figure 4 shows
the histogram of observation ranges for four cameras in
SpaceDet-full. The horizontal axis of the figure represents
the observation distance of the cameras, and the vertical axis
represents the counts of target occurrences. Each bar in the
histogram corresponds to a range of 3128 km. The closest
observed target is at a distance of 19 km, while the farthest
is at 62,578 km. The bars for the ranges 19 to 3147 km and
37,554 to 40,682 km are the highest, indicating the highest
frequency of target occurrences. In contrast, the frequencies
are much lower for other ranges, resembling a long-tail dis-
tribution commonly seen in the dataset.

Figure 5 shows the positional distribution of targets across
four camera datasets. In these maps, the origin of the coordi-
nates is set at the top-left corner of each image, with x and y
representing pixel coordinates. The targets are distinguished
by their orbital categories: blue points for LEO targets, green
points for MEO targets, and red points for GEO targets. It can
be observed that the red and green points form dense, curved
trajectories. This is because MEO and GEO targets, being far-
ther from the observer, appear to move more slowly in the im-
ages, resulting in closely spaced positions across consecutive
frames. In contrast, LEO targets are more widely dispersed,
indicating a faster apparent movement across the images. The
figure also shows that there is no discernible pattern in the
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occurrence and density of the targets. The complex nature of
the space environment, combined with variations in observa-
tion times, viewing angles, and the orbital paths of tracking
instruments, leads to differences in target position distribu-
tions. This complexity poses a significant challenge for space
object detection.

Since the orientations of the objects are negligible consid-
ering the far-range observation, the size distribution for all
observed objects is illustrated in Figure 6. From all distri-
butions, most of the RSOs are within 0.5m to 10m, and the
smallest object is approximately 30cm. Given the large de-
tection range, detecting such small objects in space is ex-
tremely challenging, which highlights the significant value of
our dataset and benchmark pipeline.

5 Benchmark

As SpaceDet is regarded as a new SSA dataset, we provide
several ODT baseline results based on representative one or
two stage detectors and detection-based multiple object track-
ing methods on SpaceDet-100. All the dataset and the code
are available in https://github.com/NTU-ICG/SpaceDet. Ad-
ditionally, detailed descriptions of the experimental settings
and additional comparison results can be found in the supple-
mentary material accordingly.

5.1 Basic Settings

We utilize the Ultralytics library [Jocher et al., 2023] un-
der the AGPL-3.0 license, which includes all YOLO series
models for ODT. Other architectures are implemented using
the MMDetection toolbox [Chen et al., 2019] from Open-
MMLab. Following standard configurations, all models are
trained on an NVIDIA RTX A6000 GPU (48GB) for up to
400 epochs with an Intel Xeon w9-3495X CPU (4.8 GHz),
with early stopping if there is no improvement for 30 epochs.
From the SpaceDet-100 dataset, 70% of images are used for
training and 20% for validation. To minimize randomness in
testing, 100 images from the SpaceDet-5000 dataset are se-
lected for evaluation. Metrics for detection performance in-
clude mAPQR50, mAP@50-95, precision, recall, and
F1 score, while object tracking is assessed using false
positives, ID switches, and multiple object
tracking accuracy (MOTA).

5.2 Object Detection Benchmark

In our object detection benchmark, we evaluated vari-
ous models, primarily YOLOv8m. We also included
yolov3_mobilenetv2, using MobileNetV2 as the YOLOv3
backbone [Redmon, 2018], and faster_rcnn, based on the
ResNet architecture [Ren et al., 2016]. Transformer-based
models such as DETR [Carion et al., 2020], Deformable-
DETR [Zhu et al., 20201, and DINO [Zhang et al., 2022al
were also employed. To optimize training, batch sizes were
adjusted based on GPU memory constraints. All models uti-
lized our custom preprocessing pipeline, tailored to the chal-
lenges of SSA datasets. All models used 260x260 images as
input to ensure result reliability.

The experimental results in Table 2 show the strengths and
weaknesses of each method in terms of model size, speed,

Model Info Training Process

Models batch  Mem T/epoch Epochs Size(MB) P R Fl1 Tlimg

yolov3_mobilenetv2 48 34.36G  5.09s 57 359  0.288+0.005 0.277+0.023 0.282+0.010 1.99s
faster_rcnn 40 4270G  1.82s 24 3338 0.347+0.013 0.315£0.020 0.329+0.009 6.42s
DETR 8 238G L.78s 209 5122 0.236+0.055 0.312+0.026 0.267 +0.043 4.60s
deformable_detr 8  3891G  4.96s 141 4988  0.315+0.017 0.479£0.024 0.380+0.018 9.71s
DINO 8 3413G  6.62s 35 597.7  0.332+0.014 0.495+0.092 0.394 £0.021 13.15s
0.600+0.017 0.435+0.005 0.492+0.019 3.81s

Testing Process

YOLOv8m 48 19.20G  3.8ls 209 52.1

Table 2: Performance comparison of SOTA models for space object
detection (averaged over three runs). Mem denotes GPU memory
usage during training. T/epoch refers to training time per epoch.
Epoch indicates the number of epochs until convergence. Size refers
to the storage size of trained models. Precision (P), recall (R), and
F1 score are presented as mean + standard deviation.

and accuracy. Overall, existing SOTA methods struggle in the
space domain due to the sparse distribution of small targets,
many of which occupy only a few pixels in large 4418 x 4418
images. Over 99% of each image is background noise, pre-
senting challenges not found in typical detection tasks, which
emphasizes the unique value of our dataset. Transformer-
based models capture complex features but require more
memory and inference time, making them less suitable for
space-based tasks. Faster_rcnn achieves an acceptable level of
accuracy but demands significant memory and long detection
times, indicating a trade-off between accuracy and efficiency.
Yolov3_mobilenetv2 provides faster detection but sacrifices
performance, highlighting the challenges of balancing speed
and accuracy in SSA. The YOLOv8m model stands out with
its small size, high accuracy, and reasonable detection speed,
making it the most suitable for SSA tasks. Its balance of
speed and precision effectively meets the unique challenges
of space-based monitoring.

In selecting SOTA models for space object detection, the
YOLO series was chosen for its strong performance across
various tasks. Given the demands of space deployment, fac-
tors such as computational complexity, detection speed, and
accuracy are crucial. Various YOLO versions and sizes offer
trade-offs among these factors. To identify the optimal model
for space deployment, comprehensive experiments were con-
ducted. As shown in Table 3, three object detection models
are compared: YOLOVS5 [Jocher, 2020], YOLOvVS8 [Jocher et
al., 2023], and YOLOv10 [Wang et al., 2024], each evalu-
ated with five parameter sizes (n, s, m, 1, X). Generally, larger
models (m, 1, x) achieve better accuracy but require more
memory and longer training times. While YOLOv8m demon-
strated superior performance, smaller models like YOLOv5n
and YOLOvS8s exhibited lower performance but faster detec-
tion times. YOLOv8n balanced speed and accuracy effec-
tively, making it more suitable for SSA, where lightweight
computation and timely detection are essential.

Our experiments on the SpaceDet-100 dataset reveal that
existing SOTA ODT methods, effective in conventional sce-
narios, underperform in space environments, achieving sig-
nificantly lower scores compared to standard datasets. This
underscores the need for algorithms specifically designed for
SSA, and our dataset aims to bridge this gap.

5.3 Object Tracking Benchmark

SpaceDet can also be used to evaluate multiple object track-
ing methods, as it contains ID information for each space ob-
ject. The ground truth tracking data includes timestamps, ob-


https://github.com/NTU-ICG/SpaceDet

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Model Info Training Process Testing Process

Models Mem  T/epoch Epochs Size(MB) P R Fl  T/img
v5n 6.38G 8s 62 5.30 078 0.18 0.29 1.93s
v5s 10.20G 26s 312 18.60 0.66 033 044 2.36s
v5m 18.20G 25s 226 50.50 072 026 0.38 3.45s
V5l 28.00G 37s 236 106.80 0.65 033 044 488s
v5x 40.80G 63s 239 195.00 0.65 033 044 7.07s
v8n 6.65G 8s 236 6.30 0.65 036 047 2.01s
v8s 10.60G 13s 72 22.50 072 0.8 029 237s
v8m 19.20G 25s 228 52.10 0.62 038 047 38ls
v8l 29.80G 41s 305 87.70 0.55 038 045 5.55s
v8x 37.40G 61s 192 136.70 0.58 038 046 7.02s
v10n 9.10G 11s 345 5.80 0.65 028 039 2.38s
v10s 15.60G 19s 85 16.50 0.67 027 038 2.63s
v10m 26.30G 31s 216 33.50 0.63 034 044 3.74s
v101 40.80G 48s 188 52.20 0.66 034 045 5.66s
v10x 41.80G 68s 242 64.10 0.65 036 046 6.54s

Table 3: Detection results of baseline YOLO models on SpaceDet-
100. During the training of v10x, in order to prevent the GPU mem-
ory from being full, we adjusted the batch size to 36.

ject IDs, and two bearing angles. During tracking, pixel po-
sitions of the targets are converted into bearing angles using
Eq. (3) and (4) for comparison with the actual data.

Table 4 summarizes the results of various tracking meth-
ods based on a YOLOv8n model with an F1 score of 0.4674.
Two tracking methods were tested: ByteTrack [Zhang et al.,
2022b] and BoT-SORT [Aharon et al., 2022], using Intersec-
tion over Union (IoU) and Euclidean distance for similarity
calculations. Variants of BoT-SORT incorporated different
global motion compensation algorithms (ECC, ORB, SIFT,
and Sparse Optical Flow), and feature-based similarity cal-
culations were explored using features from the pre-trained
YOLOvV8n model, as well as traditional methods like HOG
and SIFT. From Table 4, it is evident that the performance
of models using IoU distance is far inferior to those using
Euclidean distance. This is because space targets are small
and fast-moving, and even slight calculation errors can re-
sult in an IoU of 0. For fast-moving objects in space, minor
camera movements have minimal impact on tracking. Con-
sequently, the evaluation metrics for different global motion
compensation methods show little variation in MOTA. BoT-
SORT, an improved version of ByteTrack with global mo-
tion compensation, performs similarly to ByteTrack because
the SSA dataset is insensitive to camera motion. For the
SpaceDet dataset, global motion compensation increases pro-
cessing time with minimal benefits. Although IoU and Eu-
clidean distance calculations are fast, their accuracy is lower
than feature distance based on YOLO. Among all tracking
methods, the YOLO feature extraction method performs the
best, with a 27% higher accuracy than Euclidean distance.
Additionally, traditional feature extraction methods like HOG
and SIFT perform poorly.

In addition to the limitations on computing resources and
speed, space target tracking tasks must also minimize false
detections and ID switches. Excessive false detections and ID
switches can negatively impact subsequent tasks such as orbit
determination and orbit propagation. BoT-SORT, based on
YOLO feature extraction, performs well in all these aspects,
making it more suitable for SSA tasks.

Model Info Target Number Object Number Evaluation Metrics

Models Total Predict Real Predict Matches Misses FP IDs MOTA Time
Byte_iou 4695 182 56 180 178 4517 4 143 0.0065 +0.0002 0.06
Byte_euclidean 4695 2111 56 134 2098 2597 13 202 0.4012£0.0072 0.05
BoT_iou 4695 182 56 181 178 4517 4 143 0.0065 +0.0002 0.05
BoT_euclidean 4695 2107 56 150 2095 2600 11 183 0.4049 £0.0078 0.05
BoT_euclidean_ecc 4695 2101 56 145 2092 2603 9 203 0.4002 £0.0075 1.53
BoT_euclidean_orb 4695 2105 56 145 2095 2597 9 204 0.4003 £0.0082 0.10
BoT_euclidean_sift 4695 2102 56 139 2092 2603 10 196 0.4012£0.0085 1.15
BoT_euclidean_sparse 4695 2106 56 145 2096 2599 10 202 0.4017 £0.0089 0.14
BoT feature_yolo ~ 4695 2498 56 53 2486 2209 12 51 0.5160 £0.0091 0.26
BoT_feature_hog 4695 499 56 57 495 4200 3 52 0.0938£0.0044 7.46
BoT feature_sift 4695 121 56 33 117 4578 3 4 0.0235+0.0010 1.42

Table 4: Performance evaluation of multiple object tracking meth-
ods on SpaceDet-100 (averaged over three runs). Total and Predict
columns refer to the total and predicted target numbers, respectively.
Evaluation metrics include Matches, Misses, False Positives (FP),
ID switches (IDs), MOTA, and tracking time (Time).

6 Limitations of SpaceDet Dataset

Despite the comprehensive nature of the SpaceDet dataset,
there are several limitations to consider. First, while the
dataset is designed to be highly realistic, the images are still
generated via simulations, which may not capture all the com-
plexities and variabilities of real-space environments. Sec-
ond, the dataset focuses on high-resolution images, which,
while beneficial for detailed analysis, also require consider-
able computational resources for processing and storage, po-
tentially limiting accessibility for researchers with limited re-
sources. Lastly, while the dataset includes a range of orbital
distances and conditions, it hasn’t covered all possible sce-
narios that SSA systems might encounter, necessitating fur-
ther validation with real-world data to ensure robustness and
generalizability of the developed algorithms.

7 Conclusion

Focusing on improving SSA, we present SpaceDet, a large-
scale realistic space-based image dataset designed to over-
come the limitations of existing datasets such as SPARK.
SpaceDet provides a comprehensive collection of high-
resolution images (4418 x 4418 pixels) generated using ac-
curate space orbit dynamics and a physical camera model
with Poisson noise distribution, capturing observations from
19 km to 63,000 km. The dataset is divided into three sub-
sets: SpaceDet-100, SpaceDet-5000, and SpaceDet-full, each
catering to different research needs. Our benchmark evalu-
ations show that while larger YOLO models generally out-
perform smaller ones, lightweight models like YOLOvS5s and
YOLOVS8n offer faster detection speeds, crucial for space-
based applications with limited computing resources. More-
over, SOTA ODT methods perform inadequately in the space
environment, highlighting the necessity for algorithms tai-
lored to SSA. SpaceDet not only facilitates the development
of new ODT algorithms but also serves as a benchmark for
evaluating advanced SSA techniques.
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