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Abstract

Positron Emission Tomography (PET) is a pow-
erful imaging modality for assessing biochemical
processes within the body. However, accurate im-
age reconstruction is challenged by photon attenua-
tion, particularly in dense structures such as bones,
leading to quantification errors and reduced diag-
nostic confidence. Computed Tomography (CT)
based attenuation correction is the standard ap-
proach but introduces additional radiation expo-
sure, longer imaging times, and patient inconve-
nience, as well as potential registration errors, mo-
tion artifacts, and energy scaling inaccuracies. In
this study, we propose a 3D U-Net based deep
learning framework that directly estimates attenua-
tion information from PET sinograms, eliminating
the need for additional imaging modalities. Our ap-
proach integrates PET physics and employs custom
skip connections to enhance cross-domain learn-
ing. We evaluate our model on a simulated brain
dataset derived from real patient templates, achiev-
ing a Dice coefficient of 0.650 and an accuracy of
0.486 for bone structures. The clinical applica-
bility of our method is further assessed by recon-
structing PET images with the generated attenua-
tion maps, yielding an MSE of 0.007 and an SSIM
of 0.956, demonstrating strong structural consis-
tency with CT-based attenuation correction. These
results highlight the feasibility of performing PET
image attenuation correction using PET sinograms
alone, offering a promising alternative that reduces
imaging time, radiation exposure, and patient bur-
den while enabling faster and more efficient PET
reconstruction.

1 Introduction

Positron Emission Tomography (PET) imaging is a functional
imaging technique widely used for diagnosing, staging, treat-
ment planning, and follow-up in oncology, cardiology, and
neurology. Unlike Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI), which primarily provide

structural information, PET focuses on assessing biological
process functionality.

In PET imaging, a compound called a radiotracer, which
consists of a radioactive isotope and a targeting molecule,
is injected intravenously into the patient. The radiotracer
accumulates in targeted regions and undergoes decay, emit-
ting positrons. When a positron encounters a nearby elec-
tron, they annihilate each other, producing two high-energy
gamma photons that travel in opposite directions at a 180° an-
gle. The PET scanner detects incoming photons, recording an
event only if two photons are recorded in detectors opposed
at 180° from each other within a short time window. The
recorded events are then converted into a sinogram, where
the events are organized to represent the body’s projections at
various angles. Sinograms are converted into 3D PET images
through image reconstruction, which employs methods such
as filtered back-projection (FBP) and iterative reconstruction.

Some high-energy gamma photons emitted after positron
decay may not reach the detectors because they are absorbed
by dense bodily structures. This absorption decreases the
number of photons detected compared to the actual emission
(i.e., activity), a phenomenon known as attenuation. As a re-
sult, the events recorded by a PET scanner is a composition
of both the spatial distributions of radioactivity concentra-
tions (A, activity map) and linear attenuation coefficients (u,
attenuation map). Attenuation results in increased noise, dis-
tortion, and artifacts in PET images; therefore, correcting for
attenuation is essential during the PET reconstruction process
to ensure accurate and reliable imaging results.

Since attenuation is closely related to anatomical struc-
tures, combined PET/CT imaging systems are commonly
used in clinical practice, with CT primarily assisting in atten-
uation correction. However, additional CT scans in PET/CT
increase radiation exposure, extend imaging time, and con-
tribute to patient discomfort. Even with advanced low-dose
CT technology, patients still face additional radiation expo-
sure, which also raises ethical considerations for vulnerable
populations such as children and repeat patients [Xia et al.,
2012; Quinn et al., 2016]. In medical research, studies often
involve both patients and healthy volunteers, with participants
typically undergoing multiple PET scans following a single
radiotracer injection and repositioning the bed between ses-
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sions. This requires multiple CT scans solely for attenuation
correction, resulting in significant and avoidable radiation ex-
posure. As an alternative, PET/MRI systems offer reduced
radiation but come with challenges such as higher costs, in-
creased complexity, and longer scan durations, which may
cause claustrophobia in some patients. Additionally, MRI is
incompatible with certain metallic implants, further limiting
its applicability.

In addition to the patient care limitations mentioned above,
the use of separate CT (or MRI) imaging sessions intro-
duces several technical challenges, including registration is-
sues, motion artifacts, classification errors, and scaling dis-
crepancies. In practice, a single CT image is taken with the
patient holding their breath at the start of the PET scan ses-
sion, while the PET scan is performed with normal breathing
over a longer period, especially during dynamic PET imag-
ing, which observes the spatiotemporal distribution of radio-
tracers over an extended time. This discrepancy makes it dif-
ficult to correct for respiratory (mid-breath) or cardiac (mid-
cardiac) motion. Additionally, registering the image with re-
spect to a particular organ, such as the heart, can result in
misregistration of other organs or structures, such as the liver,
lungs, skeletal muscle, or bones. There are also registra-
tion issues due to rigid body motion during the scan, such
as movement of the head, especially during full body PET
imaging. The scanner’s bed position movement between CT
and PET imaging also contributes to this problem.

These limitations can be overcome if attenuation correc-
tion maps (u-maps) are generated directly from the PET raw
data or sinograms, eliminating the need for additional CT (or
MRI) scans. Such an approach is feasible because the activ-
ity of specific 3D locations experiences varying attenuation
depending on the gamma-ray emission direction, information
that is inherently captured in the raw data and sinograms. In
this study, we hypothesized that a deep learning framework
can be used to directly estimate the corresponding p-maps
from PET sinogram data. Our experiments reveal that a con-
ventional U-Net, widely used in medical imaging, is insuffi-
cient for generating p-maps from PET sinogram data due to
the inherent mismatch between input and output representa-
tions. To address this challenge, we draw inspiration from
physical models of 3D PET image reconstruction and intro-
duce skip connections' that explicitly guide the U-Net in cap-
turing structural information from sinogram data. To validate
the effectiveness of our approach, we perform a quantitative
analysis comparing the generated pseudo-y-maps with CT-
based p-maps and evaluate attenuation-corrected PET images
reconstructed using pseudo-p-maps against those corrected
with CT-based p-maps.

There have been some Al based efforts to generate pseudo-
CT images from reconstructed PET images, which can be
later thresholded to obtain p-maps [Hashimoto er al., 2021;
Partin er al., 2024; Dong et al., 2019; Armanious et al., 2020].
These studies typically use non attenuation corrected (NAC)
PET images as input to generate synthetic CT images. PET
image reconstruction which consists of a filtering step, may
discard potentially useful information corresponding to CT

'i.e., skipping layers in the neural network

images as noise. Additionally, the PET reconstruction pro-
cess is time-consuming [Ma et al., 2022], which can sig-
nificantly extend the duration of dynamic and back-to-back
imaging sessions.

Our research is a collaborative effort between academic
and industrial stakeholders, with experts in artificial intelli-
gence (AI) research from RMIT University who developed
Al models and specialists in medical and radiology research
from Cyclotek (Aust) Pty Ltd and the Melbourne Theranos-
tic Innovation Centre (MTIC) who defined the problem and
conducted the evaluation of the results. This interdisciplinary
collaboration integrates Al techniques with clinical and re-
search expertise in PET imaging. At present, the PET imag-
ing center at MTIC relies on CT scans for attenuation cor-
rection in PET imaging. We aim to develop deep learning
models that reduce reliance on CT imaging during PET scan-
ning and gradually implement these advancements within the
center. Following this study, we aim to evaluate the tech-
niques developed here using real patient data from the cen-
ter. As part of the next phase of this ongoing project, we
plan to extend our models to process full-body PET imaging
data acquired using the Siemens Quadra Vision PET scan-
ner at MTIC. Ultimately, our research seeks to reduce radi-
ation exposure during PET/CT scanning sessions while also
addressing challenges such as motion artifacts. We plan to
collaborate with more volunteers at MTIC under reduced ra-
diation conditions to further advance PET-based medical re-
search. Our initiative has the potential to enhance the impact
of PET imaging in clinical practice, improve patient safety,
and contribute to life-saving advancements in medical imag-
ing, which aligns with the United Nations Sustainable Devel-
opment Goal (SDG) of good health and well-being (SDG 3).

2 Background and Related Work

2.1 PET Data Acquisitions and Sinogram

In PET imaging, a biologically functional molecule chemi-
cally combined with a radioactive atom, known as a radio-
tracer [Foster et al., 2014], is injected intravenously into
the patient. For example, 18-F Fluorodeoxyglucose (18-F
FDG) is a commonly used radiotracer that targets glucose
metabolism. During the PET imaging session, the radioiso-
tope decays to a stable state by emitting a positron over time.
When an emitted positron interacts with a nearby electron
within a short distance (0.35 mm for positrons emitted by an
18-F atom), two 511 keV high energy annihilation photons
are produced as the positron and electron annihilate [Pohost
and Dilsizian, 2019]. These photons travel in opposite di-
rections at a 180° angle and, if not absorbed by surrounding
structures, are detected by two photodetectors in the detector
ring of the PET scanner. If two photons are detected within
a short time window, typically within 10 ns, they are con-
sidered to originate from the same annihilation event and are
classified as a true coincidence event [Vaquero and Kinahan,
2015]. The sinogram is a data representation that organizes
raw coincidence events into a structured format, facilitating
effective image reconstruction. Each entry in the sinogram
corresponds to a specific line of response (LOR), defined by
the angle of projection ¢, and the distance from the center of
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the scanner, s. As the PET scanner acquires data from mul-
tiple angles around the subject, the detected events are sorted
into the sinogram based on their geometric parameters. This
results in a two-dimensional matrix where rows represent dif-
ferent projection angles, and columns correspond to specific
LORs at those angles.

2.2 Al for PET Attenuation Correction

The current clinical practice for obtaining attenuation maps
involves thresholding CT images. Several Al based ap-
proaches have been proposed to generate pseudo-CT images
from PET images, extracting anatomical structural informa-
tion through an additional thresholding step. These methods
typically use nonattenuation corrected (NAC) reconstructed
PET images as the input. In some studies [Dong er al., 2019;
Armanious er al., 2020], generative adversarial network
(GAN) based frameworks are employed to generate synthetic
CT images. In contrast, other studies [Hashimoto er al., 2021;
Liu et al., 2018] utilize 2D U-Net and 3D U-Net based archi-
tectures [Partin et al., 2024]. All of these approaches strug-
gle to generalize across different regions of the body, scanner
models, and pathological conditions due to their dependence
on NAC PET images for training [McMillan and Bradshaw,
2021]. In another study [Arabi and Zaidi, 2020], time-of-
flight (TOF) PET emission data was used to attempt attenua-
tion correction directly in the sinogram domain using High-
ResNet architecture. However, TOF image acquisition sup-
port is not available in all PET scanners.

PET image reconstruction from sinograms is performed
using algorithmic or iterative approaches, such as Ordered
Subset Expectation Maximization (OSEM). Recently, several
studies have explored direct PET image reconstruction from
PET sinograms using deep learning models. In those works,
the focus is on improving the computational efficiency of the
reconstruction stage and they still rely on CT scans for atten-
uation correction information. The DeepPET [Higgstrom et
al., 2019] model and another study [Ma et al., 2022] utilizes
2D autoencoder architectures, while ReconU-Net implements
another variation of the 2D U-Net [Hashimoto and Ote, 2024]
with custom skip connections. It has been demonstrated that
Al models, such as DeepPET, can reduce the time required
for typical PET reconstruction algorithms from 360 seconds
to just 14 seconds [Ma et al., 2022].

3 Proposed Method

In this study, our objective is to synthesize a pseudo-u-map
for a patient, representing air, soft tissue, and bone structures
for attenuation correction, using PET sinogram data from the
same imaging session as input. An overview of the proposed
approach is in Figure 1.

3.1 Physics Inspired 3D U-Net Architecture

The input to our model is a 2D sinogram, Sy 4., € R?XP*F

where ® represents the number of azimuthal angle bins, D
corresponds to the number of transaxial distance bins, and
P indicates the number of slices along the depth axis. The
model output is a 3D pseudo-u-map, p, where each voxel,
iz ,y,z» 18 classified as either air, soft tissue, or bone. A simple

v
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Figure 1: Overview of our proposed method to generate attenuation
corrected PET images using PET sinograms alone. The correspond-
ing p-map is generated by our model without requiring additional
CT images.

approach would be to employ a conventional U-Net, which is
widely used in medical imaging, to transform the sinogram
into a u-map while training the model using a supervised loss
function such as cross-entropy. However, our experiments in-
dicate that this approach performs poorly (see Section 4 for
details). The primary challenge lies in the difference in repre-
sentation between the sinograms and p-maps — each plane in
sinograms is represented in terms of line-of-response (LOR)
angles and distances from the center, whereas p-maps exist
in a spatial domain (height, width, depth). The relationship
between p-map, spatial distributions of radioactivity concen-
trations (), activity map), and sinogram is given by the Beer-
Lambert law represented by [Kinahan et al., 2003]:

S(6vd.0) = exp {~ [ 1o (1)
Attenuation
X /)\(x@d?p(r)) dr (1)

Nonattenuated Sinogram

S(¢,d,p) = exp {=R(p)} - R(A). 2)

Here, x4 4, () parameterize the points along an LOR de-
noted by ¢, d on plane p, and R (-) is the Radon transform. As
a result, a conventional model must not only learn to predict
attenuation but also learn to reconstruct structural informa-
tion from the sinogram (i.e., do the inverse Radon transform),
adding significant complexity to the learning process.

To enhance the U-Net’s ability to reconstruct structural in-
formation, we incorporate physical constraints of PET image
reconstruction — specifically, inverse Radon transforms —
directly into the skip connections.

Our custom skip connections consist of three main compo-
nents, as shown in Equation 3. For each 3D U-Net level, [,

we filter the k™ individual feature map, F,(fl) using a ramp fil-
ter, denoted by 7(-), and then apply an inverse Radon trans-
form, R‘l(-), to obtain a feature map in the reconstructed
spatial domain. These two operations together form the Fil-
tered Back Projection (FBP) process [Defrise et al., 2005].
Then, we upsample (U(-)) the resultant image by a factor of
1.8 and crop it to obtain the final spatial domain feature map,

70,
PO —u (R (n(FY))) 3)
The overall architecture of the proposed U-Net is illus-
trated in Figure 2. Our U-Net is inspired by 3D U-Net [Cicek
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Figure 2: Overview of our 3D U-Net based network architecture for
generating pseudo-p-maps from PET sinograms using custom skip
connections.

Upsample

et al., 2016], which is typically used for 3D image segmenta-
tion, as well as 2D DeepPET [Héggstrom ef al., 2019] and 2D
ReconU-Net [Hashimoto and Ote, 2024], which were devel-
oped to reconstruct PET images from attenuation-corrected
sinograms.

We have selected the weighted cross-entropy loss [Ron-
neberger er al., 2015], as shown in Equation 4, as the loss
function for training our classification model.

L= ﬁ 3™ w(x) - log(pex) (%)) “

xeN

Here, () represents the spatial domain of p-maps, w(x) is a
weighting function at position x, and py(x)(x) denotes the
predicted probability of the true label £(x) at position x. In
brain attenuation maps, most areas are composed of air and
soft tissues, while the region corresponding to bone is signif-
icantly smaller but exhibits a higher attenuation factor. The
average voxel distribution in the training dataset for air, soft
tissue, and bone was approximately 62.3%, 35.3%, and 2.4%,
respectively. We used these values to determine the loss
weights according to the normalized, inverse class frequen-
cies.

4 Experiment and Results

4.1 Dataset

Currently, no publicly available datasets provide PET sino-
gram data with corresponding p-maps for the same patients.
To address this, we simulated a dataset using publicly avail-
able brain attenuation and activity templates derived from
CT and MRI images of real patients [Lopez-Gonzdlez et al.,
2020; Paredes-Pacheco et al., 2021]. Simulated PET imaging

is widely used to compensate for the scarcity of real patient
data, particularly in raw sinogram format, as seen in stud-
ies like DeepPET [Héggstrom ef al., 2019] and ReconU-Net
[Hashimoto and Ote, 2024]. SimPET, a Monte Carlo-based
simulator, can model commercially available PET scanners
and generate realistic sinograms. It has been validated against
real datasets, showing that 98.09% of voxels exhibit differ-
ences of less than 10% when simulating the GE Discov-
ery ST PET scanner [Paredes-Pacheco et al., 2021]. Sim-
PET has been successfully used in multiple studies to gener-
ate PET images from attenuation and activity templates de-
rived from real patient data [Lépez-Gonzdlez er al., 2020;
Loépez-Gonzdlez et al., 2019], making it well suited for our
study.

The dataset [Lopez-Gonzélez et al, 2020; Paredes-
Pacheco et al., 2021] comprises brain templates with sim-
ulated neurodegenerative diseases, derived from 25 healthy
subjects. However, due to dimension mismatches in two at-
tenuation maps, only 23 patient templates were included in
our analysis. For each subject, in addition to the healthy brain
activity maps, the dataset provides 29 variants featuring sim-
ulated dysfunction. These variants introduce five levels of
hypometabolism (10%, 20%, 40%, 60%, and 80%) across six
regions of interest (ROIs). ROIs 1-5 correspond to tempo-
ral lobe epilepsy (TLE), while ROI 6 represents Alzheimer’s
disease. The dataset was divided into training, validation, and
holdout test sets, as shown in Table 1.

Sinogram generation was performed using the SimPET
Monte Carlo simulator for the GE Discovery ST PET scan-
ner. Each simulation represented a 5 minute PET scan using
18-F FDG radiotracer radiotracer at 22.2 MBq radioactive in-
tensity applied for the brain, corresponding to approximately
10% of the full-body dose (245 MBq). The generated sino-
grams were also used to reconstruct both NAC PET images
and AC PET images using the Ordered Subset Expectation
Maximization (OSEM) algorithm with the STIR 4.0 toolkit
[Thielemans et al., 2012], following the default parameter
template from SimPET.

Preprocessing: The 3D sinograms generated using the Sim-
PET simulator, originally consisting of 23 oblique and di-
rect planes with dimensions 210x249x 576, were converted
into standard 2D sinograms using the Single-Slice Rebin-
ning (SSRB) algorithm [Defrise et al., 2005] in the STIR 5.1
toolkit [Thielemans et al., 2012]. This rebinning step reduced
input data size and managed memory constraints efficiently.
After rebinning, the resulting 2D sinograms had dimensions
210x249x47, where 210 represents azimuthal angle bins,
249 corresponds to transaxial distance bins, and 47 indicates

Segment Patients ~ Simulated Sinograms
Training 14 416
Validation 4 124
Holdout Test 5 155
Total 23 695

Table 1: Dataset distribution across training, validation, and holdout
test sets.
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the number of slices along the depth axis. To further prepare
the sinograms for model input, they were cropped to remove
empty space and padded during data loading to standardized
dimensions of 216x96x48 (heightxwidthxdepth). Addi-
tionally, the sinograms were normalized to the range [0,1]
using a min-max scaler.

The CT-based p-maps included regions below the brain
(e.g., mouth and neck) absent in sinograms and reconstructed
PET images due to their exclusion from activity maps. To
ensure alignment, only the brain and skull regions were con-
sidered, and the p-maps were cropped to 256 <256 x 175 vox-
els. They were then downsampled to 128 x 128 x48 voxels to
match the pseudo-pu-maps, ensuring consistency with the GE
Discovery ST PET scanner’s reconstructed PET output. The
downsampled CT-based p-maps served as the ground truth
for the model.

4.2 Implementation Details

All experiments were conducted on an Ubuntu system with
dual Intel Xeon Silver 4208 CPUs, 128 GB of memory, an
Nvidia Quadro 8000, and two Nvidia Quadro 6000 GPUs.
Model implementation was done using PyTorch 2.5.1 [Ansel
et al., 2024], with TorchRadon 3.0 [Ronchetti, 2020] for FBP
operations.

We used the Adam optimizer with the ReduceLROnPlateau
learning rate scheduler, starting at le-5, and applied early
stopping to prevent overfitting. The batch size was set to 8§ to
optimize GPU memory usage. Dropout rates of 0.1, 0.1, and
0.6 were applied to the encoder, bottleneck, and decoder lay-
ers, respectively, with L2 regularization (0.01) for all layers
to enhance generalization. The full code for our experiments
including the details of the network architecture, is available
at https://github.com/prabathbr/PET_Attenuation_Estimation.

4.3 Baseline Model

The works in literature most relevant to ours focus on gener-
ating attenuation information for PET reconstruction use non-
attenuation corrected (NAC) PET images as input with a 2D
or 3D U-Net and regression loss function [Liu et al., 2018;
Hashimoto et al., 2021; Partin et al., 2024]. Therefore, we
adapted this approach as our baseline. However, these prior
works were conducted on proprietary datasets, and the corre-
sponding model codes were not publicly available. Addition-
ally, our dataset contains direct p-maps instead of pseudo-
CT images which makes the regression objective unsuit-
able. Consequently, we used a vanilla 3D U-Net architecture
[Cicek er al., 2016] with the same loss function in Equation 4
to generate pseudo-y-maps directly from NAC PET images.
The model was fine-tuned to achieve optimal results.

During NAC PET image preprocessing, we removed the
scanner gantry artifacts from the input NAC PET images us-
ing a circular mask and scaled them to align with the dimen-
sions of the ground truth p-maps.

4.4 Ablation Studies

The following two model variants were implemented as part
of the ablation study: A1) Direct Skip: This model replaces
the FBP-based skip connections in our proposed method with
direct skip connections as in a conventional U-Net. A2) No

Skip: This model removes the skip connections entirely mak-
ing it a 3D encoder-decoder.

4.5 Evaluation Metrics

For Pseudo-u-maps: We compared the generated pseudo- -
maps with the CT-based ground truth p-maps using classifi-
cation accuracy, precision, and recall as evaluation metrics.
We also calculated the Dice coefficient to measure the over-
lap between the generated image regions and the ground truth
regions for each class.

For Reconstructed PET Images: To compare attenuation-
corrected PET images generated using the proposed pseudo-
p-map and the CT-based p-map, we evaluated mean squared
error (MSE) and structural similarity index measure (SSIM).
SSIM was computed using a sliding Gaussian window of size
p X p with p = 5 to emphasize localized details and the dy-
namic range L was set to 5 considering range [Wang et al.,
2021]. To facilitate metric computation, reconstructed PET
voxel values were converted to standardized uptake value ra-
tio (SUVR), using the cerebellum as the reference region.

4.6 Results

Qualitative Results

We present qualitative comparisons of the generated pseudo-
p-maps from our model, the baseline model, and ablation
studies against the ground truth in Figure 3. The ground truth,
derived from CT images, inherently offers higher resolution
and finer bone structure details than PET images. Our model
closely replicates these structural features but at a lower res-
olution. The baseline model fails to capture finer details,
such as air pockets (yellow solid arrows) and complex bone
structures (cyan dotted arrows). Both ablation studies strug-
gle to identify discontinuities in bone structures and accu-
rately reconstruct soft tissue regions. However, the no skip
ablation model preserves finer details better than the direct
skip ablation model. We performed attenuation correction
using pseudo-p-maps obtaining reconstructed PET images,
as shown in Figure 4. Overall, the images generated by our
model appear visually similar to those produced using the
CT-based ground truth, which preserves all structural infor-
mation. In contrast, the non-attenuation corrected PET image
exhibits noticeable differences.

Quantitative Comparison

We quantitatively compared the generated pseudo-pu-maps,
and the results are shown in Table 2. We performed a
Wilcoxon signed rank test with a significance level of p=0.05
to compare our proposed model with the baseline model
across all evaluation metrics. The results indicate statistically
significant differences, leading us to reject the null hypoth-
esis. Our proposed model slightly outperforms the baseline
for bone structures, which have a higher attenuation coef-
ficient. The Dice coefficient increases from 0.639 to 0.650
and accuracy improves from 0.475 to 0.486. However, both
models exhibit similar overall performance across all quanti-
tative metrics. Our ablation studies highlight the advantage of
custom skip connections. Compared to our proposed model
(Dice: 0.650, Accuracy: 0.486 for bone structures), perfor-
mance drops significantly when no skip connections are used,
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Figure 3: Comparison of generated pseudo--maps in axial plane. Yellow solid arrows indicate air pockets, while cyan dotted arrows highlight
complex bone structures. The baseline model struggles to capture finer details, whereas our model better preserves fine structural features,

closely resembling the ground truth.

Figure 4: Visualization of SUVR in reconstructed PET images after
attenuation correction using p-maps over sagittal, coronal, and axial
planes. The images are based on (a) CT-based ground truth, (b) our
model, and (c) without attenuation correction.

resembling a 3D encoder-decoder (Dice: 0.414, Accuracy:
0.264). Direct skip connections further degrade performance
(Dice: 0.356, Accuracy: 0.218). These findings suggest that
skip connections without proper domain translation can be
more detrimental than omitting them entirely. In the no skip
case, the model learns domain translation solely through the
bottleneck, which, while limiting, is still preferable to direct
skip connections that fail to capture meaningful domain adap-
tation. We evaluated MSE and SSIM based on the SUVR
values of reconstructed PET images attenuation corrected us-
ing both CT-based p-maps and pseudo-u-maps generated by
our model. This analysis aimed to assess the clinical viability
of our approach. The results show an MSE of 0.007 £ 0.004
and an SSIM of 0.956 + 0.009, indicating high structural sim-
ilarity and minimal error between the reconstructed images.
These findings suggest that our method could serve as a re-
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Figure 5: Dice coefficient variation for bone structure prediction
across patients under different disease progression scenarios. The
narrow IQR indicates that our proposed model maintains robustness
in predicting bone structure despite disease progression.

liable alternative for attenuation correction in PET imaging,
with performance comparable to the CT-based ground truth.

4.7 Discussion

Robustness Testing

Robustness testing ensures deep learning models remain reli-
able, generalizable, and clinically accurate despite real-world
variations. We validated our model using two approaches.

Our test dataset includes 30 variations of healthy and neu-
rodegenerative disease-induced conditions per patient. This
simulation replicates neurological pathology, such as the pro-
gression of Temporal Lobe Epilepsy or Alzheimer’s disease,
allowing us to assess the model’s ability to adapt to differ-
ent stages of disease evolution while maintaining reliable at-
tenuation estimation. Figure 5 illustrates the variation in the
Dice coefficient for bone structure prediction across patients
(in the test set) from our proposed model across 30 differ-
ent disease and region simulations. The narrow interquartile
range (IQR) for each patient indicates that our model con-
sistently predicts bone structure despite disease progression,
demonstrating their robustness.

In order to evaluate the robustness of our model with un-
seen data, we modified an attenuation template by remov-
ing part of the skull to mimic incomplete skulls that may be
encountered during PET scans due to surgical alterations or
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(a)
Metric Baseline Our Model stat (p-value) \ Direct Skip No Skip
Dice
Bones 0.639 +0.084 0.650 £ 0.078 2651 (< 0.001) | 0.356 +£0.065 0.414 £+ 0.076
Air 0.961 & 0.011 0.953 £ 0.013 2966 (< 0.001) | 0.924 £ 0.019 0.931 £ 0.023
Tissue  0.876 + 0.028 0.857 & 0.026 2330 (< 0.001) | 0.703 & 0.051 0.775 £ 0.055
Accuracy
Bones 0.475 £ 0.091 0.486 = 0.084 2762 (< 0.001) | 0.218 £0.047 0.264 + 0.060
Air 0.924 £+ 0.020 0911 £0.024 2989 (< 0.001) | 0.860 £+ 0.032 0.871 £ 0.040
Tissue  0.781 +0.044 0.750 + 0.040 2331 (< 0.001) | 0.544 £0.061 0.636 £+ 0.074
Precision
Bones 0.505 £0.072 0.525 £ 0.065 898 (< 0.001) | 0.224 £0.048 0.294 £ 0.067
Air 0.980 + 0.016 0.943 + 0.044 0 (< 0.001) 0970 £0.019 0.974 £+ 0.023
Tissue 0.871 &0.051 0.904 & 0.057 1032 (< 0.001) | 0.749 £0.109 0.768 £ 0.109
Recall
Bones 0.885 +0.141 0.867 =0.140 32.5(< 0.001) | 0.895 £+ 0.099 0.727 +0.103
Air 0.942 +0.021 0.966 £ 0.021 622 (< 0.001) | 0.885 £ 0.047 0.894 + 0.056
Tissue  0.883 +0.029 0.822 +0.075 1432 (< 0.001) | 0.670 = 0.037 0.792 £ 0.031

Table 2: Comparison of evaluation metrics across models on the holdout test dataset.

(a) Performance evaluation of our proposed model

against the baseline. (b) Performance comparison of ablation studies to assess the impact of model modifications.

Figure 6: Alteration test conducted using (a) an attenuation template
with a partially removed skull shown in yellow circle, used to sim-
ulate sinograms and NAC PET images, (b) the output p-map from
the baseline model, and (c) the output y-map from our model. Both
models fail to generalize to unseen deformations.

implants. These types of data augmentations were not used
during training. We used sinograms and NAC PET images
generated from this template as inputs to evaluate both our
proposed model and the baseline model, respectively. How-
ever, both models failed to generate correct p-maps, as shown
in Figure 6. This result indicates that both data-driven ap-
proaches struggle with generalization in such scenarios.

Future Work

Our study is currently limited to brain PET images with a sin-
gle radiotracer, 18-F FDG using a simulated dataset. Evaluat-
ing our approach on real full-body PET datasets and incorpo-
rating additional radiotracers would enhance its applicability,
which we consider for future work. Another key limitation
of our approach is its reliance on CT-based attenuation cor-

rection as ground truth. Because our model is trained on CT-
derived p-map, the generated pu-map may inherit modality-
specific biases, limiting their ability to fully capture PET
attenuation properties. CT-based attenuation correction re-
quires energy scaling from 140 keV (X-ray) to 511 keV (v
photons), which can introduce systematic errors due to dif-
ferences in attenuation between tissue and bone structures
at these energy levels. This reliance on CT-based training
data may reduce the model’s generalizability across differ-
ent attenuation conditions. Future work will explore physics-
driven approaches to potentially mitigate these limitations.

5 Conclusion

In this work, we introduce a deep learning framework based
on a 3D U-Net to directly estimate pseudo-p-map from PET
sinograms. Our approach, incorporating custom skip con-
nections, eliminates the need for NAC reconstructed PET
images, reducing preprocessing time and resource usage.
Through rigorous evaluation, our model achieves a Dice coef-
ficient of 0.650 and an accuracy of 0.486 for bone structures,
outperforming the baseline 3D U-Net (Dice: 0.639, Accu-
racy: 0.475). Additionally, we demonstrate the clinical appli-
cability of our method by using the generated pseudo-j-map
for attenuation correction in PET reconstruction, achieving
results comparable to CT-based attenuation correction.

Despite its promising performance, our model faces chal-
lenges in handling unseen anatomical variations, such as
missing structures due to the data-driven nature of our model.
Additionally, because our training data uses CT-based u-
maps as ground truth, the generated maps may inherit CT-
related biases. Future work will explore more physics-driven
approaches to mitigate this limitation. Furthermore, while
this study focuses on brain regions, we aim to extend our
method to full-body PET imaging to enhance its broader ap-
plicability.
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