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Abstract

Accurate demand prediction is crucial for the eq-
uitable and sustainable expansion of bike-sharing
systems, which help reduce urban congestion, pro-
mote low-carbon mobility, and improve transporta-
tion access in underserved areas. However, ex-
panding these systems presents societal challenges,
particularly in ensuring fair resource distribution
and operational efficiency. A major hurdle is the
difficulty of demand prediction at new stations,
which lack historical usage data and are heavily
influenced by the existing network. Additionally,
new stations dynamically reshape demand patterns
across time and space, complicating efforts to bal-
ance supply and accessibility in evolving urban en-
vironments. Existing methods model relationships
between new and existing stations but often assume
static patterns, overlooking how new stations re-
shape demand dynamics over time and space. To
tackle these challenges, we propose a novel de-
mand prediction framework for expanding bike-
sharing systems, namely BGM, which leverages
dynamic graph modeling to capture the evolving
inter-station correlations while accounting for spa-
tial and temporal heterogeneity. Specifically, we
develop a knowledge transfer approach that stud-
ies the embeddings transformation across existing
and new stations through a learnable orthogonal
mapping matrix. We further design a gated select-
ing vector-based feature fusion mechanism to inte-
grate the transferred embeddings and the intrinsic
features of stations for precise predictions. Experi-
ments on real-world bike-sharing data demonstrate
that BGM outperforms existing methods.

1 Introduction

Bike-sharing systems have gained popularity worldwide, of-
fering short-term bike rentals through networks of stations
distributed across urban areas. These systems provide an eco-
friendly solution for last-mile commuting, reduce traffic con-
gestion, and promote sustainable urban mobility [Macioszek
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Figure 1: Visualization of Citi-Bike station distribution in Midtown
Manhattan, New York City. (a) Station distribution in January 2018.
(b) Station distribution in January 2024 [Citi-Bike, 2024].

et al., 2020]. To amplify these benefits, providers have rapidly
expanded their bike-sharing networks, as seen in Figure 1(a)
and Figure 1(b), which illustrate the network expansion in
New York City from January 2018 to January 2024 [Maha-
jan and Argota Sanchez-Vaquerizo, 2024]. While network
expansion amplifies the environmental and societal benefits
of bike-sharing systems, it also introduces critical societal
challenges. One pressing issue is ensuring equitable access
to mobility across socioeconomically diverse neighborhoods,
as underserved areas often face limited access to transporta-
tion infrastructure. Another challenge lies in resource allo-
cation—determining where and when to deploy bikes and
docking stations to balance supply and demand effectively.
Addressing these challenges requires accurate demand pre-
diction, particularly for new stations, to optimize operations
and support the sustainable and inclusive expansion of bike-
sharing systems, particularly in the absence of historical data
for new stations. Moreover, new stations will also change
usage patterns across the network, creating complex spatio-
temporal dependencies. Therefore, it is crucial to model the
dynamic relationships between new and existing stations to
ensure equitable access and efficient resource allocation.
Various methods have been developed to address these
challenges. Traditional regression-based models leverage his-
torical data to identify demand patterns, providing a foun-
dational understanding of user behavior [Chen er al., 2015;
Liu ef al., 2015]. Functional zone-based approaches improve
this by incorporating diverse urban characteristics, such as
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population density and land use, allowing for localized and
precise analyses of demand [Liu et al., 2017]. Machine learn-
ing models, such as random forests and support vector ma-
chines, further enhance prediction accuracy by integrating
multiple external factors, including temporal features and
points of interest [Kou and Cai, 2021]. Recently, advanced
graph neural networks have been employed to capture com-
plex spatial dependencies and mitigate data scarcity, enabling
more robust and reliable predictions for new station deploy-
ment [Chen et al., 2020]. However, these methods assume
the relationships between new and existing stations are static,
failing to capture how demand shifts with expansion. This
can lead to inefficient station deployment and inequitable ser-
vice distribution, particularly in underserved areas. Address-
ing these challenges requires advanced models that adapt
to evolving demand patterns, supporting more inclusive and
data-driven urban mobility planning.

To tackle these challenges, we design a novel and unified
Demand Prediction Framework in Bike-Sharing Systems Ex-
pansion with Dynamic Graph Modeling (BGM), which dy-
namically adapts to the evolving network structure and di-
verse contextual factors. Specifically, BGM leverages a dy-
namic graph architecture that continuously updates its struc-
ture and node attributes to reflect the evolving relationships
between stations, such as spatial proximity, functional simi-
larity, and temporal demand patterns. This dynamic modeling
enables the framework to capture the shifting demand pat-
terns. Building upon this, it incorporates two key modules:
i) a knowledge transfer approach that studies the transforma-
tion of embeddings across existing and new stations through
a learnable orthogonal mapping matrix, ensuring the adap-
tation and alignment of spatio-temporal patterns to dynamic
conditions; and ii) a gated selecting vector-based feature fu-
sion mechanism that selectively combines the transferred em-
beddings with the intrinsic features of stations, generating en-
riched and context-aware embeddings for precise predictions.
The contributions of our work are summarized as follows:

* We present a unified dynamic graph framework that up-
dates its structure and node attributes to capture the
evolving spatial and temporal relationships in bike-
sharing networks.

* We propose a novel knowledge transfer approach that
studies the embeddings transformation across existing
and new stations by a learnable orthogonal mapping ma-
trix to address data sparsity in newly added stations.

* We design a gated selecting vector-based feature fusion
mechanism to seamlessly integrate transferred embed-
dings from existing stations with the intrinsic features
of stations. This mechanism minimizes negative trans-
fer while dynamically balancing contributions from both
sources to ensure precise predictions.

» Extensive experiments demonstrate that our model out-
performs other state-of-the-art methods on real-world
public datasets (NYC’s Citi-Bike), showcasing superior
prediction accuracy and robustness for new station de-
mand predictions.

2 Preliminaries

Expanding Bike-Sharing System. An Expanding bike-
sharing system consists of a set of stations V, including ex-
isting stations V4 with historical data and new stations Vg
without historical data. A station v € V is associated with
a feature vector x,, encoding its spatio-temporal and contex-
tual attributes (location, Points of Interest, rental records) and
external factors.

Bike Demand. Bike demand refers to the number of rentals
at a station within a given time interval and is influenced by
spatial and temporal factors. To model these variations, we
represent bike-sharing systems as a dynamic graph, stations
are represented as nodes v; € V' and time steps are ¢. The
demand at station v; at time ¢ is denoted as df. The graph
Gy = (Vi, Ey,W}) evolves, where edges (i,j) € E; cap-
ture demand dependencies with weights wfj reflecting spa-
tial, proximity, and temporal correlations.

Problem Formulation. Given an expanding bike-sharing
system with existing stations V4 that have historical data and
newly deployed stations Vg, the problem of demand predic-
tion is to accurately estimate the hourly demand for all sta-
tions in the bike-sharing network.

3 Methodology

To predict the bike demand in expanding networks, we pro-
pose a framework that combines spatio-temporal feature en-
coding, dynamic graph construction, embedding transforma-
tion, and feature fusion. Illustrated in Figure 2. The following
subsections provide detailed explanations of each component.

3.1 Spatio-Temporal Feature Encoding

To effectively represent the spatio-temporal characteristics of
bike-sharing systems, we encode spatio-temporal features of
stations as the inputs for the graph-based learning framework.

Spatial features X! spatial i Jude Points of Interest (POT) dis-
tributions, distance metrics, and road network connectivity,
as depicted in the spatial feature extraction module in Fig-
ure 2. Edges between nodes capture interdependent relation-
ships such as spatial proximity or functional similarity and
are represented by an adjacency matrix A, which varies tem-
porally over time to reflect dynamic changes. POIs within a
fixed radius (e.g., 500 meters) are categorized and normalized
into a weighted vector representing the station’s functional
environment. Distance metrics, modeled using a Gaussian
decay function, emphasize closer station interactions, while
road network connectivity is captured as binary indicators for
links to key infrastructure.

Temporal features X ™" include normalized historical
demand, weather attributes, and periodic time encodings.
Hourly demand data is normalized across stations to ensure
consistency, while weather features, such as temperature and
precipitation, are processed similarly. The final feature vector

for each station at time ¢ is defined as:
Xf _ [Xf,spatial’ X;‘/,temporal’TaXiﬂ’ (1)

where Taxi} denotes external mobility data, such as taxi trip
records, associated with the station at time ¢.
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Figure 2: Overview of the proposed framework for BGM. Temporal features (e.g., weather, bike trip records) and spatial features (e.g.,
POIs, road network) are encoded to capture dynamic demand patterns. Dynamic graph G = (V, E,T') captures evolving spatio-temporal
dependencies while embedding transformation aligns existing (V4) and new stations (Vg). The feature fusion module combines intrinsic and

transferred embeddings.

This encoding process represents each station as a node
embedding that encapsulates its spatial context, temporal
variations, and external mobility influences, providing a ro-
bust foundation for downstream graph-based learning tasks.

3.2 Dynamic Graph Construction

Dynamic graph modeling captures evolving relationships be-
tween bike-sharing stations by dynamically updating nodes
and edges over time, as represented in the dynamic graph
construction layer of Figure 2. Unlike static graphs, dynamic
graphs adapt to real-time changes in demand patterns and ex-
ternal factors, ensuring relationships remain relevant. Nodes
and edges, as introduced in Section 2, form the foundation
of this model. Each node represents a station, with features
h! derived from X! as defined in Equation (1). Each edge
weight aﬁj is computed as:

a’;j:a~5ij—|—ﬂ~Dij—|—’y-Tfj, 2)

where S;; is the cosine similarity of POI vectors, D;; is spa-
tial proximity based on a Gaussian decay function, and T7; is
temporal demand similarity. Parameters «, 3, and y balance
these factors. Here, 7 and j denote the indices of stations, and
aﬁj captures the relationship between station ¢ and j.

At each time step, A! is updated to reflect changes in de-
mand or external factors. For example, connections between
residential and business district stations strengthen during
peak hours due to increased commuter trips. External factors,
such as weather, further influence edge weights, dynamically
adjusting relationships in real time.

New stations are integrated into the graph by initializing
spatial features based on POI distributions, as shown in Fig-
ure 2. Edges for new stations are created based on functional
similarity and spatial proximity:

aznew = Q- Sinew + B . DmSW7 (3)

where a! . represents the connection strength between an

new
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existing station 7 and a new station. Node embeddings h! are
updated using a graph convolutional network (GCN):

hi*' =0 | Y af,Wh!+b|, )

JEN(4)

where N (i) is the set of neighbors (including i itself), a;
is the edge weight, W is a learnable weight matrix, and o
is a non-linear activation function such as ReLU. This en-
sures that node embeddings dynamically evolve to reflect
both static and dynamic relationships.

3.3 Embedding Transformation

As illustrated in Figure 2, the knowledge transfer process
leverages a learnable orthogonal mapping matrix to trans-
form embeddings from existing stations (V4) to new stations
(VB), facilitating the transfer of spatial and temporal knowl-
edge across the stations. The process begins with identifying
similarities between new and existing stations. For each time
step t, the similarity between a new station ¢ € Vp and an
existing station j € V4 is measured using cosine similarity:

hspatial . hspatial

o P N — ()
) thpanal ” ” h;patlal H ’

where h""! and AP are spatial embeddings derived from
POI distributions, road network connectivity, and taxi trip
data. Cosine similarity is employed to capture proportional
relationships in embedding spaces and adapt to dynamic tem-
poral changes effectively.

Based on Sfj, the top 3 existing stations with the highest
similarity are selected for each time step ¢. Their embeddings
are aggregated as follows:

t 1,7
D jetop3 Sijla

—-
ZjeTop-S Sij

To transfer and align the aggregated embeddings to the new
stations, a learnable orthogonal mapping matrix X is applied:

hiE™(t) = X - up(t), @)

where X is optimized under the orthogonality constraint
X TX = I. This ensures the transferred embeddings preserve
structural integrity and contextual info from existing stations
while adapting to the unique characteristics of new stations.
The knowledge transfer approach leverages transformed
embedding to capture shared patterns of new stations in the
context of the existing network. By dynamically identifying
and aligning spatio-temporal demand similarities, this trans-
formation mechanism effectively mitigates the challenges
posed by data sparsity and evolving station relationships.

ujp(t) = (©6)

3.4 Feature Fusion for Expanded Stations

As illustrated in Figure 2, the feature fusion mechanism inte-
grates transferred embeddings, existing features, and tempo-
ral dependencies to generate representations for new stations.
This process dynamically balances contributions from differ-
ent feature sources, ensuring the final representation adapts to
both spatial and temporal heterogeneity.

The fused feature f; ! dynamically balances transferred em-
beddings (u';(¢)) and orlglnal features (h%;) through a gating
mechanism. It is computed as:

ff =gl O ui(t) + (1 - g!) © hi, ®)

where g! € R? is the gating vector at time ¢, ® denotes
element-wise multiplication, and hiB includes spatial features
such as POIs, road networks, and taxi trip records.

The gating vector g! adjusts the balance between trans-
ferred embeddings and original features based on their joint
features. It is computed as:

g = o(Wylhj;uj(t)] + by), 9)

where [hiy; ul;(t)] represents the concatenation of the two
feature vectors, W is a learnable weight matrix, by is a bias
term, and o is the sigmoid activation function.

A temporal attention mechanism dynamically assigns vary-
ing weights to features from different time steps to effectively
capture temporal dependencies:

exp(q; - k¢)
Yverexp(ay k)’

where q; and k; are the query and key vectors derived from
temporal embeddings, and " denotes the set of time steps.

The final fused feature integrates spatial, temporal, and
dynamic relationships, ensuring robustness in predicting de-
mand at stations. The fused feature f! serves as the input to
the demand prediction module, combining transferred knowl-
edge (ujé( )) and station-specific features (h ). This repre-
sentation effectively addresses data sparsity while preserving
station-specific characteristics.

(10)

ay =

3.5 Loss Function

The total loss function consists of spatial alignment loss L,
temporal alignment loss £, and prediction loss L,,.

The spatial alignment loss L aligns embeddings with sim-
ilar demand patterns using a contrastive approach:

-h
Z%k IOg k/T)
i=1 k=1 < hy /7')

where 2! is the node embedding of station i, hy, is a proto-
type vector, and 7 is a temperature parameter.

The temporal alignment loss £; ensures consistency across
consecutive time steps:

exp(

(11)
1exp(

Zloga bt (12)

where o is the sigmoid function.
The prediction loss £, minimizes the mean squared error
(MSE) between predicted and actual demand:

1 N
=~ D> vt =il (13)
=1

where y! is the actual demand and ! is the predicted demand.
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POI type Number POI type Number
Establishment 75,258 Car service 1,164
Education 2,978 Supermarket 4,362
Shopping mall 220 Entertainment 1,065
Store 30,407 Bus station 2,120
Lodging 1,350 Railway station 1,222
Home service 1,247 Finance 8,670
Convenience 10,608 Estate agency 6,092
Health center 45914  Restaurant 12,642
Night life 4,404 Travel agency 1,707
Fitness 1,452

Table 1: POI Data from Google Place API

4 Experiments

In this section, we present the implementation details and
dataset descriptions, followed by the evaluation metrics and
baseline methods used for comparison. We then conduct ex-
tensive experiments to assess the performance of BGM, in-
cluding comparisons with baseline models, ablation studies,
and robustness analysis under different expansion scenarios.

4.1 Implementation Details

Training. The training process involves three steps: (i) com-
puting embeddings using the dynamic graph, (ii) refining
embeddings with spatial and temporal alignment losses, and
(iii) predicting demand using a multi-layer perceptron (MLP).
The spatial alignment loss (Ls) encourages stations with
similar demand to share representations, while the tempo-
ral alignment loss (£;) ensures consistency across consecu-
tive time steps. The refined embeddings are then fed into
an MLP for demand prediction at ¢ + 1, represented as
Z141,n = MLP(h,,), where h,, is the station embedding. The
overall training objective is given by Ligine = £, + L5 + Ly
The model is trained using the Adam optimizer, with a batch
size of 64, the learning rate of 1 x 10~3, and 200 epochs
with early stopping, running on an NVIDIA RTX 4090 GPU.
The model implementation is available at: https://github.com/
YixuanColt/BSS-BGM.git.

4.2 Data Description

To evaluate our model, we collected five datasets !, inte-
grating bike-sharing operational data with meteorology, POI,
road network, and NYC taxi trip records. While these sources
collectively provide essential input features for model train-
ing, our performance evaluation primarily focuses on bike-
sharing operational data from NYC Citi-Bike and Chicago
Divvy-Bike, as presented in Table 2.

Bike-Sharing Data. The dataset includes operational records
from the NYC Citi-Bike sharing systems over one month
(January 1 to 31, 2018). The NYC Citi-Bike data consists
of two primary components: 1) trip records for rentals and re-
turns at each station, and ii) station-level details, e.g., spatial
and temporal information.

Meteorology Data. The meteorological data was collected
from the NYC Mesowest database, providing historical daily

"https://opendata.cityofnewyork.us/

weather records. Each record describes the weather con-
ditions, categorized into four main types: sunny, overcast,
rainy/snowy, and extreme weather conditions.

POI & Road Network Data. The POI data were collected
from online mapping service providers in NYC (Google Place
API). Table 1 shows the details. Besides, road network data
was collected from NYC Open Data for further analysis.
NYC-Taxi. The dataset contains detailed trip records of yel-
low taxis in New York City. Each trip record includes the
pick-up and drop-off times and the corresponding latitude and
longitude of these locations.

4.3 Evaluation Metrics and Compared Methods

Evaluation metrics. There are two performance metrics em-
ployed for evaluating our model, the Root Mean Square Er-
ror (RMSE) and Mean Absolute Error (MAE). These metrics
collectively provide a robust framework to assess our model’s
capability to capture subtle variations in the data.
Compared methods. We select seven methods for compari-
son in this study. These methods are described as follows:

e Linear Regression (LR) [Singhvi et al., 2015]: Predicts
bike demand using taxi, weather, and spatial features
with neighborhood-level aggregation.

e Spatial Regression (SR) [Faghih-Imani and Eluru,
2016]: Models spatial lag and error structures to capture
spatio-temporal dependencies in demand.

o Function Zone (FZ) [Liu et al., 2017]: Clusters stations
into functional zones and predicts zone-level transitions
using Random Forest and ridge regression.

e GraphSAGE (SAGE) [Hamilton er al., 2017]: Aggre-
gates neighborhood features inductively, enabling gen-
eralization to unseen stations.

e IGNNK (N2K) [Wu et al., 2020]: Learns spatial mes-
sage passing via subgraph reconstruction to interpolate
unsampled nodes and generalize across dynamic graphs.

e TrafficStream (TS) [Chen et al., 2021]: Integrates con-
tinual learning with spatio-temporal graph networks for
adaptive model updating over dynamic traffic data.

o Spatial-MGAT (MGAT) [Liang er al., 2023a]: Captures
spatial dependencies through multi-graph attention on
proximity and built environment similarity.

4.4 Comparison with Baselines

The comparative analysis of demand prediction models for
bike-sharing system expansion, using data from NYC Citi-
Bike and Chicago Divvy-Bike, highlights the superior perfor-
mance of advanced spatio-temporal models over traditional
baselines. As shown in Table 2, traditional models like lin-
ear regression and spatial regression exhibit higher RMSE
and MAE values at both existing and new stations, indicating
limitations in capturing complex and dynamic bike-sharing
demand patterns. The Function Zone model performs bet-
ter by clustering stations based on spatial features, reflecting
the importance of functional heterogeneity in urban demand.
GraphSAGE improves upon traditional methods by enabling
inductive learning over unseen stations, but limited tempo-
ral modeling yields suboptimal results. IGNNK enhances
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NYC Citi-Bike

Chicago Divvy-Bike

Model Existing stations New stations Existing stations New stations
RMSE () MAE({) RMSE({) MAE({) RMSE({) MAE({) RMSE({) MAE(()

Linear Regression 1.9327 1.1366 2.3631 1.9827 2.6391 2.1302 2.9233 2.3041
Spatial Regression 1.9331 1.1327 2.3419 1.9223 2.6201 2.1038 2.8904 2.2033
GraphSAGE 1.8973 1.1175 2.1708 1.6893 2.5477 2.1290 2.7532 2.1993
IGNNK 1.8821 1.1026 1.9427 1.1530 2.4803 2.0181 2.6273 2.1731
Function Zone 1.8733 0.9024 1.9135 1.3661 2.3776 1.9032 2.5375 2.1394
TrafficStream 1.7802 0.8521 1.8623 1.1783 2.2569 1.7758 2.4890 2.0842
Spatia- MGAT 1.7524 0.8279 1.8302 0.9902 2.2389 1.7523 2.4339 1.9832
BGM (Ours) 1.4847 0.7524 1.5138 0.8513 2.0311 1.6492 2.3106 1.7107

Table 2: Overall Performance of Demand Prediction for Bike-sharing System Expansion. The best results are marked in bold.

prediction accuracy via subgraph reconstruction and spatial
message passing, showing strong performance especially at
new stations. TrafficStream integrates continual learning
with spatio-temporal graph networks, offering robust results
across dynamic settings but limited transferability to newly
added stations. Spatial-MGAT further advances performance
by capturing fine-grained spatial dependencies through multi-
graph attention, especially under sparse training data. Over-
all, while each method contributes uniquely, none achieves
the consistent accuracy and adaptability demonstrated by
BGM across all scenarios.

The proposed BGM framework demonstrates the best over-
all performance, achieving the lowest RMSE and MAE val-
ues across all NYC and Chicago datasets. Its ability to
dynamically model evolving network structures, integrate
spatio-temporal interactions, and facilitate knowledge trans-
fer between existing and new stations makes it a robust so-
lution for enhancing transportation accessibility, optimizing
bike-sharing resource allocation, and supporting sustainable
urban growth. As shown in Table 2, BGM highlights the im-
portance of embedding transformation, feature fusion, and
dynamic graph modeling in designing intelligent, fair, and
scalable urban mobility systems. By improving demand pre-
diction, BGM supports equitable infrastructure expansion and
better decision making for urban planners, addressing the
broader societal goal of inclusive, data-driven, and future-
ready transportation development.

4.5 Ablation Studies

In this section, we conduct ablation studies to evaluate the
contributions of key components in the BGM model by test-
ing three variants: W/O DM (without dynamic graph mod-
eling), W/O ET (without feature embedding transformation),
and W/O FF (without feature fusion). By systematically re-
moving each component, we analyze their impact on model
performance. As shown in Figure 3(a) and Figure 3(b),
BGM achieves the lowest RMSE and MAE values across all
datasets, with a 13.8% improvement over W/O ET, confirm-
ing the critical role of embedding transformation in demand
prediction. Among the variants, W/O ET exhibits the most

significant performance drop, underscoring the crucial role of
embedding transformation in refining feature representations
and enhancing predictive accuracy. The W/O DM and W/O
FF variants also show declines, highlighting the importance
of dynamic graph modeling and feature fusion in capturing
spatial-temporal dependencies and optimizing prediction per-
formance. These results confirm that all three components are
essential for maintaining robustness and precision.

4.6 Robustness Analysis

To evaluate the performance and robustness of the BGM
model under different expansion scenarios, we designed two
experiments focusing on growth rates and expansion patterns.
This analysis not only evaluates how the model and baseline
methods perform under different network growth speeds but
also addresses a critical societal challenge: ensuring the scal-
ability and sustainability of bike-sharing systems in the face
of rapid urbanization. The first experiment investigates the
impact of varying growth rates while maintaining a fixed ex-
pansion pattern. As shown in Figure 3(c) and Figure 3(d),
BGM consistently outperforms all baselines across existing
and new stations. For instance, BGM achieves an RMSE of
1.78 and an MAE of 0.90 at a 15% growth rate. Even at
30% growth, BGM maintains a low RMSE of 1.75 and 0.87,
outperforming all baselines. These results confirm that BGM
adapts effectively to varying expansion rates, ensuring stable
demand predictions in dynamic urban environments.

The second experiment examines the impact of different
expansion patterns, directly addressing a key societal chal-
lenge: ensuring equitable access to bike-sharing services
across diverse urban areas. Two patterns are considered: lo-
calized expansion, as shown in Figure 3(e), where new sta-
tions are distributed near existing networks to enhance con-
nectivity, and regional expansion, as shown in Figure 3(f),
where new stations are introduced in disconnected areas to
improve accessibility in underserved regions. Results in
Figures 3(g) and 3(h) show that BGM achieves the lowest
RMSE and MAE in both scenarios, demonstrating robust-
ness. Specifically, for localized expansion, BGM records
an RMSE of 1.51 and an MAE of 0.83, outperforming the
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Figure 3: Ablation studies on the (a) NYC Citi-Bike and (b) Chicago Divvy-Bike datasets, showing RMSE and MAE for different variants.
Prediction performance of competing approaches under different expansion rates (c) RMSE and (d) MAE. Visualization of different expansion
patterns, (e) localized expansion, and (f) regional expansion. Prediction performance under (g) localized and (h) regional expansion patterns.

second-best model. It still performs well under regional ex-
pansion, with RMSE 1.73 and MAE 1.10, where historical
data is scarce. These findings highlight the model’s ability to
support equitable and efficient mobility resource distribution,
advancing broader goals of urban sustainability and inclusion.

5 Related Work

Demand Prediction for Bike-Sharing Systems. In recent
years, bike-sharing demand prediction has evolved signifi-
cantly. Early studies using time-series models like ARIMA
and SARIMA captured temporal patterns but neglected spa-
tial dynamics [Li et al., 2019]. Cluster-based methods im-
proved short-term forecasts by grouping stations with simi-
lar demands, incorporating geographic and historical features
[Chen et al., 2016; Lahoorpoor et al., 2019]. Station-level
models integrated external data such as weather and events
but faced challenges at data-sparse locations [Yu et al., 2023].
Advanced approaches, including spatio-temporal graph con-
volutional networks (STGCNs), effectively modeled spatial-
temporal dependencies [Xiao et al., 2021; Ma et al., 2022;
Tang et al., 2021], while TrafficStream introduced stream-
ing GNN frameworks with continual learning for large-scale
forecasting [Chen er al., 2021]. Reinforcement learning opti-
mized operations in real-time settings [Demizu et al., 2023].
Bike-Sharing Systems Expansion. There is a substantial
body of research dedicated to modeling the expansion of
bike-sharing systems, such as planning optimal locations for
new stations [Li and Zheng, 2020; Liang et al., 2024] or en-
hancing the capacity of existing stations [Liang et al., 2023b;
Liang er al., 2023al. However, much of this existing work as-
sumes that the demand patterns for new stations will closely
resemble those of existing stations, which differs significantly
from our proposed approach. For example, the method in
[Liu et al., 2017] proposed a zone-based hierarchical demand
model to estimate average demand at newly added stations

during different stages of expansion.

Dynamic Graph Modeling. Spatio-temporal graph networks
capture dynamic spatial and temporal station relationships.
RNN-based methods [Yu et al., 2017; Kapoor et al., 2020;
Roy er al, 2021; Ghosh er al,, 2020] use recurrent and
graph convolutions but suffer inefficiency and gradient issues.
CNN-based approaches [Mohamed et al., 2020; Zhang et
al., 2022] enhance efficiency via graph and 1D convolutions
yet risk oversmoothing. Inductive GNNs like GraphSAGE
[Hamilton et al., 2017] and IGNN [Wu et al., 2020] enable
scalable learning on large or incomplete graphs. Adaptive
graph learning [Zheng et al., 2023] and transformer architec-
tures [Jin et al., 2023] further improve modeling of dynamic
and long-range dependencies.

6 Conclusion

In this paper, we proposed a novel framework BGM, designed
to address the challenges of demand prediction in expand-
ing bike-sharing systems. Built on dynamic graph modeling,
BGM captures evolving spatio-temporal dependencies and
enhances knowledge transfer to new stations through embed-
ding transformation. The gated feature fusion mechanism op-
timally integrates transferred and intrinsic features, reducing
negative transfer and ensuring accurate predictions with min-
imal historical data. Beyond technical advancements, BGM
directly addresses societal challenges such as optimizing re-
source allocation, promoting equitable access to mobility, and
supporting the sustainable expansion of urban transportation
networks. Experiments on real-world datasets demonstrate
that BGM outperforms existing methods, providing action-
able insights for urban mobility planning. Future work will
explore extending BGM to other urban systems and incorpo-
rating multi-modal data, further enhancing its societal impact
in dynamic and diverse urban contexts.
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