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Abstract

Tensor network has been a promising numerical
tool for computational problems across science and
Al For their emerging and fast development espe-
cially in the intersection between Al and science,
this paper tries to present a compact review, re-
garding both their applications and its own recent
technical development including open-source tools.
Specifically, we make the observations that tensor
network plays a functional role in matrix compres-
sion and representation, information fusion, as well
as quantum-inspired algorithms, which can be gen-
erally regarded as Science4Al in our survey. On the
other hand, there is an emerging line of research in
tensor network in Al4Science especially like learn-
ing quantum many-body physics by using e.g. neu-
ral network quantum state. Importantly, we unify
tensorization methodologies across classical and
modern architectures, and particularly show how
tensorization bridges low-order parameter spaces to
high-dimensional representations without exponen-
tial parameter growth, and further point out their
potential use in scientific computing. We conclude
the paper with outlook for future trends.

1 Motivation and Contribution

Tensor networks (TNs) have become a powerful computa-
tional tool for efficiently representing and processing high-
dimensional data structures, playing a crucial role in address-
ing the growing complexity of problems both in artificial in-
telligence (AI) [Wall and D’Aguanno, 2021; Liang er al.,
2024; Su et al., 2024] and scientific research [Bachmayr et
al., 2016; Schiitt et al., 2017; Orts, 2019]. TN is essentially a
network of tensors, which are high-dimensional arrays, con-
nected by contractions along shared indices. Each tensor can
be visualized as a node, and the indices or legs represent the
dimensions along which tensors are connected or contracted.
The power of TN lies in their ability to decompose and repre-
sent large data structures with potentially exponentially fewer
parameters compared to what would be required without such
structured decomposition [Bridgeman and Chubb, 2017].

*Correspondence author.

The inception of TNs is rooted in the realm of quantum
physics, where they were originally developed as tools to
solve the many-body quantum systems problem [Orus, 2019;
Yuan er al., 2021]. Their ability to factorize high-dim ten-
sors into more manageable lower-dim components allows
them to become indispensable in science especially physics.
This factorization inherently resolves the curse of dimen-
sionality, converting an exponential set of variables into
a polynomial scale. Consequently, TNs have transcended
their traditional boundaries and have become instrumental in
general Al, from data science [Oseledets, 2011; Lu et al.,
2021] to machine learning [Stoudenmire and Schwab, 2016;
Xiong et al., 2024], and more recently in the design and opti-
mization of ATl models [Lu ef al., 2021; Xiong et al., 2025].

In AL TNs enable the efficient handling of high-order cor-
relations in data, a task where traditional linear methods may
fall short. They have been successfully integrated into the
training processes of neural networks [Kossaifi et al., 2020;
Panahi et al., 2020], providing substantial reductions in pa-
rameter sizes through tensor decompositions—such as the
Canonical Polyadic, Tucker, and Tensor Train decomposi-
tions—while preserving model expressiveness. This integra-
tion is not only computationally efficient but also enhances
model scalability, as cited in recent studies that highlight re-
ductions in operational complexities in deep learning archi-
tectures while maintaining or even enhancing accuracy [Kos-
saifi et al., 2020; Wang et al., 2023].

The utilization of TNs in scientific contexts is equally
transformative. In fields like material science and quantum
computing, they facilitate precise simulations of molecular
interactions and quantum states, processes that are otherwise
computationally prohibitive [Simeon and De Fabritiis, 2024].
For example, TNs allow for the simulation of quantum cir-
cuits through matrix product states and operators, enrich-
ing scientific insights with computational models that mirror
physical behaviors [Phan et al., 2018].

The adoption of TNs in both AI and scientific research
underscores a critical paradigm shift: the recognition that
high-dimensional data and complex correlations can be sys-
tematically captured through structured and physics-inspired
decompositions. However, this interdisciplinary subject has
also exposed gaps in understanding how TNs fundamentally
unify principles from science and Al. A key motivation of this
survey lies in revealing a picture that empowers researchers to
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Notations Descriptions

[) The Dirac notation of a pure quantum state.
P The density matrix / operator.

1 Identity matrix.

® Tensor product.

X Mode-n product.

% Imaginary unit.

|a, b The abbreviation of |a) ® |b).

R Field of real numbers.

C Field of complex numbers.

Table 1: Summary of notations used in the paper.

leverage TNs not merely as algorithmic tools but as concep-
tual bridges between disciplines. The paper highlights:

1) Al4Science: TNs synergize with deep learning to model
high-dimensional quantum systems, enabling precise sim-
ulation of entanglement dynamics and material properties
beyond classical computational limits.

2) Science4Al: TN-inspired tensor decompositions com-
press high-dimensional Al models, with the potential of
reducing model’s size while preserving expressivity and
enhancing efficiency through multilinear algebraic priors.

2 Preliminaries on Tensor Network

Normal letters represent scalars (e.g., a). Bold lowercase let-
ters represent vectors (a). Bold uppercase letters denote ma-
trices (A). Calligraphic uppercase letters are used for tensors
(T), which generalize matrices to higher dimensions. The
description of the notations are given in Tab. 1.

2.1 Tensor Operations and Notations

An element of a high-order tensor can be accessed by
multiple indices. E.g., an element Tj;, of a 3-D ten-
sor 7 € R™*"XP can be accessed by the indices ¢ €
{1,2,...,m},j€{1,2,...,n}and k € {1,2,...,p}.
Tensor Product: It generalizes the outer product of vectors.
For two tensors A € R1*2 agnd B € R71*72 the outer
product produces a higher-order tensor C € RI1x[2x/ixJ
with elements:

Ci17i2~,j1-j2 = AilyiQleﬂjQ
Tensor product is essential in TNs, combining tensors into
higher-dimensional structures.
Mode-n Multiplication: It is a generalization of matrix mul-

tiplication. Given a tensor 7 € RI1X*IN and a matrix
A € R7»*In mode-n multiplication is defined as:

(T X A)iresin 1 i singtsesin = Z Tiv,in Ay -
in

This is crucial in tensor decompositions like Tucker decom-
position, enabling the manipulation of high-dimensional data.

2.2 Tensor Decomposition

Tensor decomposition techniques factorize a high-order ten-
sor into a product of lower-order tensors, similar to singu-
lar value decomposition (SVD). These decompositions help

approximate tensors with lower-rank components, reducing
computational complexity.

Canonical Polyadic (CP) Decomposition: It expresses a
tensor as a sum of rank-1 tensors. For a 3-D tensor 7 €
RI*I*K "the CP decomposition is:

R
T~) a @b ®c,

r=1

where a, € RI, b, € R”7, and ¢, € RX, and R is the rank
of the decomposition, i.e., the number of components in the
low-rank approximation.

Tucker Decomposition: Ass a more flexible tensor factor-
ization method, it decomposes a tensor into a core tensor and
factor matrices. For 3D 7~ € R/*/*K 'jts decomposition is:

T~Gx1Ax,Bx3C,

where G € RFE1xf2XRs jg the core tensor. A € RI*M,
B € R/*E2 and C € RE*Es factor matrices.

Tensor Train (TT) Decomposition: The Tensor Train de-
composition approximates high-dimensional tensors by a
chain of low-rank tensors. For a 3D tensor 7 € RIXJXK,
the TT decomposition is expressed as:

TQ'J § Am X1 Brl,rz X9 C’I‘27

71,72

where A, € RI*™ B, ., € R"*/*"2 and C,, € R™*K
are the factor tensors.

3 Tensor Network for Science & Engineering

TNs have been an effective tool for science, especially in
quantum mechanics related areas, e.g., chemistry, quantum
many-body physics, quantum field theory etc. In this section,
we primarily focus on the applications of tensor networks in
the efficient simulation of quantum many-body systems and
the calculation of the ground state. We in general take an
Al4Science perspective in this section.

3.1 MPS and PEPS in Quantum Systems

TNs have become essential for simulating quantum many-
body systems as they efficiently represent complex quantum
states by decomposing them into smaller, manageable ten-
sors. These networks are especially powerful when dealing
with larger many-body systems, where traditional methods
like exact diagonalization or full wave function representa-
tions are computationally prohibitive. Matrix Product States
(MPS, Fig. 1a) and Projected Entangled Pair States (PEPS,
Fig. 1c) are most widely used among the various types of
TNs, as they provide powerful tools for simulating quantum
systems, particularly in low-dimensional settings.

MPS is a subclass of TNs that represent quantum states
on a one-dimensional lattice. The quantum state is repre-
sented as a product of matrices associated with each lattice
site, with their contraction yielding the wave function. MPS
is particularly useful for one-dimensional systems or sys-
tems with weak entanglement, where the state can be effi-
ciently approximated using relatively low bond dimensions.
Specifically, an MPS representation of a quantum state |1))
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Figure 1: Schematic diagram of several Tensor Networks commonly
used in science: (a) Matrix Product States (MPS); (b) Matrix Product
Operators (MPO); (c) Projected Entangled Pair States (PEPS); (d)
Projected Entangled Pair Operators (PEPO).

on a chain of L sites for open boundary conditions takes the
form [Schollwock, 2011]:

Wy = > ATA%...

01,.-,0L

A%Floy, ... 0L). ¢))

Here, A are tensors of dimension D x D x d, with d the di-
mension of the local Hilbert space and D the bond dimension
governing the amount of entanglement captured. MPS have
proven highly efficient for simulating one-dimensional sys-
tems, as they allow for a compact representation of quantum
states with polynomial scaling in L and D.

PEPS, on the other hand, is a more general class of TNs
suited for two-dimensional systems. PEPS represents quan-
tum states on a two-dimensional lattice and extends the MPS
by using tensors that have additional indices corresponding
to the two-dimensional grid. These tensors are connected
in a way that mimics the structure of quantum entanglement
across a 2D lattice [Ords, 2014]. A PEPS representation of a
quantum state on a lattice of L x L sites takes the following

form:
=> > II4

{oi} ai,j i,J

0ij) 2

Each tensor Ag.? at position (i,j) isad x D x D x D
tensor (where D is the bond dimension), and the network
structure allows for an efficient representation of the wave-
function. PEPS are particularly well-suited for represent-
ing strongly correlated systems, such as those occurring in
higher-dimensional lattice systems, and for capturing com-
plex patterns of entanglement.

While MPS is highly efficient for one-dim systems, PEPS
provides a natural extension for higher-dim systems, where
the entanglement is generally more complex and cannot be
simply captured by MPS representation. Both MPS and PEPS
are part of the broader TN framework, which allows for the
efficient representation and manipulation of quantum states.
Besides, neural network-based models have been investigated
recently in representing and simulating quantum systems and
demonstrate superior performance in tasks such as tomogra-
phy [Quek et al., 2021], properties prediction [Tang ef al.,
2024; Tang et al., 2025] and quantum sensing [Cimini et al.,
2021]. Furthermore, hybrid models that integrate the physical
priors of TNs with the expressive power of neural networks

have been proposed [Chen et al., 2023], offering a promising
avenue for simulation of complex quantum systems.

3.2 TNs for Ground State Calculations

One of the primary applications of MPS and PEPS is the
calculation of the ground state of quantum many-body sys-
tems. The general approach to finding the ground state us-
ing MPS or PEPS involves expressing the Hamiltonian in
the corresponding TN formalism (MPO for MPS and PEPO
for PEPS), and then minimizing the energy expectation value
through variational optimization.

For MPS, the ground state |¢) is approximated by itera-
tively optimizing the tensors A at each lattice site. The
ground state energy is minimized by adjusting the tensors to

lower the expectation value F = 0@11}\[1%) . The primary tech-

nique used in this optimization is the Density Matrix Renor-
malization Group (DMRG) method, which has proven to be
highly efficient for one-dimensional systems [Schollwock,
2011]. For example, for the antiferromagnetic Heisenberg
chain, the system Hamiltonian His:

L— 1
H= Z SjSZ+1+ 5 Sty + 28785, —hy_S:.

=1
3)
The Hamiltonian can also be represented by sums. of tensor
products of operators, H=J* Sl ® 52 RIRIQI--+1®

J ZSQ ® 53 @I®I- , which directly corresponds to
Matrix Product Operators (MPO, Fig. 1b).

DMRG optimizes the MPS by adjusting the tensors at
each site through alternating sweeps over the system. At
each site, a local eigenvalue problem of the tensor is solved,
and the MPS is updated using Singular Value Decomposi-
tion (SVD) to maintain the desired bond dimension. This
iterative optimization continues until the energy converges
to its minimum. DMRG is particularly efficient for one-
dimensional systems and can handle large systems with hun-
dreds of sites. However, its applicability is relatively limited
for systems with long-range interactions or in higher dimen-
sions, where the entanglement grows more rapidly and MPS
may not efficiently capture the full complexity of the quantum
state [Markov and Shi, 2008].

For PEPS, the Hamiltonian is expressed as a Projected En-
tangled Pair Operator (PEPO, Fig. 1d), which is a generaliza-
tion of the MPO for two-dimensional systems. The PEPO
facilitates the calculation of the energy expectation value
(| H|v) through the contraction of the PEPO and PEPS ten-
sors [Ords, 2014]. Similar to MPS, the PEPS tensors are op-
timized iteratively to minimize the energy. The optimization
process involves adjusting the tensors at each lattice site while
keeping the others fixed, alternating between different sweeps
over the lattice to ensure convergence to the ground state.

4 Tensor Network for Machine Learning

TNs have become a powerful tool in machine learning, offer-
ing improvements in both efficiency and expressiveness. This
chapter focuses on two main applications: compressing neu-
ral network weights and parameter-efficient fine-tuning, and
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using tensor networks for expressive data representation that
captures local and global correlations in tasks like network
embedding and multimodal fusion. In this section, we try to
take a Science4 Al perspective.

4.1 TN for Weighted Matrix Compressing

In neural networks, the trainable parameters are typically rep-
resented as matrices or higher-order tensors with considerable
size, which introduce significant computational and resource
challenges. Moreover, as the model becomes more complex,
there is a higher risk of overfitting, which can negatively im-
pact the model’s ability to generalize to unseen data.

Recent research has shown that generalization can be im-
proved by restricting or refining the degrees of freedom
within these high-dimensional tensors. Shallow tensor net-
work methods, such as MPS [Perez-Garcia et al., 2007] and
MPO [Pirvu et al., 2010], offer an elegant solution by rep-
resenting these large tensors more compactly, achieving re-
markable compression rates without sacrificing performance.
The underlying principle is that a dense weight matrix is
redundant for accurate linear transformations in neural net-
works due to the predominantly short-range correlations in
data. For instance, in a fully connected layer, the rank of
the weight matrix is inherently constrained due to short-range
correlations or entanglements among input pixels [Denil et
al., 2013]. Consequently, a lower-rank matrix can efficiently
substitute the original without loss of predictive performance.

Many works have studied the efficiency of tensorizing the
components of neural networks to bridge low-order parame-
ter spaces to high-dimensional representations. For example,
the MPO representation can significantly reduce the num-
ber of variational parameters, as its parameter count scales
linearly with system size. [Gao er al., 2020] proposed to
use MPO to represent linear transformation matrices in deep
neural networks, and their results show MPO cannot only
improve the efficiency in training and reduce the memory
space, but also slightly improve the test accuracy using much
fewer number of parameters than in the original networks.
Specifically, they first reshape the weight matrix W into
a 2n-indexed tensor W, ;. ;. . ; . The MPO representa-
tion of W is obtained by factorizing it into a product of
n local tensors Tr (w™ [j1,i1]w® [ja,d2] - -+ w™[f, 4n]),
where w®) [Jk,ix] is @ Dg—1 X Dy matrix. The tensor ele-
ments of w(k) , instead of the elements of W, are the vari-
ational parameters in the training procedure of deep neural
networks. The number of parameters increases with the in-
crease of the bond dimension D;,, which serves as a tunable
parameter that controls the expressive power.

[Qing et al., 2023] proposed automatically differentiable
tensor network (ADTN), which encodes the variational pa-
rameters into the contraction of tensor networks that con-
tains exponentially fewer parameters, and utilizes automatic
differentiation technique to reach the optimal accuracy after
compression. The experiments showed that they can com-
press two linear layers in VGG-16 with approximately 107
parameters to two ADTN’s with just 424 parameters, where
the testing accuracy on CIFAR-10 is improved from 90.17%
to 91.74%. [Xie et al., 2024] leveraged the emerging tensor

ring (TR) factorization to compress the neural network and
proposed an approach based on prime factorization that si-
multaneously identifies the optimal tensor reshaping and TR
decomposition. To identify the optimal execution order, they
construct a novel tree structure to schedule the execution of
core tensors, minimizing computational complexity.

Pre-trained large language models (LLMs) have revolu-
tionized natural language processing (NLP) across various
tasks. However, as model sizes continue to grow, full fine-
tuning becomes impractical due to its high computational and
memory costs. To address this challenge, parameter-efficient
fine-tuning (PEFT) techniques have been developed, allow-
ing model adaptation by updating only a small subset of pa-
rameters. Low-Rank Adaptation (LoRA) [Hu et al., 2021]
is a classic PEFT methods, which fine-tunes LLMs by intro-
ducing low-rank matrices into the pre-trained model’s weight
updates. Recently, some research has extended LoRA us-
ing tensor-based techniques [Bershatsky et al., 2024] to re-
duce the number of trainable parameters within the low-rank
framework. Considering that low-rank approximations may
sometimes result in a performance gap compared to full fine-
tuning, especially for complex tasks, QuanTA [Chen er al.,
2024] introduced a novel efficient high-rank fine-tuning in-
spired by quantum circuit structures, surpassing the limita-
tions of LoRA. However, the hyperparameters in QuanTA,
such as the number of tensors applying on the same axes,
have not been optimized. Therefore, choosing an optimal set
of tensors could further enhance their performance.

The requirement for precise tensor-rank selection and ef-
fective decomposition strategy poses computational and al-
gorithmic hurdles, often leading to NP-hard problem. The
permutation of tensor entries and the selection of optimal
tensor-rank configurations can impact the efficacy drastically,
necessitating efficient heuristic approaches [Li et al., 2022].
Despite these challenges, recent works in TN structure search
algorithms, e.g. Alternating Local Enumeration (TnALE) [Li
et al., 2023], offer promising pathways to avoid combinato-
rial explosion and prove exponentially convergence speedup
compared to previous study [Li et al., 2022].

4.2 TN for Expressive Representation

TNs also provide a mathematically grounded framework for
efficient representation learning, inspired by the tensor prod-
uct of n quantum states, which spans a 2"-dimensional
Hilbert space. By strategically composing low-dimensional
sub-tensors, these models achieve exponential parameter
compression while preserving high-dimensional semantic re-
lationships. This dual capability to capture both local interac-
tions and global correlations makes them highly expressive.

In natural language processing, the word2ket [Panahi et
al., 2020] method decomposes word embeddings into rank-
r order-n entangled tensors using the formulation:

v = i évjk with v, € RY. 4)

k=1 j=1

It reduces the storage complexity of traditional d x p embed-
ding matrices from O(dp) to O(rnqlogp/q). It has shown
significant space savings in text summarization tasks.
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Extending node2ket [Xiong ef al., 2024] to the setting of
network embedding, the framework constructs node repre-
sentations as product states across orthogonal subspaces:

c
X; = ®uic where HUZ‘CHQ = 1, (5)
c=1
enabling multi-scale relationship modeling through hierarchi-
cal inner products:

C

(xi,x;) = H(uic, W), (6)
c=1
where (-, -) denotes the inner product operation. This archi-
tecture has been successfully applied to large-scale networks,
achieving high accuracy in tasks such as network reconstruc-
tion and node classification.

Emerging extensions integrate TNs with deep architec-
tures, notably through quantum-inspired dynamic rank adap-
tation [Hua er al., 2022] and hybrid tensor-transformer de-
signs [Ma et al., 2019], enabling TN as a unifying paradigm
for high-dimensional representation learning.

TNs with their multilinear structure and efficient data rep-
resentation, can capture complex relationships within data
while reducing computational complexity. Compared to tra-
ditional DNNs, TNs show promise in tasks like multimodal
data fusion [Baltrusaitis ef al., 2019]. Integrating TNs could
improve the performance of deep learning models and ad-
dress some of their limitations.

TNs have proven to be a powerful tool for efficiently
representing and fusing high-dimensional data. Zadeh et
al. [Zadeh et al., 2017] introduced TNs with deep information
fusion layers, named Tensor Fusion Layers (TFLs), for mul-
timodal sentiment analysis. TFLs were designed to capture
both intra-modality and inter-modality dynamics, effectively
aggregating multimodal interactions, which was crucial for
tasks like multimodal sentiment analysis involving text, vi-
sual, and acoustic data.

TFL begins by embedding the three vectors z;, z,,, and z,
for each modality, rather than use raw data types. It then con-
catenates a scalar 1 with each of these embedded vectors:

Zi; = [Z;I" 1]7 Z; = [ZI’ 1]‘

Z; N [Z;r ) ],
Next, it computes the outer product of these concatenated
vectors to form a feature tensor Z:

Z=z,Rz7 Q1z,.

This tensor is subsequently processed by a two-layer fully
connected neural network to produce a prediction. The TFL
captures both unimodal and multimodal interactions, making
it more expressive than simple concatenation-based fusion,
which only models unimodal interactions.

However, while TFLs offer strong fusion capabilities,
their computational complexity increases exponentially as
the number of modalities increases, which can lead to in-
efficient training. To address this, Low-Rank Multimodal
Fusion (LMF) [Liu et al., 2018] was introduced to reduce
the computational burden and overfitting risk. LMF em-
ploys a special BTT (block term decomposition) layer, re-

ducing the complexity of the TFL from O (Hf\:{:l dm) to

0] (dh Z%Zl dm), where d,, represents the dimensions of
each modality, and dj, is the hidden dimension.

Though TFL and LMF show improved fusion, they restrict
the order of interactions, which leads to a loss of higher-order
interaction information. To tackle this issue, the Polynomial
Tensor Product (PTP) [Hou et al., 2019] block is proposed.
PTP merges all feature vectors into a long feature vector:

Zio.n = (2] 3295 12).

It then creates a polynomial feature tensor of degree P as:

P
7" =219 Q212 pf D .

This tensor is processed by a tensor layer, such as a CP
(canonical polyadic) layer, to model high-order interactions:

h =ReLU (FEN(W1z13..015 -+ ; Wpz12..a13 A)) ,

where W are weight matrices and A is a learnable diagonal
matrix. The PTP block, similar to deep polynomial neural
networks, captures all nonlinear and high-order interactions.

In addition to multimodal data fusion, TNs can also cap-
ture high-order relationships within each modality. For ex-
ample, in image-sentence matching tasks, TNs help overcome
the limitations of traditional methods, which typically match
global features in a shared space, neglecting intra-modality
dynamics. The Cross-Modal Hybrid Feature Fusion (CMHF)
framework [Xu et al., 2021] directly learns image-sentence
similarity by fusing multimodal features with both inter- and
intra-modality relations. By using flexible attention mech-
anisms, TNs capture fine-grained interactions within each
modality, improving the overall similarity learning process.
Therefore, even outside of multimodal tasks, TNs are still
highly effective in general machine learning. In these cases,
TNs can be applied in a similar manner to decompose and re-
assemble feature vectors at each layer, capturing higher-order
interactions between the data.

S Tensor Network Development and Tools

Computational techniques and tools essential for efficiently
handling TNs in modern applications. This section discusses
efficient algorithms for tensor operations, parallel and dis-
tributed computing with GPUs, and key software for TNs.
Additionally, we highlight advancements in compression and
resource management, focusing on adaptive techniques for
optimizing efficiency, memory usage, and accuracy.

5.1 Efficient Algorithms for Tensor Operations

Tensor contraction and decomposition are helpful for mitigat-
ing computational overhead while maintaining data integrity
in high-dimensional space. The challenge lies in optimiz-
ing the contraction sequence to minimize cost. Strategies
like contraction search heuristics and dynamic programming
have proven effective, but further optimization for large-scale
settings is needed [Taylor, 2024]. The choice of contraction
path significantly impacts performance, with recent advances
focusing on hybrid strategies combining heuristic and deter-
ministic methods to improve efficiency [Li et al., 2022].
Decomposition techniques like CP, Tucker, and Tensor
Train decompositions simplify complex tensor structures,
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boosting efficiency. These methods offer different trade-offs
between accuracy and computational cost. CP is simple and
interpretable but suffers from high complexity, particularly
for higher-order tensors [Phan et al., 2018]. Tucker provides
more flexibility by allowing multi-dimensional cores, at the
cost of increased computational expense. TT handles large-
scale tensors by approximating them through low-rank tensor
contractions [Kossaifi ez al., 2020].

Emerging methods, such as Hierarchical Tucker (HT) de-
composition, use hierarchical partitioning to decompose ten-
sors into smaller, more manageable components, aiding in
both data compression and feature preservation [Cichocki et
al., 2017]. By recursively breaking down high-dimensional
data into lower-dimensional sub-tensors, HT efficiently cap-
tures multi-level correlations within the data. This hierarchi-
cal structure significantly alleviates the curse of dimension-
ality, which typically leads to exponential growth in param-
eter space for high-dimensional datasets. As a result, HT
becomes particularly advantageous for scalable applications
where computational efficiency is critical.

Current research emphasizes integrating TNs with ma-
chine learning frameworks, where tensor operations optimize
model sizes and computational loads [Yang er al., 2023]. This
intersection opens new avenues for applying tensorization,
such as tuning neural network architectures to enhance per-
formance and reduce overhead [Wang er al., 2023].

As the field progresses, it is crucial to develop algorithms
that adaptively manage resources and leverage hardware ad-
vancements while prioritizing efficiency in complex tensor
operations. Future research should explore innovative meth-
ods like quantum-inspired computations and adaptive learn-
ing strategies [Rieser et al., 2023]. These efforts will help
overcome computational barriers and broaden tensor network
applications across Al and computational science.

5.2 Parallel & Distributed Computing Techniques

Central to parallel and distributed computing is effective par-
titioning of computations across multiple processors while
minimizing communication overhead. Embedding tensor
contractions in GPUs has accelerated computations by opti-
mizing kernel operations and reducing data transfer overhead
between CPU and GPU memory [Schutski et al., 2020], en-
abling manipulating larger tensors than would be possible se-
quentially. To further enhance scalability, distributed tensor
computations allocate workloads across multiple processors.
Frameworks like MPI enable inter-node communication, al-
lowing tensor decomposition into smaller, concurrently pro-
cessable chunks [Cichocki, 2014b]. This approach is advan-
tageous for large-scale simulations and data analytics.

An emerging trend is dynamic load balancing and adaptive
resource allocation, which ensures even workload distribu-
tion, minimizing idle times and optimizing resource usage.
These strategies are crucial as TN applications expand into
more heterogeneous and dynamic environments [Cichocki et
al., 2017]. Additionally, cloud-based platforms increasingly
support scalable resource allocation, allowing for elastic scal-
ing to meet tensor computation demands, particularly in real-
time data processing [Cichocki, 2014b].

As data size and dimensionality increases, maintaining

consistency and synchronization across nodes can escalate
overhead, reducing parallelism benefits. Designing algo-
rithms to map tensor operations efficiently onto hardware, es-
pecially with irregular or sparse tensors, remains a significant
challenge [Kanakagiri and Solomonik, 2024].

Innovative strategies include heuristic and probabilistic
graphical models to optimize contraction paths without ex-
haustive searches [Schutski et al., 2020], reducing complex-
ity and enhancing performance.

Looking ahead, integrating machine learning to predict op-
timal parallel execution configurations can further improve
efficiency and scalability. Such models could dynamically
adjust task partitioning and resource allocation based on com-
putation patterns and data structures. Quantum computing
principles may also offer novel solutions to scaling bottle-
necks [Robeva and Seigal, 2019].

5.3 Software Tools and Libraries

Key tools include deep learning libraries such as TensorFlow
and PyTorch, which have integrated TNs into their ecosys-
tems. These platforms allow for the seamless expansion of
traditional neural network architectures into tensor-inspired
frameworks. TensorFlow’s adaptable computational graph
and PyTorch’s dynamic computation graph support real-
time execution, offering flexibility for researchers explor-
ing TN algorithms in machine learning frameworks. These
platforms are useful for developing high-dimensional mod-
els [Cichocki, 2014al.

Specialized tensor software like TensorLy offers powerful
abstractions tailored for tensor operations. It supports a wide
range of decompositions, including CPD and Tucker, and al-
lows customization of decomposition processes to suit spe-
cific data properties, making it valuable for scientific applica-
tions [Rabanser er al., 2017].

ITensor focuses on quantum simulations and condensed
matter physics, specializing in high-precision quantum TN
computations. It treats tensor manipulations as accessible ob-
jects, in contrast to traditional linear algebra approaches, and
uses a graphical representation of tensors to handle complex
quantum states and operations [Cichocki er al., 2017].

TensorNetwork and SciNet blend NumPy’s simplicity with
TN contraction and optimization capabilities. Enhanced by
efficient numerical schemes, these libraries support large ten-
sor data and benefit from GPU acceleration for practical fea-
sibility in scientific computing [Kolda and Hong, 2020].

Graphical tools like TensorTrace and GuiTeNet facilitate
tensor visualization, aiding researchers in building, testing,
and visualizing tensor models, thus reducing cognitive load
and enhancing model interpretability [Cheng et al., 2020].

Emerging trends emphasize improving computational ef-
ficiency, resource management, and scalability. Integrating
tensor compression and parallel computation techniques ad-
dresses the curse of dimensionality [Yin er al., 2021]. These
libraries also support distributed computing and adaptive re-
source allocation for sustainable AI models that minimize en-
ergy consumption and promote efficient tensor handling.

Despite advancements, challenges remain, particularly
in ensuring numerical stability when working with high-
dimensional tensors. Hybrid tensor architectures and on-the-
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fly compression strategies continue to be key areas for re-
search, aiming to develop more robust tools for various sci-
entific and industrial applications [Wu ez al., 2020].

5.4 TN Compression and Resource Management

TN compression uses techniques like CP, Tucker, and TT de-
compositions to reduce the storage and computational de-
mands of high-dimensional data. These methods trans-
form high-dimensional tensors into lower-dimensional com-
ponents, offering substantial space savings [Cichocki et al.,
2014; Rabanser et al., 2017].

TT decomposition is particularly notable for its linear stor-
age costs and ability to preserve key properties of the decom-
posed components [Cichocki et al., 2017]. Its hierarchical
structure and the Tensor Ring variant allow for flexible rank
adjustments that optimize storage while maintaining data fi-
delity. These efficiencies are evident in quantum computing
and machine learning, where complex data are handled effec-
tively [Biamonte et al., 2017; Tang and Yan, 2022]. A crit-
ical aspect of compression is adaptive rank selection, where
the ranks of decomposed components adjust dynamically to
data complexity. This adaptability ensures efficient storage
without compromising accuracy, facilitating the use of TNs
on memory-limited hardware and improving performance on
GPUs and high-performance platforms [Charlier et al., 2021].

Emerging trends highlight sparse tensor computing to opti-
mize storage and performance. Sparse tensor can reduce stor-
age needs without sacrificing computational accuracy. Com-
piler support systems like MLIR assist in generating op-
timized sparse tensor operations, easing developers’ work-
load [Bik et al., 2022]. These innovations underscore the
benefits of tensor compression and resource management.

However, balancing compression with precision remain
challenging. Excessive compression can compromise essen-
tial data features, affecting model accuracy. Further explo-
ration of methods to maintain precision while employing ag-
gressive compression is essential [Ma et al., 2024]. Ad-
vancing adaptive ranking techniques and sparse tensor algo-
rithms are critical for progress. Future research should focus
on refining cost-based tensor program optimizers, allowing
users to balance storage, computation speed, and resource us-
age. Studies could lead to new TN applications, especially in
energy-efficient Al, where resource management is vital.

5.5 Evaluation of Computational Trade-Offs

A key trade-off in TNs is between computational precision
and operational efficiency. High-precision tensor operations,
necessary in quantum simulations and scientific computa-
tions, demand significant resources and can lead to long ex-
ecution times. For example, the precision needed in quan-
tum many-body simulations increases the complexity of ten-
sor contractions and decompositions, requiring a careful bal-
ance [Ferris and Poulin, 2013].

Efficient use of computational resources is another key as-
pect of TN implementations. Memory footprint and compute
time are integral to evaluating performance across different
scales. Recent studies propose methods to improve resource
allocation efficiency, reducing overhead without significant
accuracy loss [Yin et al., 2021].

Effective resource management integrates memory-
efficient algorithms and hardware acceleration. The
application of GPUs and distributed frameworks helps
mitigate computational constraints, leveraging parallel
processing [Wu et al., 2024]. Benchmarking plays a vital
role in evaluating TN algorithms. Standardized workflows
and performance metrics are used to assess computational
trade-offs and optimize contraction paths and network
configurations [Ramirez et al., 2024].

Performance analysis tools like ITensor and TensorNet-
work enable systematic comparisons of TN algorithms under
various conditions [Fishman et al., 2022]. Despite progress,
challenges remain, such as optimizing multi-way arrays and
scaling across diverse platforms. Continuous research into
novel decompositions, contraction strategies, and hardware
advancements is needed to enhance the adaptability and ef-
fectiveness of TN [Li et al., 2022].

6 Conclusion and Outlook

In this paper, we have explored the role of TNs in both Al and
scientific research. We have demonstrated how TN, initially
developed for quantum many-body problems, have evolved
to serve as powerful tools for addressing complex, high-
dimensional data in Al applications, ranging from deep learn-
ing to machine learning model optimization. In scientific
computing, TNs facilitate efficient simulations of quantum
systems, material properties, and molecular interactions, thus
overcoming the limitations of traditional methods. Through
their ability to decompose high-dimensional data into man-
ageable components, TNs enable both significant computa-
tional savings and enhanced model expressivity.

Looking ahead, the potential for TNs to bridge Al and sci-
entific disciplines is immense. In the context of Al4Science,
TNs can be integrated with deep learning models to offer new
insights into quantum systems and complex physical phe-
nomena, with applications ranging from quantum chemistry
to material science. On the other hand, Science4Al appli-
cations are likely to see a significant expansion, with TN-
inspired tensor decompositions offering ways to compress
large-scale Al models, reducing their size while maintaining
or improving performance. Furthermore, the combination of
TNs with hybrid quantum-classical machine learning models
may open new frontiers in both Al and quantum computing.

As these interdisciplinary developments progress, there is
an increasing need for unified frameworks and open-source
tools that facilitate the seamless application of TNs across
domains. This paper provides a foundation for future re-
search and offers an optimistic outlook for the further evo-
lution of tensor networks in solving some of the most chal-
lenging problems in science and Al
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