Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

SmartSpatial: Enhancing 3D Spatial Awareness in Stable Diffusion
with a Novel Evaluation Framework

Mao Xun Huang'!, Brian J Chan’ and Hen-Hsen Huang?

!Department of Management Information Systems, National Chengchi University, Taipei, Taiwan
2Department of Computer Science, National Chengchi University, Taipei, Taiwan
3Institute of Information Science, Academia Sinica, Taipei, Taiwan
{110306019,110703065 } @nccu.edu.tw, hhhuang @iis.sinica.edu.tw

Abstract

Stable Diffusion models have made remarkable
strides in generating photorealistic images from
text prompts but often falter when tasked with
accurately representing complex spatial arrange-
ments, particularly involving intricate 3D relation-
ships. To address this limitation, we introduce
SmartSpatial, an innovative approach that not only
enhances the spatial arrangement capabilities of
Stable Diffusion but also fosters Al-assisted cre-
ative workflows through 3D-aware conditioning
and attention-guided mechanisms. SmartSpatial in-
corporates depth information injection and cross-
attention control to ensure precise object place-
ment, delivering notable improvements in spatial
accuracy metrics. In conjunction with SmartSpa-
tial, we present SmartSpatialEval, a comprehensive
evaluation framework that bridges computational
spatial accuracy with qualitative artistic assess-
ments. Experimental results show that SmartSpa-
tial significantly outperforms existing methods, set-
ting new benchmarks for spatial fidelity in Al-
driven art and creativity.

1 Introduction

Text-to-image generative models, particularly diffusion-
based frameworks such as Stable Diffusion [Rombach et al.,
2021], have achieved remarkable advances in synthesizing di-
verse and highly realistic images from natural language de-
scriptions. However, despite their impressive achievements,
these models frequently struggle with accurately maintaining
the spatial arrangements of objects. This limitation becomes
particularly evident when handling complex 3D spatial rela-
tionships, such as “in front of” and “behind”, which require
precise understanding and representation of depth and posi-
tioning. These inaccuracies often result in visually plausible
but contextually flawed images, undermining the reliability of
these models for applications demanding high spatial fidelity.

Figure 1 shows the efficacy of SmartSpatial in enhancing
3D spatial arrangement compared to standard Stable Diffu-
sion. While the left-side images, generated using Stable Dif-
fusion, often exhibit inconsistencies in object placement and

depth perception, the right-side outputs from our SmartSpa-
tial demonstrate precise spatial alignment and structural co-
herence. By leveraging depth-aware conditioning and cross-
attention refinements, SmartSpatial ensures that generated
scenes adhere to the intended spatial constraints, enabling
more reliable and contextually accurate text-to-image synthe-
sis. This comparison underscores the necessity of spatially-
aware generation techniques and highlights SmartSpatial’s
potential in advancing Al-driven artistic workflows.

Accurate spatial arrangement is not just a desirable
feature—it is essential for critical applications like virtual
scene creation, content synthesis, generating structured artis-
tic compositions, and human-computer interaction. The in-
ability of current models to consistently deliver such accuracy
highlights a significant and pressing challenge in the field, un-
derscoring the need for advanced solutions.

To bridge this gap between Al generation and artistic spa-
tial reasoning, we propose SmartSpatial, a novel approach
designed to address these limitations by incorporating 3D
spatial awareness into diffusion models. Our method en-
hances object positioning precision through depth integration
and cross-attention manipulation. By injecting 3D spatial
data into ControlNet and fine-tuning cross-attention blocks,
SmartSpatial achieves robust spatial arrangement capabilities
guided by textual prompts.

To comprehensively evaluate the spatial accuracy of gen-
erated images, we also propose SmartSpatialEval, an innova-
tive evaluation framework that utilizes vision-language mod-
els (VLMs) and dependency parsing to assess spatial relation-
ships. This framework provides quantitative metrics for spa-
tial accuracy, complementing traditional image quality eval-
uations. Experimental results demonstrate that SmartSpatial
significantly enhances spatial accuracy compared to existing
methods, establishing a new benchmark for spatial control in
text-to-image generation. Our key contributions include:

 Spatially-Aware Image Generation: SmartSpatial in-
tegrates 3D depth information and cross-attention refine-
ments to improve spatial precision, achieving state-of-
the-art performance.

* Quantitative Evaluation: SmartSpatialEval introduces
robust, human-like VLM-based metrics for assessing
spatial accuracy.

* Dataset and Resources: We release SpatialPrompts, a



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

]
L

A backpack is in front A couch is behind a
of a bed in a bedroom dog in a living room

StableDiffusion

SmartSpatial (Ours)

A suitcase is under a A laptop is to the left

potted plant in a balcony of a cup in a library

StableDiffusion

SmartSpatial (Ours)

Figure 1: Example images generated using Stable Diffusion (left) and SmartSpatial (right). With the provided depth map and layout control,
SmartSpatial achieves superior spatial arrangement without requiring additional training or fine-tuning.

dataset designed to evaluate 3D spatial reasoning, along
with SmartSpatial and SmartSpatialEval, as resources.

2 Related Works

Recent advancements, such as MultiDiff [Bar-Tal et al.,
2023], which employs masked noise for layout control, and
eDiff-I [Balaji et al., 2023], which leverages forward guid-
ance to improve spatial accuracy, have sought to enhance
the state-of-the-art Stable Diffusion [Rombach et al., 2021]
framework by introducing spatial conditioning techniques.
Training-free methods like Prompt-to-Prompt [Hertz et al.,
2022] and pix2pix-zero [Parmar et al., 2023] leverage cross-
attention maps for localized edits but lack holistic layout con-
trol. Extensions such as BoxDiff [Xie et al., 2023] and
cross-attention backward guidance (AG) [Chen et al., 2023]
and segmentation mask conditioning [Parmar et al., 2023]
improve spatial precision but remain limited in complex ar-
rangements. [Epstein et al., 2023] enhanced object scale
and position control but struggled with fine-grained spatial
accuracy. Conditional methods improve precision by incor-
porating spatial guidance. ControlNet [Zhang et al., 2023b]
adds spatial conditioning through fine-tuned layers, while
localized control [Zhao et al., 2024] and instance-level ap-
proaches [Wang et al., 2024] utilize bounding boxes and seg-
mentation masks. However, these techniques often adhere
rigidly to 2D layouts, limiting flexibility.

Metrics like FID [Alimisis et al., 2024] and CLIP
score [Hessel et al., 2022] prioritize visual and semantic qual-
ity but neglect spatial accuracy. Tools like DP-IQA [Fu et al.,
2024] and DiffNat [Roy et al., 2023] focus on image quality,
while the SPRIGHT dataset [Chatterjee et al., 2024] high-
lights the need for robust spatial evaluation. Benchmarks
such as VISOR [Gokhale et al., 2023] and its evaluation
framework primarily address two-dimensional spatial accu-
racy, leaving a significant gap in evaluating more complex,
three-dimensional spatial relationships. These works high-
lights the critical limitation of current tools in assessing spa-
tial arrangements effectively, particularly in scenarios requir-
ing robust 3D spatial understanding.

Our work advances 3D spatial arrangement through cross-
attention manipulation and 3D conditioning, surpassing limi-

"https://github.com/mao-code/SmartSpatial

tations of planar-focused methods like [Chen er al., 2023] and
rigid controls in ControlNet [Zhang et al., 2023b]. We further
address the gap in evaluation by introducing SmartSpatialE-
val, a comprehensive tool for assessing spatial accuracy in
generated images.

3 SmartSpatial

SmartSpatial is a 3D-aware enhancement for Stable Diffusion
models. As illustrated in Figure 2, we propose a novel ap-
proach that integrates 3D spatial data into ControlNet with
attention-guided mechanisms, enabling precise spatial ar-
rangement while maintaining high image quality.

3.1 3D Information Integration and
Attention-Guided Control

To enhance 3D spatial arrangement in Stable Diffusion, we
integrate depth-aware conditioning and attention-guided con-
trol. Depth information is injected via ControlNet, enriching
spatial representation, while refined cross-attention mecha-
nisms improve object placement. A tailored loss function
optimizes spatial coherence, ensuring alignment with textual
prompts. The details are given in Section 3.2, Section 3.3,
and Section 3.4, respectively.

3.2 Depth Information Injection

To capture 3D spatial relationships such as “in front of” and
“behind”, we select a reference image and employ a depth
estimator to generate a corresponding depth map. Note that
the reference image can be any image where the objects rep-
resent a spatial relationship, making it adaptable to various
scenarios. It is not confined to a specific image but serves as
a general guiding example. For instance, the reference image
in Figure 2, depicting “A ball is behind a box,” can be applied
broadly to cases involving the “behind” relationship.

Reference images can be automatically created using a 3D
drawing toolkit such as Matplotlib or Blender. These toolkits
are particularly well-suited for generating simple 3D scenes,
as objects like “ball” and “box” are relatively easy to model
in such environments. This makes them a promising and ac-
cessible source for creating reference images that can then be
converted into depth maps.
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Figure 2: SmartSpatial involves depth extraction and cross-attention
guidance. A reference image (“The ball is behind the box™) gener-
ates a depth map via a depth estimator, injected into the denoising
UNet by the depth extractor. Cross-attention blocks from both the
depth extractor and denoising UNet are extracted to guide object fo-
cus, ultimately generating an image of “A vase is behind an orange.”

The generated depth map is subsequently processed by a
depth extractor, utilizing ControlNet [Zhang et al., 2023b],
to extract depth features. The extracted depth information is
subsequently integrated into the upsampling blocks of the de-
noising UNet, enriching the model with precise spatial data.

3.3 Attention Block Selection

ControlNet often rigidly constrains generated images to the
reference input, so we mitigate this by modifying the cross-
attention blocks.  Specifically, we select the mid-cross-
attention block in the depth extractor along with the mid
and first up-sampling cross-attention blocks in the denoising
UNet. This configuration has been shown to provide optimal
performance enhancing the model’s ability to guide spatial
awareness and object placement [Chen et al., 2023]. In Fig-
ure 2, for example, the model is guided to identify the “ball”
as the vase and the “box” as the orange.

3.4 Loss Function and Attention Guidance

Our objective is to fine-tune the latent space to ensure high
attention weights within designated regions. Inspired by pre-
vious work [Chen er al., 2023], we extract attention maps A;
for the i-th token from the depth extractor and the denois-
ing UNet. To confine A; predominantly within the specified
bounding box b;, we adopt the following loss function:
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Here, A, ; denotes the attention values at pixel p for token 4,
and B is the set of all bounding boxes.
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where m is the momentum coefficient, 7 is the learning rate,

t denotes the current denoising step, and ¢ is the iteration in-
()

dex for cross-attention guidance. The variable z; ’ represents

the attention-guided latent variable at iteration ¢ of denoising
step ¢. The iteration index ¢ ranges from 1 to K, where K is
the maximum number of iterations. K can be predefined or
dynamically determined by stopping when the total loss falls
below a set threshold. Therefore, the final attention guided
latent at denoising step ¢ will be z%)

Additionally, we incorporate a ControlNet specific term in
the overall loss function to ensure coherent guidance across
the entire model:

Ltotal = aLunet + 6Lcomml (3)

Here, Lynet and Lconror represent the loss components for
the UNet and ControlNet, respectively. The coefficients «
and J are weighting factors that balance the contributions of
each term. The calculations for Ly, and Leopio) are consis-
tent with those in Eq. 2, with the distinction that the cross-
attention maps are extracted from different models—UNet
and ControlNet, respectively.

4 SmartSpatialEval

SmartSpatialEval is a novel framework that leverages VLMs,
dependency parsing, and graph-based spatial representations
to quantitatively assess spatial relationships against ground
truth data. It provides a structured and objective evaluation of
3D spatial fidelity, addressing a critical gap in text-to-image
generative models.

As illustrated in Figure 3, SmartSpatialEval evaluates an
image generated for the prompt “A dog is to the left of a chair,
and a cup is on the chair” by constructing a spatial sphere
Sz from a graph that encodes the spatial relationships among
objects in the image. This is then compared to a reference
spatial sphere Sp, derived from the graph representing the
spatial relationships in the original textual prompt, enabling
precise spatial alignment assessment.
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Figure 3: SmartSpatialEval evaluates spatial accuracy for the image
generated from the prompt “A dog is to the left of a chair, and a
cup is on the chair” by comparing the spatial sphere Sz, constructed
from the spatial relationship graph of the generated image, with the
reference spatial sphere Sp, derived from the spatial relationship
graph of the original textual prompt.
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Figure 4: The Spatial Sphere model quantifies positional language,
representing each point’s relative relationship to the center.

4.1 Framework and Metrics

To represent spatial relationships among objects in a gener-
ated image Z corresponding to a textual prompt P, we first
employ a VLM (ChatGPT-40) to generate a textual descrip-
tion of the spatial relationships in Z. This description is then
parsed into a spatial relationship graph Gz using dependency
parsing [Honnibal et al., 20201, capturing the spatial structure
among objects. Next, we transform Gz into a spatial sphere
S7, as illustrated in Figure 4. In this representation, the cen-
ter object is positioned at the core of the sphere, with other
objects arranged based on their relative spatial relationships,
enabling structured comparisons.

Similarly, we construct the reference spatial sphere Sp by
first extracting a spatial relationship graph Gp from the orig-
inal textual prompt P using dependency parsing, then trans-
forming it into Sp. To compare S7 and Sp, we designate the
center object, that is identified as the root of the dependency
parse tree of P, and use breadth-first search (BFS) to extract
the shortest paths from this center to all other objects. We
then compute three key spatial accuracy scores:

1. Object Recognition (OR) Score measures the model’s
ability to generate all objects specified in the prompt.
Image generation models often fail to include all objects,
necessitating this metric:

“

where N7 is the count of correctly identified objects in
T, and Np is the total number of objects specified in the
prompt P.

2. Object Proximity (OP) Score measures how accurately
the generated objects are positioned relative to their ex-
pected locations by computing the inverse of the total
Euclidean distances:

1
P= o
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where r; represents the reference 3D position of object ¢
as specified in the prompt P, and o; represents the gen-
erated 3D position of object ¢ in the generated image 7.

If an object is missing in Z, its generated position o; is
assigned to a distant outlier location, ensuring that the
corresponding Euclidean distance ||r; — 0;]|2 remains
large. This penalizes missing objects, leading to a lower
OP score, effectively capturing the model’s ability to
generate objects at the correct spatial locations.

3. Spatial Relationship (SR) Score measures how accu-
rately the generated image 7 preserves the spatial rela-
tionships specified in the prompt P. This score evaluates
relative positioning based on a spatial representation.

b MI
~ Np—1

SR (©6)

where M7 represents the number of correctly identified
spatial relationships in the generated image Z, and Np
is the total number of objects specified in the prompt
P. Since spatial relationships are defined as the rela-
tionships between the center object and each of the re-
maining Np — 1 objects, the denominator reflects the
expected number of valid spatial relationships in the ref-
erence spatial sphere Sp.

For all the three metrics, a score of 1.0 indicates perfect ad-
herence to the specified spatial constraints, while lower val-
ues suggest deviations from the intended spatial arrangement.
In Figure 3, all three objects (dog, chair, and cup) are suc-
cessfully rendered in Z, yielding an Object Recognition (OR)
Score of 1. The chair, identified as the center object by the
dependency parser, is positioned at the origin (0, 0,0). How-
ever, the spatial relationships of the other objects deviate from
the expected configuration:

* The dog is misplaced under the chair at (0, —1,0) in-
stead of the expected position to the left at (—1,0,0),

resulting a distance of ||(0, —1,0) — (—1,0,0)||2 = V2.

* The cup is misplaced in front of the chair at (0,0,1)
rather than on top of it at (0, 1,0), resulting a distance

of [[(0,1,0) = (0,0,1) ][> = v2.
. . . . 1 _
As a result, the Object Proximity (OP) Score is TV =

0.2612. Since the two expected spatial relationships in P
(left (dog, chair) and on (cup, chair)) are both
incorrectly generated in Z, the Spatial Relationship (SR)
Score is 0.

Unlike existing metrics such as CLIP, IoU, and mAP, which
primarily assess image quality or layout precision, SmartSpa-
tialEval specifically evaluates 3D spatial arrangements. Our
Proximity Score and Spatial Relationship Score leverage
VLM-based observations to simulate human perception, as-
sessing images in terms of complex 3D spatial relationships
(e.g., front, behind, left, right, above, below). This approach
ensures a more precise and contextually meaningful evalua-
tion of spatial consistency in text-to-image generation.

Moreover, SmartSpatialEval can also serve as a reinforce-
ment learning reward signal, enabling reinforcement learning
methods like DDPO [Black er al., 2024] to optimize diffu-
sion models for spatial reasoning. This expands its role from
benchmarking to training Al for diverse spatial tasks.
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Dataset Method CLIPT mAP@0.51 IoUT OPT SRT ORT OP+OR*?
MultiDiff 0.236 0.006 0.020 0.034 0.017 0.229 0.132
eDiff-1 0.311 0.010 0.019 0.338 0.208 0.796 0.567
BoxDiff 0.308 0.041 0.075 0.287 0.183 0.725 0.506
SpatialPrompts  SD 0.295 0.019 0.039 0.249 0.167 0.700 0.475
SD+AG 0.305 0.132 0.223 0.380 0.300 0.746 0.563
SD+ControlNet 0.296 0.051 0.099 0.200 0.108 0.683 0.442
SmartSpatial (Ours)  0.303 0.311 0.434 0.433 0358 0.775 0.604
MultiDiff 0.171 0.000 0.001 0.000 0.000 0.030 0.015
eDiff-1 0.325 0.022 0.034 0.166 0.073 0.654 0.410
BoxDiff 0.317 0.029 0.043 0.108 0.043 0.594 0.351
COCO02017 SD 0.314 0.013 0.024 0.084 0.026 0.567 0.325
SD+AG 0.321 0.087 0.130 0.227 0.153 0.660 0.443
SD+ControlNet 0.314 0.028 0.048 0.083 0.028 0.566 0.324
SmartSpatial (Ours)  0.312 0.207 0.309 0.286 0.218 0.672 0.479
MultiDiff 0.241 0.000 0.000 0.000 0.000 0.020 0.010
eDiff-1 0.325 0.023 0.038 0.154 0.063 0.656 0.405
BoxDiff 0.320 0.022 0.036 0.111 0.042 0.606 0.358
VISOR SD 0.315 0.011 0.017 0.088 0.022 0.574 0.332
SD+AG 0.326 0.103 0.150 0.279 0.213 0.688 0.483
SD+ControlNet 0.316 0.027 0.046 0.088 0.029 0.569 0.328
SmartSpatial (Ours)  0.312 0.219 0.324 0.352 0.302 0.700 0.526

Table 1: Experimental results on SpatialPrompts, COCO2017 and VISOR datasets

5 Experiments

5.1 Experimental Setup
We evaluate our SmartSpatial on three datasets as follows.

* SpatialPrompts is a custom dataset comprising 120
hand-crafted prompts designed to test SmartSpatial’s
spatial reasoning abilities. These prompts represent re-
alistic and commonly occurring scene scenarios, such as
“A bicycle is in front of a car at a traffic signal.” Spa-
tialPrompts covers eight spatial positions (i.e., front, be-
hind, left, right, on, under, above, below) in the 3D set-
ting, with 15 examples for each category.

¢ 1,000 samples derived from COCO2017 [Lin et al.,
2015]. For our scenario, we sampled two unique objects
from each of the 80 categories in COCO2017, paired
them with one spatial term from the eight spatial po-
sitions defined in SpatialPrompts, and combined them
with a background term selected from a custom set of
10 types (e.g., park, library). This process resulted in a
total of 80 x 8 x 10 = 6,400 combinations, from which
we randomly selected 1,000 instances. The random sam-
pling introduces more complex, uncommon, and surreal
prompts, making this dataset particularly challenging for
spatially controlled image generation tasks.

¢ 1,000 samples derived from VISOR [Gokhale et al.,
2023]. Since VISOR contains only two-dimensional
spatial relationships, we randomly selected 336 in-
stances and replaced their spatial terms with three-
dimensional spatial descriptors, such as front and be-
hind. This adjustment enriches the dataset by intro-
ducing additional complexity and testing the ability of

SmartSpatial to handle three-dimensional spatial reason-
ing tasks effectively.

We compare SmartSpatial with several state-of-the-art
models, including MultiDiff [Bar-Tal et al., 20231, eDiff-
1 [Zhang et al., 2023al, BoxDiff [Xie et al., 20231, SD [Rom-
bach et al., 20211, SD+AG [Chen et al, 2023], and
SD+ControlNet [Zhang et al., 2023b]. These baseline mod-
els provide a diverse set of approaches for text-to-image syn-
thesis, ranging from diffusion-based methods to techniques
incorporating additional conditional controls, allowing for
comprehensive and robust comparisons.

In addition to the three metrics provided by SmartSpatial-
Eval, we also adopt three widely-used metrics in the experi-
ments, including CLIPScore [Hessel et al., 2022] for image-
text alignment, IToU [Redmon et al., 2016], and mAP@0.5
for object layour control accuracy.

All experiments were conducted using Stable Diffusion
v1.5 [Rombach et al., 2021] as the backbone model. The ex-
periments were executed on a single Tesla V100-SXM2 GPU
with 32GB memory. We set the random seed to 42 and em-
ployed a cross-attention guidance loss threshold of 0.5.

5.2 Results

As summarized in Table 1, our proposed approach,
SmartSpatial, consistently demonstrates superior perfor-
mance across most metrics and datasets. Notably, the im-
provements in IoU and mAP metrics underscore the enhanced
capability of SmartSpatial in layout control. Additionally,
higher OP, SR, and OR scores highlight its advanced under-
standing of spatial knowledge, enabling the generation of im-
ages with accurate object presence and spatial arrangements.
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Figure 5: Qualitative comparison of spatial control methods. All generated images are based on SpatialPrompts with bounding boxes derived
from reference images. Our approach exhibits superior spatial control compared to other guidance methods.

While a minor decrease in CLIPScore indicates a slight trade-
off between precise spatial control and overall image quality,
the competitive CLIPScore achieved suggests that SmartSpa-
tial maintains acceptable visual quality. Statistical signifi-
cance tests confirmed that these performance differences are
not significant across all datasets (p > 0.05).

Furthermore, on more complex and diverse datasets such
as COCO2017 and VISOR, where overall scores are lower

due to intricate scenes and object relationships, SmartSpatial
continues to exhibit robust spatial control capabilities. This
highlights its adaptability and effectiveness, even in challeng-
ing scenarios involving complex spatial dynamics.

The qualitative results presented in Figure 5 further vali-
date our quantitative findings. The baseline Stable Diffusion
model often struggles with issues such as missing objects and
inaccurate spatial relationships. Similarly, other layout con-
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AG CN CNAG CLIP mAP IoU opP SR OR
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Table 2: Results of ablation analysis
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Figure 6: Results for different configurations. Incorporating all com-
ponents (AG + CN + CNAG) achieves the best spatial control.

trol methods occasionally fail to maintain spatial coherence,
particularly in complex scenarios involving 3D relationships
(e.g., objects positioned “in front of others” or “behind oth-
ers”) or unconventional arrangements, such as “an orange in
front of a cow on a farm.” In contrast, SmartSpatial con-
sistently preserves spatial relationships, effectively manag-
ing spatial prompts across a wide variety of conditions. This
highlights its reliability and practical applicability in handling
both common and uncommon spatial arrangements.

5.3 Ablation Study

To evaluate the effectiveness of each component in our sys-
tem, we conducted an ablation study on the VISOR dataset.
Our system is decomposed into three key components: Cross-
Attention Guidance (AG), ControlNet (CN), and Cross-
Attention Guidance with ControlNet (CNAG).

Table 2 highlights that the best spatial control results are
achieved when all three components (AG, CN, and CNAG)
are employed. Although a slight decrease in the CLIP score
is observed in the AG + CN + CNAG configuration, the dif-
ference is not statistically significant (p > 0.05). The qual-
itive results are shown in Figure 6. Both the quantitive and
qualitive results demonstrate that our system enhances spatial
awareness and significantly improves layout control for Sta-
ble Diffusion while maintaining competitive image quality.

6 Applications in Arts and Design

The proposed SmartSpatial method opens up new possibili-
ties in Al-driven art and design. For instance, in marketing
and advertising, precise spatial arrangements of objects (e.g.,
products on a table or models interacting with items) are often
critical for creating impactful visuals that align with strategic

ATV is behind a banana
in a living room

Abear is to the left of a
cell phone in the snow

Abananais ona
car in a street

Stable Diffusion

e

SmartSpatial

Figure 7: Surreal scene generation with precise spatial control. Tra-
ditional Stable Diffusion often fails to include all objects from the
prompt or arranges them incorrectly. In contrast, SmartSpatial ac-
curately places even unrelated objects in the specified configuration,
preserving both composition and spatial coherence.

goals. SmartSpatial excels in these scenarios by enabling ac-
curate and flexible spatial control.

In the realm of surreal art, where unconventional or un-
related objects are often juxtaposed, SmartSpatial provides
artists with a powerful tool for generating visually striking
compositions with precise spatial arrangements. As demon-
strated in Figure 7, SmartSpatial supports the creation of
unique and imaginative scenes, enabling both artists and mar-
keting professionals to craft compelling visual content that
pushes creative boundaries. By offering robust 3D spatial
control and surreal image generation capabilities, SmartSpa-
tial represents a valuable contribution to the fields of Al-
assisted art and design.

Additionally, SmartSpatial can generate visual-text spatial
pair datasets to enhance the spatial intelligence and inference
ability of VLMs. The lack of such datasets limits VLMs’
ability to understand spatial relationships, but by leverag-
ing SmartSpatial’s 3D-aware conditioning, we can system-
atically create high-quality spatial datasets to fill this gap.
This aligns with dataset like Synergistic-General-Multimodal
Pairs [Huang and Huang, 2024], which showed that inte-
grating text-to-image models with VLMs improves multi-
modal learning. A SmartSpatial-generated dataset can sim-
ilarly enhance spatial reasoning in VLMs, benefiting Al-
driven art and design. Moreover, by representing and quan-
tifying spatial coherence and evaluating 3D spatial consis-
tency, SmartSpatialEval facilitates structured assessments of
Al-generated artistic compositions

7 Conclusions

This work introduced SmartSpatial, a novel approach to en-
hance 3D spatial arrangement in text-to-image models, and
SmartSpatialEval, an innovative framework for evaluating 3D
spatial accuracy. By integrating 3D spatial information and
refining cross-attention mechanisms, SmartSpatial improves
spatial precision while maintaining image quality. Our con-
tributions pave the way for more reliable and context-aware
image synthesis in applications requiring high spatial fidelity.
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