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Abstract

The increasing frequency of extreme weather
events, such as hurricanes, highlights the ur-
gent need for efficient and equitable power sys-
tem restoration. Many electricity providers make
restoration decisions primarily based on the vol-
ume of power restoration requests from each re-
gion. However, our data-driven analysis reveals
significant disparities in request submission vol-
ume, as disadvantaged communities tend to sub-
mit fewer restoration requests. This disparity
makes the current restoration solution inequitable,
leaving these communities vulnerable to extended
power outages. To address this, we aim to pro-
pose an equity-aware power restoration strategy
that balances both restoration efficiency and eq-
uity across communities. However, achieving this
goal is challenging for two reasons: the difficulty
of predicting repair durations under dataset het-
eroscedasticity, and the tendency of reinforcement
learning agents to favor low-uncertainty actions,
which potentially undermine equity. To overcome
these challenges, we design a predict-then-optimize
framework called EPOPR with two key compo-
nents: (1) Equity-Conformalized Quantile Regres-
sion for uncertainty-aware repair duration predic-
tion, and (2) Spatial-Temporal Attentional RL that
adapts to varying uncertainty levels across regions
for equitable decision-making. Experimental re-
sults show that our EPOPR effectively reduces the
average power outage duration by 3.60% and de-
creases inequity between different communities by
14.19% compared to state-of-the-art baselines.

1 Introduction

Power restoration following extreme weather events is cru-
cial for social well-being. In the Southeastern United States,
many areas are particularly vulnerable to hurricanes, which
can cause severe disruptions. For instance, in September
2024, Category 5 Hurricane Helene struck Florida, Georgia,
and North Carolina, affecting 1.7 million people and caus-
ing an estimated $78.7 billion in damages [USA.gov, 2024].
Through interviews with government agencies and real-world
data analysis in Florida, we found that obtaining real-time
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power status across all communities and households after a
hurricane remains a significant challenge. As a result, the
government has launched online platforms, such as Florida’s
311 system [Xu and Tang, 2020], to allow residents to sub-
mit power repair requests. These submissions help authorities
prioritize regional power restoration, often giving precedence
to communities reporting the highest number of outages.
Although the current strategy can be effective in certain
cases, it often exacerbates existing inequalities by dispropor-
tionately impacting economically and socially disadvantaged
communities. Due to limited awareness of submission chan-
nels, residents in these communities typically file fewer re-
quests, making them more likely to be overlooked in govern-
ment decision-making. Therefore, it is crucial to develop an
equity-aware power restoration strategy that balances restora-
tion efficiency with fairness across all communities.
However, two major challenges arise in achieving this.
First, heteroscedasticity in the training data [White, 1980]
poses a challenge to regional repair duration prediction. Re-
pair durations, which are critical for determining restoration
sequences, are typically derived from historical repair request
data. However, as our findings suggest, the volume of re-
pair requests varies significantly across regions, introducing
heteroscedasticity into the data. This variability hampers the
ability to make deterministic predictions, and directly ap-
plying traditional uncertainty quantification methods such as
conformal prediction [Shafer and Vovk, 2008] can result in
inequities across sensitive features. Second, traditional opti-
mization methods like reinforcement learning (RL) prioritize
information with lower uncertainty to minimize error accu-
mulation [Kumar et al., 2020]. Hence, directly applying these
methods would lead to regions with smaller local variances
being prioritized, which conflicts with our equity objective.
To address these challenges, we propose an Equity-aware
Predict-then-Optimize Power Restoration framework, called
EPOPR. The objective is to minimize the total outage du-
ration while ensuring that outage durations across communi-
ties satisfy equity criteria. EPOPR consists of two key com-
ponents: (1) Equity-Conformalized Quantile Regression
(ECQR) for uncertainty-aware repair duration prediction. In
a heteroscedastic dataset, some sensitive features may have
limited data coverage and wider prediction intervals, poten-
tially compromising equity in subsequent decisions. To ad-
dress this, ECQR incorporates equity-based uncertainty cali-
bration to maintain uniform average coverage across sensitive
features. Additionally, it employs dynamic prediction inter-
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vals that adapt to varying levels of dispersion across sensi-
tive features. (2) Spatial-Temporal Attentional Soft Actor-
Critic (STA-SAC) for optimizing the repair sequence. The
key innovation lies in the spatial-temporal attention-based
Actor, which captures spatiotemporal dependencies among
uncertainties while handling the dynamic nature of the action
set. Meanwhile, we integrate the Lagrange Multiplier [Bert-
sekas, 2014] into Soft Actor-Critic [Haarnoja et al., 2018],
our base RL model, to solve the multi-objective optimization
problem that balances both efficiency and equity.
The key contributions of this paper include:

e From a data-driven perspective, our analysis of real-
world power restoration datasets reveals two key in-
sights: (1) The current power restoration process is
inequitable, as it tends to prioritize communities with
higher volumes of repair requests, typically those that
are economically and socially advantaged. (2) Repair re-
quest submissions vary significantly across regions, in-
troducing heteroscedasticity into the training data and
complicating subsequent decision-making.

From a technical design perspective, inspired by
our data-driven findings, we propose an equity-aware
predict-then-optimize power restoration framework,
EPOPR, with novel enhancements at both the prediction
and decision-making stages. For repair duration predic-
tion, we introduce ECQR, which incorporates equity-
aware uncertainty calibration to ensure uniform aver-
age coverage across sensitive features, while employing
dynamic prediction intervals to preserve overall statis-
tical efficiency. For repair sequence decision-making,
we develop STA-SAC, an RL method designed to mini-
mize total outage duration while enforcing equity-aware
constraints. Specifically, STA-SAC employs a Spatial-
Temporal Attentional Actor to jointly capture predictive
uncertainty and its spatiotemporal dependencies.

L]

We comprehensively evaluate EPOPR using the real-
world power outage datasets from Tallahassee, Florida.
Experimental results demonstrate that EPOPR reduces
average outage duration by 3.60% and decreases in-
equity among regions by 14.19%, outperforming the
best baseline. Specifically, we independently assess our
prediction method, ECQR, which enhances prediction
performance in disadvantaged regions and produces a
more equitable output. This equity-aware prediction fur-
ther enables our decision-making method STA-SAC to
significantly narrow the disparity in power outage dura-
tions across regions with different income levels.

2 Data Analysis And Motivation

In this project, we collaborate with the City of Tallahassee
Government in Florida to improve its power outage restora-
tion services. The city provided us with detailed household-
level datasets on outage repair requests and electricity usage
after signing a non-disclosure agreement. Both datasets con-
tain one year of data records from Tallahassee in 2018. No-
tably, they capture the city’s power restoration process during
Hurricane Michael in October 2018—a Category 5 storm

that caused large-scale outages in the city [NHC.gov, 2019].
Moreover, our collaborator from Public Administration and
Policy offered detailed investigations and analyses from a
Social Science perspective [Xu and Tang, 2020], helping
us identify key variables influencing government decision-
making and understand how these factors may contribute to
inequities in the power restoration process. Building on these
collaborations, we conducted an in-depth, data-driven analy-
sis that yielded the following key findings:

(i) The number of repair requests surges significantly after
a hurricane, yet their distribution varies considerably across
regions. Figures 1 and 2 illustrate the fluctuations in repair
request submissions across both spatial and temporal dimen-
sions. In the temporal dimension, we observe a sharp increase
in repair requests within the first week after the hurricane, in-
dicating that residents rely heavily on this method to report
power outages. In the spatial dimension, the number of re-
quests varies significantly across regions due to multiple fac-
tors, including the severity of outages and residents’ aware-
ness of available reporting channels.
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Figure 1: Repair Requests in Dif-
ferent Days

Figure 2: Post-Hurricane Re-
pair Requests across Regions

(i) The current power restoration strategy in Tallahassee
disproportionately disadvantages economically and socially
disadvantaged communities. Interviews with government of-
ficials revealed that obtaining real-time power status across
all regions after a hurricane remains a significant challenge.
Consequently, the government often relies on repair request
volume to determine the restoration sequence. However, this
approach leads to inequities, as regions with fewer repair re-
quests are more likely to experience prolonged power out-
ages. As shown in Figure 3, regions that submitted fewer re-
pair requests (10 or fewer) experienced 34.19% longer power
outage durations than those with over 10 requests. In Fig-
ure 4, we present the cumulative distribution function (CDF)
of power outage durations across all regions during the hur-
ricane. The data reveals that 40% of outages were restored
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Figure 3: Request Number
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Figure 4: Power Outage Duration
during Hurricane
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Figure 6: Repair Duration in
Different Regions

within two days, while over 12% of residents still experienced
outages lasting more than four days. We also examine the so-
cioeconomic status of regions experiencing longer power out-
ages. Using average annual income as a representative metric,
Figure 5 reveals a negative correlation between power outage
duration and income levels, with a Pearson correlation coef-
ficient of -0.61. This finding indicates that lower-income re-
gions tend to endure longer power outages. Motivated by this,
our research aims to develop an Al-driven power restoration
strategy that enhances social equity.

(iii) The historical regional repair request data exhibits het-
eroscedasticity. In Figure 6, we visualize the distribution
of historical repair durations across different regions. The
shaded area represents the 90% quantile interval (ranging
from the Sth to the 95th percentile), while the dashed line
indicates the midpoint of this range. It can be observed that
the variance of historical repair durations differs significantly
across regions. For example, Region 2 has a narrower quan-
tile interval, whereas Regions 4 and 7 have wider intervals.
This pronounced heteroscedasticity poses challenges for ap-
plying deterministic prediction methods. Moreover, tradi-
tional uncertainty-aware prediction approaches often intro-
duce bias, as their predictive accuracy tends to be higher for
groups with more data (e.g., richer communities), further ex-
acerbating disparities across socioeconomic groups.

3 Methodology

3.1 System Overview

In this paper, we design an equity-aware predict-then-
optimize power restoration framework called EPOPR, con-
sidering both recovery efficiency and equity. The problem is
formulated as follows:

n Y P(Fp)E[Toutage | Fil e
ke{o 2}
s.t. maXW( ( outage ‘ Fkl) P(Toutage | sz)) S d (2)

k1,k2

In Equation 1, we present our optimization objective,
which seeks to minimize the average expected outage dura-
tion across all regions. The feature I’ represents an equity-
related feature. Taking the average income as an example, we
categorize F' into three groups: high, middle, and low.

In Equation 2, we present our equity-aware constraints.
Inspired by the fairness definition of demographic equity
[Pessach and Shmueli, 2022], we define equity as the con-
dition that the difference in outage duration distributions

across different sensitive groups of regions does not exceed
a predefined upper bound d—for example, the difference in
outage duration between high-income and low-income re-
gions should not be too large. To better capture the over-
all distributional difference, we use the Wasserstein distance
W (P (Toutage | Fry)s P(Toutage | Fr,)) to represent the dispar-
ity [Panaretos and Zemel, 2019].

According to our optimization formulation, the regional
outage duration Toytage(F) (abbreviated as Toyutage When
the sensitive feature Fj, is not explicitly considered) plays a

crucial role. The outage duration for region m, T

outage> con-
sists of two components: waiting duration TiE)a'L)tm o, and repair
duration T,(e ZW The waiting duration, Té, M)tm 4> can further

be represented as the sum of the repair durations of all regions

preceding region m, i.e., > ! Tfé;mr, and the time spent

on the road, T},qvei- The equation is shown below:
T(m)

outage —

_ T(m) + T(m)

waiting repair
- Zm ! Tﬁéz))azr + TWGUEI + vag;oznr (3)

Based on the formulation in Equation 3, we break down
our optimization problem into two key subproblems: predict-
ing the outage repair duration for each region, which relates

oT( ™)

repair’
lated to Téj';)tm o Accordingly, our EPOPR framework con-
sists of two main components: a prediction module called
ECQR that estimates the repair duration 7}.cpq for each re-
gion, and a decision module called STA-SAC that determines
the repair sequence across different regions. An overview of

the EPOPR framework is illustrated in Figure 7.

and determining the repair sequence, which is re-
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Figure 7: The Framework of EPOPR

3.2 ECQR for Prediction

In this section, we describe how we estimate repair dura-
tions Tiepair across different regions. A key challenge, as dis-
cussed earlier, is the substantial variation in repair request
volumes across regions. This leads to an unevenly distributed
training set and results in heteroscedasticity. For such high-
variance data, deterministic predictions often underperform,
especially in underrepresented regions. To address this, we
adopt uncertainty-aware prediction. However, this approach
alone may still lead to unfair outcomes. Due to heteroscedas-
ticity, the variance in repair durations differs across regions
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(as shown in Figure 6), and regions with higher variance often
experience poorer prediction performance, making it more
difficult for them to receive equitable restoration services.

To handle this, we propose Equity-Conformalized Quan-
tile Regression (ECQR) based on traditional CQR [Romano
et al., 2019]. Our method has two distinct advantages: (1) We
provide a group-based calibration factor to ensure equitable
coverage. Although this may slightly reduce prediction cov-
erage for advantaged groups, it significantly narrows the cov-
erage gap between advantaged and disadvantaged groups. (2)
Inheriting the advantages of original CQR, ECQR also pro-
vides dynamic prediction intervals for different regions, mak-
ing it particularly suitable for heteroscedastic datasets and im-
proving overall prediction performance.

We now introduce ECQR in detail. Let the original dataset
D be denoted as {(z;, fi,yi) : ¢ € D}, where z; represents
the features of sample i, f; corresponds to equity-related sen-
sitive features, and y; denotes the target variable. In our sce-
nario, z; is a 9-dimensional vector including the region’s lo-
cation and contextual information, and f; represents the re-
gion’s average annual income, divided into three sensitive
groups, with y; denoting the region’s repair duration.

The dataset D is split into a training dataset DD and a cali-
bration dataset D,. First, we use Quantile Regression Forest
(QRF) [Meinshausen and Ridgeway, 2006] to fit two condi-
tional quantile functions ¢, and gj;, as shown below:

{(jalnquocm‘,} — QRF ({(‘Tlvyl) S Dl}) “

Where ¢,,, and ¢, represent the conditional quantile func-

tions for the lower and upper bounds of prediction «, respec-
tively. The definition for ¢, (z) is shown as below:

Fy|X=2)=P{Y <y|X =2z} Q)

jo(z) =inf{y e R: Fy | X =) > a} (6)

For example, if we pursue the prediction interval with cov-

erage rate ov as 90%, then ay, = <52 and ay,; = 5. We use

PIgrr(x;) to represent the prediction interval for sample

PIQRF(xi) y [qAO‘lo (1.1)7 qAami (xl)] (7)

Directly applying the prediction interval PIgrr learned
from quantile regression is impractical because the validity
of estimated intervals is only guaranteed for specific mod-
els rather than our heteroscedasticity setting [Takeuchi et al.,
2006]. Therefore, we compute conformity scores in the cal-
ibration dataset Do to quantify prediction interval error and
calibrate it. The conformity score F is calculated as follows:

E; == max {{o,, (i) — ¥i, Yi — don, (zi)}, 1€ Dy (8)

In original CQR, the method sorts all F; values and selects
a specific quantile of E; to calibrate the prediction interval:

Eq) < E@) < < E(py)) ®)
Specifically, the method selects the [a(]|D2| 4+ 1)]-th small-
est conformity score F(rq(p,|+1)]) as the calibration fac-
tor Qo (E, D2) for adjusting the prediction interval. Where

[1 represents the ceiling function. The prediction interval
PIcgr(x;) can be represented as:

Plogr(z;) = [Ga,, (2:) — Qu(E, D3),

10
Gon: (i) + Qa(E, D2)] 1

However, the original CQR does not account for the influ-
ence of the sensitive feature F'. As shown in Equation 9, the
sorting of all conformity scores E; is independent of the cor-
responding sensitive feature f;. In other words, all samples
in the calibration set D5 are sorted without considering their
sensitive attributes. As a result, the scores covered by the cali-
bration factor Q. (E, D2) (i.e., from Ey to Ef,(|p,|+1)]) may
have imbalanced sensitive feature distributions. For instance,
due to higher variance, samples from low-income regions are
less likely to fall within the calibrated range.

In ECQR, we redefine the calibration dataset Do based on
the sensitive feature F":

Dy(Fy) = {i:i € Dyand f; = F},} (11)

Where Fj, means the k-th sensitive group in sensitive feature
F'. After each sensitive group F}, has a corresponding calibra-
tion dataset D5 (F}; ), we calculate the group-based calibration
factor Q. (F, Do (F},)) separately through the Do (F}y,) rather
than the whole D,. Based on that, we get the prediction in-
terval PIgcqr(X;, fi) for our method ECQR:

PlIcqr(wi, fi) =[Gay, (xi, i) — Qa(E, Da(Fy)),
qam‘, (LEZV fl) + Qa(E7 D2(Fk))}

From Equation 12, it can be observed that when predicting
the prediction interval PIgpcqr(z;, f;) for sample i, we ac-
count for its sensitive feature f; and apply the correspond-
ing calibration factor Q, (E, D2(F})) based on the sensitive
group Fj, associated with the sample. This group-based ap-
proach ensures that the system’s output maintains the same
theoretical coverage across all sensitive groups.

To conclude, our ECQR represents uncertainty predic-
tion outputs as prediction intervals PIpcor(;, fi), offering
two key advantages: equitable coverage across all sensitive
groups and the dynamic prediction interval for every sample
t. In the next section, we will introduce the decision-making
module and explain how the prediction intervals are used in
STA-SAC for equity-aware power restoration.

3.3 STA-SAC for Decision-Making

CMDP Problem Formulation

Formally, we model our equity-aware power restoration prob-
lem as a Constrained Markov Decision Process (CMDP), and
propose a new reinforcement learning algorithm called STA-
SAC to solve it. We define the CMDP problem G as the 6-
tuple: G = {S, A, P,R,C, u}, where S is the state space, A
is the action space, P : S x Ax S — [0, 1] denotes the transi-
tion probability function, R represents the reward function, C
represents the cost function, p is the initial state distribution.
The details of the CMDP G in our problem are shown below.

(12)

o State S: We consider the power repair team as the agent.
We define the state s; of the agent at step ¢ as sy = ST3,
where ST} represents the agent’s spatiotemporal state, en-
compassing the current region r, the current time 7}, and
its current coordinates.

* Action A: We define the action as selecting the next power
outage-affected region for repair. At each time step ¢, the
action space A; = {a;,a?,...,a}'}, where a} corresponds
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to the features of the r-th region, and n is the number of
candidate regions available for repair. Each action aj is de-
fined as a] = {PI],ST;,CO"}, where PI] represents
uncertainty information, specifically the prediction inter-
val for repair duration in region r. ST} represents spa-
tiotemporal information of region r at time t. CO" =
{id",dis", sen" } denotes contextual information for region
r, including its identifier id", distance dis” from the repair
team’s current location, and sensitive feature sen’.

* Reward R: We assign the reward only at the end of each
episode. Specifically, during all previous steps, the system
provides no reward feedback (i.e., a reward of 0) until all
regions have been restored with power. Once all regions
are repaired, the system provides a reward reflecting the
effectiveness of the entire repair process. In EPOPR, based
on our optimization problem defined in Equation 1, we use
the negative average outage durations across all regions as
the reward. The reward is calculated as follows:

R=—- (Zvjﬂvzl Tgutage) /N (13)
where T

outage Tepresents the outage duration for region r,
and N is the total number of power outage regions.

* Cost C: We assign the cost only at the end of each episode,
similar to our reward setting. The cost is defined as the
maximum Wasserstein distance between the outage dura-
tion distributions of all possible pairs of sensitive groups. It
is calculated as follows:

C = }Cn%gXW(P(ToutagJFkl)y P<Toutage‘Fk2)) (14’)
1,k2

where F}, and F},, represent any pair of sensitive groups.
We require that the cost C' does not exceed the predefined
upper limit d, which follows our equity criteria: ensure
that the overall difference between the two groups remains
within an acceptable range.

In the CMDP problem, the final optimization problem is:

max R st C<d (15)

To address the aforementioned problem, we propose STA-
SAC, which includes an Actor for action selection and four
Critic networks for action value estimation. A key challenge
in STA-SAC is effectively modeling the spatial-temporal cor-
relations among these uncertainties while handling the dy-
namic nature of the action set. In the following section,
we will introduce the Spatial-Temporal Attention Actor and
show how it addresses this challenge.

Spatial-Temporal Attentional Actor

In reinforcement learning, the Actor selects the next action
based on the agent’s current state, typically represented as
m(a¢|st). Unlike traditional approaches, STA-SAC considers
both the current state s; and the entire action set A;, where
each action a; € A, is associated with uncertainty informa-
tion PI]. Notably, the size of A; is dynamic at each deci-
sion step in real-world settings. To address this, our Spatial-
Temporal Attentional Actor leverages an Action Pruning
Mask and a Transformer-based architecture [Waswani ez al.,
2017] to handle the varying size of A;. A query-key attention

mechanism is used to capture global dependencies within the
action set and estimate the selection probability of each candi-
date action. The overall architecture of the Spatial-Temporal
Attentional Actor is illustrated in Figure 8.
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Figure 8: Spatial-Temporal Attentional Actor

In Spatial-Temporal Attention Actor, we assume that the
total number of all outage regions is N, and we denote the set
of these regions as the Full Action Space. Through the Action
Prune Mask, we mask certain candidate actions to obtain the
action space A, at step t. The masking logic mainly focuses
on: excluding previously selected actions and actions whose
corresponding regions are too far from the repair team.

After obtaining the Step Action Space A; at step ¢, we em-
ploy the Transformer to simultaneously perform two tasks:
(1) embedding the entire action space A; and (2) integrating
global information into each action. For the first task, we in-
put the [CLS] token [Kenton and Toutanova, 2019] to obtain
the embedding of the action space. For the second task, we
concatenate the output from the Transformer for each action
with the action itself to form the new action representation.

Finally, we adopt the query-key mechanism from attention
to generate our policy 7(aj |s¢, A;). We concatenate the Ac-
tion Space Embedding with the agent’s current state s; to
form the Query ()¢, and treat all candidate actions as the Keys
[K}!,K2,...,K!]. The action score x} for the r-th action
aj is calculated as:x} = v,0(W,[K] & Q;]), where & de-
notes concatenation. The policy 7(a}|s¢, A¢) is then com-
puted based on all candidate actions as:

exp(xt)
>z exp(x})
Here, 7(a}|st, A:) represents the probability of selecting the

action a; (i.e., the next region r to be repaired) based on the
current state s; and action space A; [Jiang et al., 2023].

m(ag|se, Ay) = (16)

Training Method

In STA-SAC, we adopt SAC-Lagrangian as the foundation
of our RL model and incorporate the Lagrange multiplier A
to integrate cost constraints into the reward-based optimiza-
tion objective. STA-SAC consists of one Actor and four
Critic networks. The Actor leverages our Spatial-Temporal
Attention mechanism, while the Critic networks evaluate ac-
tion values and guide decision-making. Specifically, the
Actor is represented as my(a}|st, A:), where 6 denotes its
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learnable parameters. The Reward and Cost Critic networks
are Qwr{l Y (s¢,at) and ch{l Y (s¢, at), respectively, with
Wy, , Wr,, We, , We, as their learnable parameters.

To update the reward Critic networks, we minimize the fol-
lowing loss function for ¢ = 1, 2:

N
1 .
Lo, “UN EM ;_1 (Tt + v min Qw;j (St+1,a1+1)

— Blogmy(ai|st, At) — Qu,, (st at)) (17

Where M is the number of episodes per update cycle, IV is
the length of each episode, ~y is the discount factor, and 5 de-
termines entropy importance. w, denotes the target network
parameters of wy;, a common RL technique. The cost Critic
networks share a similar update strategy in Equation 17.

To update the Actor, we minimize the following loss:

N
L.(0) = ﬁ ZZ (ﬁlogmg(a;\st,At)

M t=1

— min (Qwrj (st,ar) — )\chj (st,at)) ) (18)

Jj=12

For Lagrange multiplier J, it follows the updating rules:

A < max (0, A=mVa (j:iln2 chj (sgyae) — d)) (19)

where 7)) denotes the step size for updating A\. More details
of SAC-Lagrangian can be found in [Haarnoja et al., 2018].

4 Evaluation
4.1 Evaluation Methodology

Data: We use two one-year power outage datasets in 2018
from Tallahassee, Florida, to evaluate the proposed predict-
then-optimize power restoration framework. We can extract
two key pieces of information from the data: power outage
duration and repair duration for each region. We build a sim-
ulation environment based on these two datasets where the
repair team travels from one region to another region accord-
ing to the decisions made by algorithms. In our simulation,
for every episode, the repair duration for each region is di-
rectly sampled from historical outage records, reflecting real-
world repair duration patterns. The simulation ends when all
regions are repaired, marking one complete episode.
Metrics: We design two metrics to evaluate our approach:

Power Outage Duration T, vutage: The average power out-
age duration across all regions. This metric quantifies the
power restoration efficiency. The unit of this value is the hour.

Power Restoration Inequity W D, cquity: This met-
ric quantifies disparity in outage durations across socio-
economic groups. Specifically, we compute the Wasser-
stein distance between outage duration distributions of differ-
ent sensitive groups and take the maximum value to capture
the most significant inequality. The formal definition of the
Wasserstein distance is in Equation 2. Particularly, a smaller
W Dinequity indicates greater equity in power restoration.
Baselines: We compare EPOPR with the following base-
lines. (1) GroundTruth (GT): This baseline directly extracts

the repair sequence from our real data. (2) Greedy Method
(GM): The repair team always prioritizes repairing the re-
gion nearest to its current location. (3) TSP-ST [Tas er al.,
2016]: We formulate the sequential repair task as a Traveling
Salesman Problem (TSP) with service times, where each re-
gion has a repair duration. This approach minimizes the sum
of repair and travel durations. (4) RL-DTSP [Zhang er al.,
2021]: This method employs a DQN-based decision maker
for route planning under deterministic predictions, where a
Random Forest model provides each region’s repair duration.
(5) HRL-DPDP [Ma et al., 2021]: This method uses hier-
archical reinforcement learning. The upper-level agent de-
cides which type of region to repair first, while the lower-
level agent selects the specific region. It relies on the same
deterministic prediction inputs as RL-DTSP. (6) ROPU [Yan
et al., 2024]: A predict-then-optimize approach with uncer-
tainty consideration. It utilizes Conformal Prediction for pre-
diction and an Actor-Critic framework for decision-making.

4.2 Overall Performance

We compare EPOPR with baselines and summarize the re-
sults in Table 1. In our experiment, we set the upper limit d
to 8. The regional division method is based on the US Census
Tract, and the region size N in our experiment is set to be 55.
Our key findings are: (1) Our method achieves the shortest
average outage duration and the most equitable outage dis-
tribution. Specifically, it reduces outage duration by 20.44%
and restoration inequity by 49.87% compared to the ground
truth. Furthermore, compared to the best-performing base-
line, ROPU, our method reduces these metrics by 3.60% and
14.19%, respectively. (2) Among baselines, the optimizer-
based method TSP-ST outperforms RL-based RL-DTSP for
small-scale optimization (where NV is typically less than 100).
The hierarchical RL-based HRL-DPDP performs poorly be-
cause multi-level objectives make the system prone to local
optimization. Meanwhile, uncertainty-aware prediction-then-
optimize methods, ROPU and EPOPR, significantly outper-
form others by quantifying uncertainty for reliable decisions.

Method Toutage \L (h) WDinequity \L
GT 57.521 17.344
GM 53.287 16.365
TSP-ST 49.337 11.389
RL-DTSP 50.853 11.952
HRL-DPDP 56.924 15.725
ROPU 47.471 10.132
EPOPR 45.762 8.694

Table 1: Overall Performance. The | indicates that a smaller value
is better. The result is the mean value based on 10 experiments.

4.3 Results for Repair Duration Prediction

To assess the effectiveness of our uncertainty-aware outage
prediction method, ECQR, we compare it with two com-
monly used baselines: Conformal Prediction (CP) [Shafer
and Vovk, 2008] and Conformalized Quantile Regression
(CQR) [Romano et al., 2019]. Prediction interval quality is
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evaluated using coverage rate and interval length. Figure 9
shows coverage rates for three sensitive groups, with a 90%
target (red dashed line). Compared to baselines, ECQR sig-
nificantly reduces disparity among groups. While slightly
lowering coverage in high-income regions compared to CQR,
it notably improves coverage in low-income regions, ensur-
ing all groups reach the target. Figure 10 shows that ECQR
reduces interval length in low-income regions by 15.0% and
11.4% compared to the other two methods. Overall, ECQR
delivers more reliable predictions for low-income regions,
narrowing the gap with other groups for better equity.
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Figure 9: Prediction Interval
Coverage Rate

Figure 10: Prediction Interval
Length

4.4 Results for Outage Duration Distribution

We show the outage duration distribution under our method
EPOPR and the current situation in Figure 11 and 12, respec-
tively. The figures on the left depict power outage durations
across the city, with darker blue indicating longer outages.
The figures on the right present outrage durations of each re-
gion. By comparing the two figures, we can see our method
reduces the differences in outage durations across sensitive
groups, demonstrating its performance to improve equity.
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Figure 11: Outage Duration Distributions based on EPOPR

—— Low-Income
Middle-Income
—- High-Income

shorter outage
durations

*

0z
03 6 912151821
Region Index

durations
Low-income Regions

21
£
=
longer %
outage $ 20( 4l
]
o

Figure 12: Outage Duration Distributions from Real Data

5 Related Work

Uncertainty Quantification: In recent years, uncertainty
quantification (UQ) has attracted widespread attention in both
prediction [Wen et al., 2023; Rasul et al., 2021; Zhuang et al.,
2022] and decision-making [Yan et al., 2024; An et al., 2021;
Ez-Zizi et al., 2023] tasks, as reliable uncertainty estimation
not only enhances model interpretability but also provides a
solid foundation for downstream decision tasks. Bayesian
methods, such as Bayesian Neural Networks (BNN) [Gal and
Ghahramani, 2016; Lan et al., 2022], introduce probability
distributions over the weights of the neural network and use
Bayesian inference for uncertainty estimation. Predictive dis-
tribution methods explicitly model the output distribution to
capture uncertainty. For example, Quantile Regression (QR)
[Koenker and Bassett Jr, 1978; Chung et al., 2021] estimates
various quantiles of the target distribution, yielding interval-
based uncertainty estimates. In contrast, Deep Ensembles
[Rahaman and others, 2021] train multiple independent neu-
ral networks and aggregate their predictions to approximate
the overall predictive uncertainty. Calibration methods aim to
ensure that a model’s predicted confidence levels accurately
correspond to the true probabilities, thereby improving the
reliability of uncertainty estimates. For example, temperature
scaling [Kull ez al., 2019] adjusts the softmax outputs so that
the predicted confidence scores more closely reflect the actual
probability distribution.

Post-Disaster Power Restoration: Many studies have ex-
plored post-disaster power restoration from various disci-
plines. Here, we focus on data-driven approaches. [Af-
sharinejad er al., 2021] employs unsupervised learning
on real-world power grid data from New York and Mas-
sachusetts to analyze recovery capabilities under government
policies. [Ji et al., 2016; Ganz et al., 2023] investigates
the relationship between socioeconomic vulnerability and the
differential impact of severe weather-induced power outages
through large-scale data analysis. [Xu and Tang, 2020] inves-
tigates how the public service platform after disasters affects
distributional equity in public service delivery, and how the
government utilizes such a digital platform to improve post-
disaster power restoration efficiency.

6 Conclusion

Motivated by our data-driven analysis, we found that the cur-
rent power restoration decisions may be inequitable, as it is
highly related to the number of repair requests from each
region. This reliance on request volume creates significant
disparities, often resulting in disadvantaged areas with fewer
submissions receiving lower priority in the restoration pro-
cess. To address this challenge, we design an equity-aware
predict-then-optimize power restoration framework called
EPOPR, which consists of two key components: (1) ECQR
for repair duration prediction, ensuring equitable prediction
intervals across all sensitive groups, and (2) STA-SAC for
repair sequence decision-making, which aims to minimize
the total outage duration while enforcing fairness constraints.
Evaluations on real-world data demonstrate that EPOPR re-
duces the average outage duration by 3.60% and mitigates
regional inequities by 14.19% compared to the best baseline.
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