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Abstract

Efficient molecular property prediction is crucial
in bioinformatics and cheminformatics, with appli-
cations in drug discovery, materials science, and
chemical engineering. This paper introduces Mol-
HFCNet, a graph neural network designed to en-
hance molecular representation learning. At its
core, the n-Hierarchical Features Combining (n-
HFC) module aggregates information across mul-
tiple hierarchical feature spaces, effectively captur-
ing both local and global graph structures. Un-
like conventional models, n-HFC maintains com-
putational complexity comparable to a single full-
dimensional graph layer while supporting either 2D
or 3D molecular graphs, ensuring flexibility across
tasks. Furthermore, we propose a novel graph pre-
training strategy that integrates predictive and con-
trastive learning, enabling the model to capture lo-
cal chemical interactions and global molecular con-
texts for robust embeddings. Experimental results
on benchmark datasets demonstrate MolHFCNet’s
superior accuracy and efficiency compared to state-
of-the-art methods, highlighting the potential of
high-order hierarchical feature learning for advanc-
ing molecular graph analysis. Our code is available
at https://github.com/ndlongvn/MolHFCNet.

1 Introduction

Predicting molecular properties is crucial for drug discovery
and materials science, enabling the identification of specific
molecules while reducing experimental costs [Yang ef al.,
2019]. Recent advancements in deep learning (DL), which
have revolutionized fields like natural language processing
(NLP), computer vision (CV), and graph analysis, prompted
chemists to adopt DL techniques for molecular property pre-
diction, particularly in chemical modeling and drug discov-
ery [Gilmer et al, 2017]. Molecular representations like
SMILES and SELFIES are foundational in property predic-
tion tasks, enabling machine learning (ML) and DL mod-
els to process molecular structures effectively. SMILES en-
codes molecules as sequences, making it well-suited for NLP
techniques. Models like ChemBERTa [Chithrananda et al.,
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2020] and SMILES-BERT [Wang et al., 2019] used Trans-
formers to predict molecular properties. Zhu et al. [2023]
introduced DVMP, combining Transformers and graph neu-
ral networks (GNNs) to leverage both SMILES and molecu-
lar graphs for improved performance. SELFIES overcomes
the limitations of SMILES by ensuring 100% chemical va-
lidity through context-free grammar. This robustness has en-
abled advances in molecular property prediction and drug dis-
covery. For instance, SELFormer [Yiiksel et al., 2023], pre-
trained on two million SELFIES compounds representation,
surpassed SMILES-based models in adverse drug reaction
predictions. SELFIES has also driven innovations in chemin-
formatics, including genetic algorithms with DNNs [Nigam
et al., 20201, curiosity-driven reinforcement learning [Thiede
et al., 2022], and multi-objective optimization [Alberga et
al., 2024]. Together, SMILES and SELFIES are essential for
molecular properties prediction with unique strengths.

Besides SMILES and SELFIES, 2D molecular represen-
tations based on graphs, where atoms are modeled as nodes
and bonds as edges, offer richer relational information and
have attracted increasing interest [Nguyen et al., 2024]. This
has driven the rapid development of GNNs, which excel at
modeling graph-structured data and have demonstrated su-
perior performance in predicting quantum mechanical [Yang
et al., 2019] and molecular properties [Zhu et al., 2022;
Zang et al., 2023; Zhu et al., 2023]. However, while 2D
graph representations effectively capture molecular topology,
they overlook crucial 3D geometric information, which plays
a fundamental role in determining molecular properties. To
address this limitation, recent studies have incorporated 3D
structural data into molecular representations, leveraging ad-
vanced geometric learning techniques. Nguyen ef al. [2024]
introduced the multimodal model, which integrates 2D and
3D graph information with contrastive learning to enhance
molecular representations. Similarly, Liu et al. [2022a] pro-
posed GeoSSL-DMM, an SE(3)-invariant score matching ap-
proach that reformulates coordinate denoising as denoising
pairwise atomic distances, achieving state-of-the-art results.
Additionally, Zhou et al. [2023] developed the Uni-Mol
model based on the SE(3) Transformer architecture, embed-
ding 3D graph information to facilitate effective learning and
representation of molecular conformers.

Despite significant advancements, traditional GNNs face
several critical challenges that limit their effectiveness in
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deep architectures. First, the practice of propagating full-
dimensional features across layers leads to substantial com-
putational complexity, resulting in high memory and pro-
cessing demands that hinder the scalability on large or com-
plex graphs [Duan er al., 2022]. Second, traditional molec-
ular graph learning models are typically designed with ei-
ther a 2D-GNNs or 3D-GNNs backbone [Zhu et al., 2022;
Schiitt et al., 20171, limiting their adaptability across different
molecular prediction tasks. To address these challenges, we
introduce MolHFCNet, a novel hierarchical GNN tailored
for molecular property prediction. While HorNet [Rao et
al., 2022] utilizes hierarchical convolutional layers for multi-
scale feature extraction in computer vision, Mol[HFCNet in-
dependently adapts and extends these principles to molecu-
lar graphs by introducing the n-HFC module. Unlike Hor-
Net, our n-HFC module is specifically designed for molec-
ular graphs, enabling multi-scale message passing to cap-
ture both local and global structural patterns. By employ-
ing a hierarchical strategy, the n-HFC module expands in-
termediate feature dimensions, enabling deeper architectures
to retain more distinct and informative node representations.
This hierarchical scaling not only maintains computational
efficiency, keeping n-HFC’s complexity comparable to a sin-
gle full-dimensional standard graph layer but also enhances
the model’s ability to learn adaptive, multi-scale represen-
tations, effectively addressing the limitations of traditional
GNN architectures. Furthermore, we introduce a novel graph
pretraining strategy that integrates both predictive and con-
trastive learning objectives, enabling the model to capture
contexts and interactions. MolHFCNet also supports diverse
GNN backbones, adapting to molecular topology when 3D
graph is unavailable or leveraging spatial information.

2 Method

Notation: In graph representation, a molecule is modeled as
an undirected graph G = (V, &), where the nodes V corre-
spond to the atoms, and the edges £ C V x V represent the
chemical bonds between them. Each node v; € V is asso-
ciated with a feature vector h; € R<, where d is the dimen-
sion of the atomic capturing properties. Each edge in & is
characterized by an edge feature vector e;; € R% of d, di-
mension. In addition to atomic features, the 3D spatial con-
figuration of the molecule for capturing geometric and con-
formational properties is represented as R € RIVI*3, where
R; = (x4, yi, z;) denotes the Cartesian coordinates of v;.

2.1 Multi-task Self-Supervised Contrastive
Pretraining

In this study, we introduce a graph pretraining strategy for
molecular representation learning to effectively capture both
local and global molecular features. Our approach leverages
the complementary strengths of predictive and contrastive
pretraining methods. By integrating these objectives with de-
scriptor and fingerprint-based supervision, we establish a ro-
bust foundation for learning enriched representations.

Masked attribute prediction for 2D and 3D graphs
The masked attribute prediction method trains the model to
infer missing node and edge features based on the remaining

graph structure. This strategy aligns with prior works, such
as those in [Hu et al., 2020; Zhou et al., 2023], and is utilized
for both 2D and 3D molecular graphs. In 3D graphs, where
nodes represent atoms with chemical properties and spatial
coordinates, a dual-masking strategy—atomic feature mask-
ing and spatial coordinate masking—enhances feature learn-
ing. Given a batch of molecular graphs {G*}Z_, with batch
size B, for each graph, atom v} is independently selected for
masking with a fixed probability p € (0, 1). Its masked chem-
ical features and coordinates are replaced with zero vectors,
with VE represents the set of masked nodes for graph G*.
The masked node embeddings z¥, generated by the GNN, are
subsequently fed into two separate prediction heads: fyom, a
multi-layer perceptron (MLP) for predicting masked atomic
features hf, and fpos, another MLP for predicting masked 3D
coordinates Rf; and the predictions are ﬁf = famm(zéc ) and
RF = fos(zF). For a batch of 3D molecular graphs, the
total loss jointly predicts atomic features and spatial coordi-
nates. Let V2 — | JP_ V¥ be the set of all masked nodes,
and note that CEx, denotes the aggregated cross-entropy loss
computed over individual masked categorical features. The
reconstruction loss for graph G* is computed as:
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For 2D molecular graphs, which lack spatial information,
the masking strategy focuses solely on node and edge feature
masking. With the same masking probability p, each node
feature hY and edge feature e¥ is independently masked and
replaced with zero vectors, with £, denote the masked edges
set. For feature reconstruction, the masked node embeddings

zf are processed by faom and fegge, another MLP that pre-
dicts edge features e, expressed as &F, = foiee(zF,z%).
Similarly, the union of masked edges across the batch is
Eateh — Ule EF . and the reconstruction loss for 2D molec-

ular graph G is formulated as:
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To generalize across both 2D and 3D molecular graphs, the

total masked attribute prediction loss is defined as Ly, =
L3pmask, if the input is 3D graph, and £pmask, otherwise.

Molecular descriptor and fingerprint prediction

Molecular descriptors, which quantify global molecular prop-
erties, can serve as valuable targets for supervised pretraining
tasks. To this end, we calculate six key descriptors using RD-
Kit [Landrum et al., 2024] that are critical for drug discov-
ery: molecular LogP (MolLogP), molecular weight (MolWt),
topological polar surface area (TPSA), number of rotatable
bonds (NumRotatableBonds), quantitative estimate of drug-
likeness (QED), and synthetic accessibility (SA). Further-
more, the molecular fingerprints encapsulate both local and
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Figure 1: Overview of our pretraining strategy and the architecture of MolHFCNet. The pretraining framework combines predictive learning
and contrastive learning, starting with graph augmentations such as subgraph removal and node/edge feature masking. Reconstruction tasks
refine embeddings by predicting masked features, while contrastive loss ensures consistency across augmented graph views. Molecular de-
scriptors and fingerprints from RDKit serve as labels for supervised training. The MolHFCNet architecture follows a hierarchical framework
for molecular property and interaction prediction, utilizing multiple hierarchical blocks.

global chemical properties such as structural and physico-
chemical characteristics [Orosz et al., 2022], provide addi-
tional complementary information to guide the pretraining
process. To predict molecular descriptors and fingerprints,
we first generate a graph-level embedding e® for each molec-
ular graph G* using a readout function. The readout function
aggregates node embeddings z* produced by the GNN into a
fixed-size graph representation as e* = READOUT({zF |
v; € V¥}). This graph-level embedding is then passed
through two separate MLPs as y’; = faesc(€¥) and y’fv =
f ﬁngerprjm(ek), where fgesc predicts molecular descriptors, and
Sffingerprine predicts molecular fingerprints. Let Ny denote the
number of descriptors for each graph, with {yfj} as ground-
truth descriptors and {y’;} as predictions. The descriptor pre-
diction loss is

1 B 1 Ny
Ldesc = E ; Fd ; MSE(ys,ia 5’5,1)

The fingerprint prediction is considered binary classifica-
tion tasks. Let N; denote the fingerprint vector length, and
{y’} be the ground-truth fingerprints and {§’} be predic-
tions. The binary cross-entropy loss for the batch is
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Contrastive learning

Contrastive learning has emerged as a powerful framework
for leveraging the growing abundance of unlabeled datasets,

achieving significant success in domains such as computer vi-
sion [Chen et al., 2020]. Recently, this paradigm has gained
attraction in molecular graph representation learning. The
core principle of contrastive learning is to encourage an an-
chor sample to be closer to its positive samples in the embed-
ding space while pushing it further away from negative sam-
ples. In this study, we generate positive samples for molecular
graphs by combining attribute masking and subgraph removal
techniques [Wang ef al., 2022]. Specifically, a positive sam-
ple is a pair of an original molecular graph and an augmented
graph, resulting in two views: the original graph embedding
e’ and the augmented graph embedding effug. These embed-
dings are passed through a shared MLP projection head faug

to generate normalized embeddings as &* = f,,.(e") and
ok — k
eaug - faug(eaug)'

For each batch containing B samples, there are B positive
pairs (&, &) and B(B — 1) negative pairs. We then com-
pute the cosine similarity sim(é&*, éfug) between the original
and augmented embeddings. The contrastive loss for original
and augmented graph views are defined as:

sim(e® ek )/
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where 7 is a temperature hyperparameter that controls the
sharpness of the similarity distribution. The overall con-
trastive loss for the batch is the average of the losses under
two views as Leontrast = %(Lorg + Laug)-
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We utilize a composite loss function combining the objec-
tives for descriptor and fingerprint prediction, node, coordi-
nate and edge recovery, and contrastive learning, which is
computed as:

»Ctolal = M1 Acmask + M2 ['desc + NB»Cﬁngerprint + N4£contrast; (7)

where p; € (0,1), i = 1,4 are weight hyperparameters con-
trolling the relative contributions of each loss component.

2.2 MolHFCNet Architecture

The MolHFCNet architecture is a hierarchical and modular
GNN designed to process graph-structured data efficiently
by leveraging flexible and expressive GNN layers, denoted
generically as 4(-). This modular design allows MolHFC-
Net to adapt to various graph learning tasks by using differ-
ent graph layer types, making the architecture highly versatile
and flexible. At its core, MoIHFCNet employs a multi-order
graph convolution mechanism through the n-HFC module,
which combines information from multiplying hierarchical
feature spaces. This enables the model to aggregate node
and edge information dynamically, capturing both local and
global graph structures. The architecture has 4 stages, each
comprising 2 block modules. Each block integrates the n-
HFC, residual connections, and a feed-forward network to en-
sure stability and expressive representation learning. Figure
1 illustrates the architecture of our proposed MolHFCNet.

The n-HFC module

The n-HFC module is a generalized graph convolution oper-
ator designed to efficiently aggregate multi-scale hierarchical
information from both node and edge features, enabling flex-
ible modeling of high-order spatial interactions. The order of
interactions within the module, denoted by n, represents the
depth of hierarchical processing. Inspired by the success of
hierarchical convolutional layers in HorNet [Rao et al., 2022]
for feature extraction, this module adapts those principles to
molecular graph data. The n-HFC module leverages multi-
scale message passing to extract local and global structural
patterns. Lower layers focus on capturing local neighbor-
hood and atom-level features, while higher layers progres-
sively expand the receptive field to integrate substructural and
molecular-level information. This design enables the model
to learn fine-grained chemical interactions alongside overar-
ching molecular properties, resulting in richer and more ef-
fective graph representations.

Initially, the n-HFC module uses a GNN layer ¢(-) to per-
form feature expansion, transforming the input feature ma-
trix H € RIVIXdn into an expanded feature representation
M = ¥(H) € RIVI*(dn)  This step expands the feature
space, ensuring sufficient capacity to capture local and global
patterns simultaneously. The expanded features M are then
decomposed into multiple hierarchical components, includ-
ing a base feature matrix M and increasing-order features
{N,}7Z), which are processed recursively to model interac-
tions at increasing spatial orders, expressed as

M: [MOaNOlea"wanl]? (8)

where IN; has size of |V| x d; (Mg, No have same size) and
n—1

do+ ) dyp = 27y )

k=0

Lower-order features, such as M, focus on atom-level
interactions and local connectivity, while higher-order fea-
tures expand the receptive field to capture substructural and
molecular-level dependencies. This decomposition mirrors
the hierarchical principles observed in multi-scale feature ex-
traction from computer vision, enabling the model to adapt
effectively to molecular graphs. The n-HFC module con-
tinues to process these components by employing recursive
gated convolutions, where each step applies ¢(-) to expand
and transform the features of each order while scaling their
contributions dynamically. The recursive updation for the k-
th order features, denoted by My 1, is given by:

Y (Ni) © g (M)
3

where ¢ is a scaling factor to normalize the interactions and
maintain numerical stability, and © denotes the element-wise
multiplication. The gating function gy (-) ensures compatibil-
ity between hierarchical orders by matching the dimensions
of features and is defined as the identity mapping iff. k£ = 0,
and a trainable ¢ (-) layer mapping from the feature spaces of
M, _1 to My, otherwise.

At each step, the receptive field expands, enabling the mod-

ule to progressively model higher-order spatial interactions.
This hierarchical progression ensures that the model captures
not only fine-grained chemical interactions at the atom and
local neighborhood levels but also global molecular patterns
at higher levels of abstraction. After completing the recur-
sion, the output from the final step, M,,, is passed through
a projection layer ¢(-) to generate the final output of the
n-HFC module. This projection consolidates information
across all hierarchical orders into a unified representation.
Notably, instead of applying different ¢(-) at each recursive
step, a single ¢(-) operation can be performed on the con-
catenated features {IN}, }'_0, simplifying the implementation
and improving computational efficiency. This efficiency is
crucial for scaling to large molecular graphs while maintain-
ing high-order interactions. To further balance expressive-
ness and computational complexity, the channel dimensions
in each hierarchical order are scaled as:
dk:%, fOl‘kZO,l,..
This ensures that lower layers focus on capturing detailed
local patterns while higher layers focus on broader molec-
ular structures. By combining hierarchical feature aggrega-
tion, efficient recursive computation, and multi-scale message
passing, the n-HFC module effectively learns expressive rep-
resentations of molecular graphs, capturing both local chem-
ical interactions and global structural properties.

The block module

The MolHFCNet architecture comprises four stages, with
each stage consisting of two block modules. The block mod-
ule integrates several key components to enable efficient fea-
ture propagation and transformation. Initially, it applies Lay-
erNorm for normalizing input features, followed by a n-HFC
module that performs multi-scale message passing. The ar-
chitecture then proceeds with another layer normalization and
a series of linear layers. The block also employs a residual
connection to enhance robustness and mitigate overfitting.

M1 =  fork=0,1,...,n—1, (10)

n—1. (11
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Model architectures

We adopt the meta-architecture of HorNet [Rao et al., 2022]
as the foundation for constructing MolHFCNet, wherein the
fundamental block integrates n-HFC and a feed-forward net-
work. To tailor the model for molecular property and interac-
tion prediction, we simplify the architecture by reducing the
number of blocks in each stage to [2, 2, 2, 2]. Additionally,
we adapt the base number of hidden dimensions d to con-
struct graph models of varying sizes, setting the number of
hidden dimensions across the four stages to [d, 2d, 4d, 8d], in
alignment with standard practices for hierarchical graph rep-
resentation learning.

n-HFC module computational complexity
Theorem 1. Let G = (V, &) be a graph with N nodes and

|E| edges. If the cost of full-dimensional 4 () ‘ layer is

din —din
Cy = O(N din dout + [€] p(din, dont, ) ), (12)

then with the hierarchical scaling dy, = diy /2 n=k=1"the to-
tal computational complexity of the n-HFC module is

(] (13)
i.e. approximately the same as that of a single 4 (-) layer.

Proof. By analyzing the initial expansion, recursive gated
convolutions with scaled feature dimensions, and final projec-
tion, the total cost sums to the complexity of a standard G(-)
layer. Detailed proof is omitted due to space limitation. [

The n-HFC module provides substantial advantages in
computational efficiency and scalability, making it well-
suited for deep graph networks. As established in Theo-
rem 1, its total computational complexity remains compa-
rable to that of a single ¢ layer, despite performing hier-
archical feature expansion across multiple levels. This ef-
ficiency is achieved through a structured scaling of feature
dimensions, where each successive layer expands the fea-
ture space by a factor of 2, effectively balancing expressive
power and computational cost. By maintaining a complex-
ity of O(Cg), the n-HFC module enables deeper, multi-hop
feature extraction compared to the single-hop processing of
a standard ¢ layer, without introducing significant computa-
tional overhead. Moreover, its adaptable architecture seam-
lessly integrates with various graph neural network back-
bones, making it a robust and scalable solution for molecular
property prediction and other graph-based tasks. Thus, the
n-HFC module offers a principled and efficient approach to
constructing deep hierarchical graph networks that effectively
balance computational complexity with rich, multi-scale fea-
ture learning.

3 Experiments

3.1 Backbone Layers

Our proposed model is designed to be modular and flexible,
allowing the use of different GNN layers as the fundamental

building blocks. Instead of being restricted to a specific ar-
chitecture, our method supports a variety of GNN layers, in-
cluding but not limited to Graph Attention Networks (GATs,
in [Veli¢kovié et al., 2018]), Graph Isomorphism Networks
(GINS, in [Xu et al., 2019]), Graph Convolutional Networks
(GCNs, in [Kipf and Welling, 2017]), Graph Transform-
ers Networks (GTNSs, in [Shi et al., 2020]), Spatial Graph
Convolutional Networks (SGCNs, in [Danel et al., 2020])
and Continuous-Filter Convolutions (CFConv) from SchNet
[2017]. These layers serve as interchangeable components
within our model, enabling it to adapt to both 2D molecular
graphs and 3D molecular conformations.

Other GNN Layers. We highlight that our proposed
framework is flexible to ¢(-) and can be extended to in-
corporate more advanced architectures, such as DimeNet
[2020], PaiNN [2021] and GemNet [2021] . However, cer-
tain architectures substantially increase the number of param-
eters and demand significant computational resources, mak-
ing them less practical in specific settings. A balance between
model performance, computational efficiency, and memory
constraints therefore guides the selection of layers.

3.2 Implementation Settings

We pretrained the MolHFCNet model on a dataset of 10 mil-
lion SMILES strings from the PubChem database [2020],
which were provided by [Chithrananda et al., 2020] for 5
epochs. For molecular data in SMILES format, we employ
RDKit [Landrum et al., 2024] to generate simulated 3D co-
ordinates, along with molecular descriptors and fingerprints.
To optimize performance, we carefully tuned the hyperpa-
rameters during training. Batch sizes were selected from {8,
16, 32}, and learning rates were chosen from {le—4, 5e—4,
le—3}. A cosine annealing schedule with a warmup phase
was employed to gradually decrease the learning rate. The
model was trained for {60, 80, 100} epochs, with early stop-
ping criteria set at {12, 16, 20} epochs to prevent overfitting.
All training experiments were conducted on a single Tesla
V100 GPU with 32 GB of memory.

3.3 Molecular Property Prediction Tasks

Datasets

To evaluate the effectiveness of our proposed framework, we
performed extensive experiments on nine benchmark datasets
from MoleculeNet [Wu e al., 2018] for molecular properties
prediction including ESOL, FreeSolv, Lipophilicity, BACE,
BBBP, HIV, ClinTox, SIDER, and Tox21. In this work, we
follow the data curation and splitting [Nguyen et al., 2024].

Baselines

We evaluated the performance of our proposed method by
comparing it against several baseline models, including 2D-
GNN s such as GAT and GCN. Furthermore, we benchmarked
against advanced 2D-GNN-based molecular property pre-
diction models, such as AttentiveFP [2019], GMT [2021],
TrimNet [2021], D-MPNN [2019], HiGNN [2022], and
ResGAT [2024], which do not utilize pretraining. For
pretraining-based approaches, we included models like Hi-
Mol [2023] and MoICLR [2022]. Additionally, we as-
sessed Transformer-based models using SMILES representa-
tions, including ChemBERTa [2020]. Other models using 3D
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Regression Dataset

Classification Dataset

Sampling | Model | FreeSolv ESOL Lipophilicity | Avg. | BACE BBBP HIV SIDER Tox21 Clintox | Avg. |

Random | Previous studies
AttentiveFP 3.79(0.64) 1.58(0.13)  1.14(0.03) | 2.17 | 89.25(2.2) 88.73(2.2) 79.54(1.9) 64.51(2.5) 85.44(1.0) 89.46(5.0) | 82.82
D-MPNN 1.14 (023) 074 (0.10)  0.62(0.02) | 0.83 | 89.24 (2.6) 89.62 (2.6) 80.43 (1.4) 63.17(0.9) 85.38(1.2) 88.18(4.8) | 82.67
HiGNN 5.82(0.94) 3.80(0.29) 1.68(0.03) | 3.76 | 89.41 (2.6) 90.78(2.3) 78.28(1.9) 62.51(0.4) 85.73(1.9) 91.34(9.0) | 83.01
ResGAT 140 (0.25)  0.77(0.07)  0.67(0.01) | 0.95 | 8347 (8.7) 86.49(2.6) 77.54(0.7) 61.66(3.4) 83.93(3.5) 88.75(4.2) | 80.31
ChemBERTa 1.35(0.22) 0.76 (0.08)  0.73(0.04) | 0.95 | 86.24 (0.5) 86.84(2.2) 72.49(1.7) 62.61(3.2) 83.47(2.1) 86.28(5.3) | 79.65
HiMol 1.36 (0.26)  0.68 (0.09)  0.66 (0.03) | 0.90 | 88.38 (3.1) 87.96(2.8) 76.00(3.1) 59.72(0.9) 85.38(1.6) 78.44(8.5) | 79.31
MolCLR 1.80(0.58) 0.93(0.11) 0.66(0.04) | 1.13 | 86.20(4.1) 91.25(3.4) 7733(29) 61.29(1.2) 81.76(1.4) 88.89(2.9) | 81.12
SGCN 2.25(0.38) 1.46(0.13)  1.09(0.03) | 1.60 | 71.09 (8.2) 72.34(5.0) 70.61(2.1) 56.39(1.9) - 60.61 (10.8) -
SchNet 1.26 (0.26)  0.64 (0.09)  0.62(0.03) | 0.84 | 88.38(3.1) 87.96(2.8) 76.00(3.1) 59.72(0.9) 85.38(1.6) 78.44(8.5) | 79.31
Uni-Mol 0.86 (0.15)  0.60 (0.06)  0.54(0.01) | 0.67 | 87.22(4.3) 90.06 (2.1) 78.40(1.6) 61.90(3.6) 86.10(1.8) 83.5(1.2) | 81.20
Our models
MolHFCNet-GAT 1.03 (0.18)  0.79 (0.06)  0.64 (0.02) | 0.82 | 90.37 (3.5) 91.44(2.8) 80.27(0.5) 653(1.9) 8597(2.7) 93.89(4.2) | 84.54
MolHFCNet-GCN 1.06 (0.18)  0.76 (0.04)  0.65(0.02) | 0.82 | 89.15(2.7) 90.66 (3.1) 81.30(1.5) 66.62(2.9) 85.82(2.2) 91.40(6.2) | 84.16
MolHFCNet-GIN 0.92(0.08)  0.69(0.02) 0.63(0.02) | 0.75 | 90.27 (1.7) 91.98 (1.8) 80.46(2.0) 65.80(2.4) 86.43(3.0) 94.12(4.7) | 84.84
MOolHFCNet-GTN 1.13(0.34)  0.67(0.06)  0.66 (0.01) | 0.82 | 90.26 (1.3) 91.25(1.6) 81.27(2.2) 66.76 (1.6) 86.55(1.7) 95.02(3.3) | 85.18
MOolHFCNet-SGCN | 0.98 (0.21)  0.61 (0.07)  0.62 (0.01) 0.74 | 90.36 (2.0) 91.60 (1.5) 80.56 (1.8) 64.60 (2.8) - 93.91 (3.5) -
MOIHFCNet-CFC | 0.83(0.19) 058 (0.06)  0.60 (0.03) | 0.67 | 89.82(1.8) 92.38(1.2) 8021 (1.1) 64.13(1.8) 85.66(2.5) 9537 (2.1) | 84.60

Scaffold | Previous studies
AttentiveFP 499 (047) 1.74(036) 1.11(0.07) | 2.61 | 81.74(5.1) 87.86(5.6) 76.92(7.4) 58.77(3.6) 82.23(2.2) 75.65(16.0) | 77.19
D-MPNN 1.88(0.47) 091 (0.13)  0.64 (0.03) | 1.14 | 81.60 (4.5) 90.28 (3.8) 77.92(7.4) 58.81(7.0) 81.54(2.6) 80.19 (13.1) | 78.39
HiGNN 47.11 (1.25) 4.51(0.94) 1.68(0.05) | 444 | 8454 (2.3) 86.12(1.3) 77.64(2.2) 60.28(3.8) 81.57(1.8) 79.54(16.7) | 78.28
ResGAT 11.89 (0.44) 1.09(0.16)  0.71(0.03) | 1.23 | 75.49(7.9) 87.11(5.0) 73.26(5.1) 61.40(2.9) 79.83(3.5) 81.09(3.3) | 76.36
ChemBERTa 2.96 (0.41) 1.13(0.19) 0.80(0.03) | 1.63 | 81.41(4.0) 88.43(4.7) 69.57(4.2) 60.80(1.9) 78.48(1.6) 83.90(6.2) | 77.10
HiMol 2.93(0.28) 0.87(0.05) 0.70(0.04) | 1.50 | 82.44 (4.2) 88.86(4.8) 75.53(6.1) 57.78(4.3) 80.81(1.7) 66.19 (5.6) | 75.27
MoICLR 247(0.53) 1.28(0.08) 0.65(0.05) | 1.47 | 82.84(3.4) 87.66(4.6) 73.71(6.4) 58.13(1.5) 78.43(1.6) 85.74(3.6) | 7775
SGCN 2.86(0.49) 1.82(0.47) T.08(0.06) | 1.92 | 72.37(5.3) 75.76(5.3) 7124 (4.8) 58.82(2.7) K 63.174.4) | -
SchNet 2.73 (0.28) 0.87(0.05) 0.66(0.04) | 1.42 | 83.44(4.2) 89.86(4.8) 76.63(6.1) 59.78 (4.3) 82.81(1.7) 68.19(5.6) | 76.70
Uni-Mol 1.73(0.37) 078 (0.08)  0.57(0.04) | 1.03 | 8357 (3.7) 87.86(3.7) 76.58(5.4) 61.23(1.6) 81.40(L.5) 80.73(8.8) | 78.56
Our models
MOolHFCNet-GAT 2.02(0.37) 1.09(0.11)  0.69 (0.04) | 1.27 | 84.88(3.3) 88.62(4.4) 77.75(5.0) 63.91(3.2) 80.49(2.7) 89.84(1.9) | 80.92
MOolHFCNet-GCN 2.77 (0.88) 1.04(0.16)  0.69 (0.04) | 1.50 | 85.11(2.3) 89.49(3.1) 76.16(4.3) 63.09(2.1) 81.30(2.1) 87.07(4.1) | 80.37
MolHFCNet-GIN 1.86 (0.72)  0.95(0.05)  0.66(0.03) | 1.16 | 85.07 (3.1) 89.80(2.6) 76.78 (6.4) 63.96 (2.7) 82.17 (2.0) 89.54(5.8) | 81.22
MolHFCNet-GTN 2.14 (0.55) 0.94(0.08) 0.70(0.05) | 1.26 | 84.15(3.3) 90.56 (3.0) 77.49(5.0) 62.86(2.6) 82.25(3.3) 89.28(8.5) | 81.10
MolHFCNet-SGCN | 1.79 (0.59) 0.87 (0.11)  0.66 (0.02) | 1.16 | 84.58 (3.5) 90.44 (4.5) 77.45(4.2) 62.31(2.2) - 90.38 (5.1) -
MolHFCNet-CFC 1.63 (0.41) 0.83(0.10) 0.61(0.03) | 1.02 | 8529 (2.3) 90.67 (3.2) 78.50(5.0) 60.71(2.3) 81.37(4.2) 92.95(2.2) | 81.58

Table 1: The average RMSE and ROC-AUC results (with standard deviation) on MoleculeNet’s regression and classification test sets. The
best results are highlighted in bold, with the second-best results underlined.

Graph information, including SchNet [2017], SGCN [2020]
and Uni-Mol [2023], were also included in our experiments.

Performance evaluation

The results in Table 1 demonstrates significant improvements
of our proposed MolHFCNets over previous studies, partic-
ularly in both regression and classification datasets. In the
regression tasks under random splitting, MolHFCNet-CFC
achieves the best average RMSE (0.67), outperforming all
baseline models, including SchNet (0.84) and competitive
with Uni-Mol (0.67) with 44M parameters, while securing the
lowest RMSE in ESOL (0.58) and FreeSolv (0.83). Similarly,
under scaffold splitting, MolHFCNet-CFC maintains its su-
periority with the best overall RMSE (1.02), significantly sur-
passing previous best models such as Uni-Mol and D-MPNN.

In classification tasks, MolHFCNet consistently delivers
top-tier results, particularly in key datasets. Under ran-
dom splitting, MolHFCNet-GTN achieves the highest av-
erage ROC-AUC, while MolHFCNet-CFC attains the best
ROC-AUC in BBBP (92.38) and Clintox (95.37) and demon-
strates competitive performance across other datasets, result-
ing in a strong overall average of 84.6. Under scaffold split-
ting, MolHFCNet-CFC remains the top performer, achiev-
ing the best overall ROC-AUC (81.58), excelling in BBBP
(90.67), HIV (78.5), and Clintox (92.95), clearly outperform-
ing previous models such as D-MPNN (78.39) and Uni-Mol

Model LBA (RMSE)| LBA (Rp)T LBA(Rs)T LEP(ROC)T LEP(PR)?}
GeoSSL-RR 15154007 05454003 0.539+0.03 0.654+005 0.518+0.06
GeoSSL-InfoNCE 1.564 +0.05  0.508£0.03 0497 +£0.05 0.693+0.06 0.571+0.08
GeoSSL-EBM-NCE 1499 +0.06  0.547 +0.03 0.534+0.03 0.691 +£0.05 0.603 + 0.07
GeoSSL-DDM 14514003 0577 £0.02 0.572+0.01 0.776+0.03 0.694 +0.06
MolHFCNet-SGCN ~ 1.276 £0.01  0.457 +£0.01 0430 £0.01  0.627£0.08 0.503 + 0.06
MolHFCNet-CFC 1238+ 0.03 0508 +0.02 0490+002 0.801+0.01 0.756 = 0.02

Table 2: Comparison of Binding Affinity Prediction results. We
report Root Mean Squared Error (RMSE), Pearson correlation (R p),
and Spearman correlation (Rs) for LBA, while LEP is evaluated
using ROC-AUC and PR-AUC.

(78.56). These results highlight the robustness and effective-
ness of MolHFCNet across diverse datasets and tasks.

3.4 Binding Affinity Prediction Tasks

Datasets

In this study, we follow the binding affinity prediction tasks as
described in [Liu et al., 2022a] to evaluate molecular interac-
tions, crucial for molecular docking and drug-target studies.
Using the Atom3D dataset [Townshend et al., 2020], we as-
sess our model’s performance on two key tasks: Ligand Bind-
ing Affinity (LBA), which predicts ligand-protein interaction
strength, and Ligand Efficacy Prediction (LEP), which deter-
mines whether a ligand exhibits a stronger binding affinity
toward one protein pocket compared to another.
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Figure 2: Average performance improvement of pretrained MolH-
FCNet models on molecular property prediction tasks.

Baselines

To evaluate the effectiveness of our approach, we compare
it against four state-of-the-art models: GeoSSL-RR [2022b],
GeoSSL-InfoNCE and GeoSSL-EBM-NCE and GeoSSL-
DDM [2022al, all evaluated using the PaiNN backbone archi-
tecture. For a fair comparison, we adopt the same experimen-
tal settings and data splitting strategy as [Liu ef al., 2022al.
Baseline model results are obtained from [Liu et al., 2022a].

Performance evaluation

The results in Table 2 demonstrates their competitive edge,
particularly in achieving superior results in key metrics.
MolHFCNet-CFC outperforms all GeoSSL-based models in
terms of LBA RMSE, achieving the lowest error (1.238 &
0.03), significantly improving upon GeoSSL-RR (1.515 +
0.07) and GeoSSL-DDM (1.451 £0.03). Although GeoSSL-
DDM maintains the highest Pearson (Rp) and Spearman
(Rg) correlations, MolHFCNet-CFC delivers competitive re-
sults. In LEP evaluation, MolHFCNet-CFC achieves the
best performance, setting new benchmarks in both ROC-AUC
(0.801 +£ 0.01) and PR-AUC (0.756 £ 0.02), outperforming
all GeoSSL models, including the previously best GeoSSL-
DDM (0.776£0.03 ROC and 0.694+0.06 PR). These results
highlight the effectiveness of our approach in affinity pre-
diction, demonstrating that MolHFCNet, especially the CFC
variant, is a highly promising method for binding affinity pre-
diction, surpassing existing models in predictive capabilities.

3.5 Impact of Pretraining on Performance

The impact of pretraining on performance, as illustrated in
Figure 2, highlights the benefits of pretraining for MolHFC-
Net models across both regression and classification tasks in
molecular property prediction. The performance improve-
ment trends show that pretraining has a more pronounced ef-
fect under the random split setting, particularly in regression
datasets such as FreeSolv, ESOL, and Lipophilicity, where
improvements are significantly higher compared to the scaf-
fold split. For classification tasks, the performance gains from
pretraining are more subtle, with improvements generally un-
der 2%. However, MolHFCNet consistently demonstrates a
positive impact across all classification datasets, with notable
gains in datasets like BBBP and Tox21 under the random
split setting. The relatively smaller improvements in classi-
fication datasets compared to regression datasets suggest that

MoIHFCNet-GTN
Dl%(i]ndex: 2.35, Silhouette score: 0.17

MolHFCNet-CFC
1(]))08 index: 5.84, Silhouette score: 0.22

50

0

—50

—50 0 50 100 —100 0

Figure 3: Visualization of t-SNE representations learned by
MolHFCNet-GTN and MolHFCNet-CFC in different scaffolds.

pretraining contributes more significantly to learning contin-
uous molecular property relationships than binary classifica-
tion tasks. Overall, this analysis confirms that pretraining en-
hances the predictive performance of MolHFCNet, particu-
larly under the random split setting, reinforcing its effective-
ness in molecular property prediction tasks.

3.6 Visualization of Model Representation

To evaluate whether the pretrained representations effectively
capture scaffold information—reflecting the core structural
frameworks of bioactive compounds [Hu ef al., 2016]—we
applied t-SNE [Van der Maaten and Hinton, 2008] to vi-
sualize embeddings from the two best-performing models:
MOolHFCNet-GTN (left) and MolHFCNet-CFC (right), as
shown in Figure 3. Following [Li et al., 2020; Zhu et al.,
2023], we selected the ten most common scaffolds from the
ZINC15 database [Sterling and Irwin, 2015] and randomly
sampled 2,000 molecules per scaffold, yielding 20,000 com-
pounds for analysis. MolHFCNet-GTN achieved a lower
DB index [Davies and Bouldin, 1979] (2.35 vs. 5.84), indi-
cating more compact clustering, whereas MolHFCNet-CFC
obtained a higher silhouette score [Shahapure and Nicholas,
2020] (0.22 vs. 0.17), suggesting better-defined cluster sepa-
ration. Notably, while CFC representations exhibited clearer
clustering, the dispersed distribution of cluster 3 contributed
to a higher DB index, whereas GTN representations displayed
greater overlap between clusters.

4 Conclusions

In this work, we introduced MolHFCNet, a versatile GNN
architecture designed for molecular property and interaction
prediction, capable of leveraging either 2D or 3D molecu-
lar graph representations. At its core, the n-HFC module
enables multi-hop feature extraction while maintaining com-
putational efficiency comparable to a single standard graph
layer. The model integrates a hierarchical multi-scale rep-
resentation strategy and a novel graph pretraining frame-
work, combining predictive and contrastive learning to en-
hance molecular embeddings. Experimental results demon-
strate MolHFCNet’s superiority over baseline methods across
molecular property and binding affinity prediction tasks. Fu-
ture work includes enhancing model robustness with ad-
vanced 3D graph layers, integrating both 2D and 3D repre-
sentations, and expanding applications to molecular genera-
tion and optimization tasks.
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