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Abstract

The Kunming-Montreal Global Biodiversity
Framework aims to protect 30% of terrestrial,
inland water, marine, and coastal ecosystems
worldwide, and ensuring that at least 30% of
these areas are under effective restoration by 2030.
Maintaining and restoring ecological connectivity
between natural habitats and protected areas is
a key feature of this target. Achieving it will
require effective and inclusive spatial planning
supported by appropriate decision-support tools.
Most spatial planning models address budget
as an objective and connectivity as a constraint,
formulating problems with Steiner trees. In many
real-world cases, such as landscape-scale restora-
tion planning, this formulation is inappropriate
when environmental managers seek to optimise
connectivity under a budget constraint.  This
problem was previously addressed with Constraint
Programming (CP) and graph variables, but the
current approach is severely limited in terms of
spatial resolution. In this article, we formalise
this problem as the budget-constrained graph
connectivity optimisation problem. Based on a real
case study: the restoration of forest connectivity
in New Caledonia, we illustrate why ‘“naive”
CP approaches are inefficient. In response, we
provide a preprocessing method based on Hanan
grids which preserves the existence of at least one
optimal solution. Finally, we assess the efficiency
of our approach in the New Caledonian case study.

1 Introduction

The world faces an unprecedented biodiversity crisis due
to human activities, with land use changes being the most
damaging. While only two Sustainable Development Goals
(SDGs) explicitly address biodiversity (SDG 14: life below

water, SDG 15: life on land), most relate indirectly to ecosys-
tem health [Justeau-Allaire, 2023]. In this regard, the recent
Kunming-Montreal Global Biodiversity Framework (GBF)
aims to stop biodiversity loss and promote sustainable soci-
eties. Two of its targets, also known as “30 by 30”, aim to
ensure that, by 2030, (i) at least 30% of areas of degraded ter-
restrial, freshwater, marine, and coastal ecosystems are un-
der effective restoration, and (ii) at least 30% of terrestrial,
freshwater, marine, and coastal ecosystems are conserved and
managed [CBD, 2022]. The Kunming-Montreal GBF also ac-
knowledges that inclusive and effective spatial planning is es-
sential to achieve these goals, including cultural, social, eco-
nomic, political, and ecological factors, with a focus on main-
taining and restoring ecological connectivity.

Over the past few decades, many spatial planning mod-
els have been devised and applied to incorporate connectivity
into biodiversity conservation and restoration projects. Such
models usually rely on heuristics [Lehtoméki and Moilanen,
2013], metaheuristics [Daigle et al., 2020], Mixed-Integer
Linear Programming (MILP) [Jafari er al., 2017], or Con-
straint Programming (CP) [Bessiere et al., 2015]. Declara-
tive approaches such as MILP or CP are particularly relevant
in spatial planning because they allow the design of flexi-
ble and expressive decision-support tools that can adapt to
different situations and support iterative co-construction pro-
cesses with stakeholders. Indeed, such approaches are built
upon generic and exact problem-solving mechanisms, which
makes it possible to enrich and modify a decision-support
model without affecting the solving procedure or losing sat-
isfiability and optimality guarantees.

In most spatial planning models, ecological connectivity is
treated as a constraint, and a budget representing either an
economic cost or a biodiversity metric is optimised. This
problem is equivalent to the Steiner Tree problem and has
been addressed as such in several studies [Conrad et al., 2012;
Alagador et al., 2012; Bessiere et al., 2015; Dilkina et al.,
2017]. These contributions are important and have greatly
advanced our capacity to support better conservation and
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restoration strategies. However, after a decade of close col-
laboration with environmental managers in New Caledonia
for forest conservation and restoration projects, we can state
that this formulation is often not appropriate. In fact, envi-
ronmental managers usually have limited budgets and need
to account for many constraints related to land accessibility
and opportunity costs. They have to plan conservation and
ecological restoration programs at landscape scales, where
it is rarely possible to satisfy strict connectivity constraints
given these limited budgets. In such cases, minimising costs
often leads to recommendations that have hardly any chance
of leading to concrete action, since, even if the cost is min-
imal, it cannot be supported by the community. A counter-
argument can be made in favour of promoting long-term con-
servation and restoration plans, but the functioning of public
funding and their strong dependence on electoral calendars
rarely guarantee the continuation of a plan over the long term.
In such situations, it is therefore preferable to guarantee the
feasibility of a conservation or restoration project, while op-
timising its ecological benefits.

This article introduces the Budget-Constrained Connectiv-
ity Optimisation (BCCO) problem, which is highly relevant
to spatial planning. The goal is to optimise the connectiv-
ity of an ecological network (e.g., natural habitats, protected
areas) while adhering to a budget limit. It has been tack-
led in several CP-based spatial planning models [Justeau-
Allaire et al., 2021; Justeau-Allaire et al., 20231, but never
formalised. The flexibility and expressiveness of CP, notably
through the graph variable paradigm [Dooms et al., 2005;
Fages, 2015], are indeed naturally adapted to express this
problem and its variants, but efficient solving remains tedious
with a “naive” CP approach. In related work, a degradation of
the spatial resolution of the input data was always necessary,
leading to a loss of information and less accurate decision
support. Indeed, the BCCO problem is NP-Hard and there-
fore needs to be formalised and equipped with theoretical and
practical results to enable scaling up.

In the following, we first formalise the BCCO problem and
prove its NP-Hardness. We then present related work, re-
ferred to as naive CP models, and illustrate their lack of ef-
ficiency in a real case study: reforestation of mining sites in
New Caledonia. To overcome these limitations, we introduce
a preprocessing method based on Hanan grids that preserves
the existence of an optimal solution. This preprocessing step
allows us to address larger instances of the problem without
degrading their spatial resolution. We finally illustrate this
result in the New Caledonian case study and discuss the per-
spectives it offers for biodiversity conservation and ecological
restoration planning.

2 The Budget-Constrained Connectivity
Optimisation (BCCO) Problem

In spatial planning problems, we represent a geographic area
of interest by a set of planning units (PUs) constituting a tes-
sellation of this area. Most often, the PUs correspond to a reg-
ular square grid, but they can also correspond to other types
of regular grids, e.g. hexagonal, or to irregular grids, e.g.
cadastral parcels. We can naturally define an adjacency rela-

tionship as the geometric adjacency between PUs. Given that,
we can represent the area of interest by an undirected graph
G = (V, E), where V corresponds to the set of PUs and E to
the set of adjacent pairs of PUs. In ecological restoration and
protected areas network extension problems, a set 7' C V is
given as input and depicts existing habitat areas (respectively
protected areas). By analogy with the Steiner tree problem,
nodes in 7' are named the ferminals. An integer cost is as-
sociated with each node x, denoted by cy (). Finally, using
the P(G) notation to depict the power set of G, we define the
connectivity metric connect : P(G) — N as the number of
connected components of a subgraph of G. This metric cor-
responds to the number of patches (NP) metric in Landscape
Ecology [McGarigal and Marks, 1995]. It is noteworthy that
because edges reflect a geometric adjacency relationship, for
any subgraph G’ = (V/,E’) C G, the set E’ is directly in-
duced by V' (there is necessarily an edge between any two
spatially adjacent nodes). We can therefore use the notation
of induced subgraphs: G’ = G[V’]. Given this, we formally
define the BCCO problem.

Definition 1 (The BCCO problem). Let G = (V, E) be a
graph, T' C V asubset of nodes (the terminals), cyy : V — N
be a cost function over the nodes of (G, and B be a maximum
budget. The BCCO problem expresses as follows:

minimise connect(G[RUT])
RCV\T

subject to: Z cv(z) < B
TER

)

Proposition 1. The BCCO problem is NP-Hard.

Proof. Let BCCD be the decision version of BCCO whose
instances are made of a graph (G, a subset of nodes 7', a
cost function ¢y over the nodes and two integers C' and B.
The question is: Is there a subgraph of G, containing 7',
such that the number of connected components is less than C
and whose total cost is less than B? We consider the Node-
Weighted Steiner Tree (NWST) problem, known to be NP-
Complete, whose instances are made of a graph G*, a subset
of nodes T, a cost function c‘s, over the nodes and an integer
K. The question is: Is there a connected subgraph of G*°,
containing TS, such that the total cost is less than K? One
can notice that NWST is a particular case of BCCD (C' = 1).
Thus, the polynomial transformation is trivial. This proves
that BCCD is NP-Hard. Since BCCO is obviously NPO, we
obtain that BCCO is NP-Hard. O]

In our case, we will consider geographic areas tessellated
with a regular square grid (from raster data, Figure la),
equipped with the four-connected adjacency relationship.
Also, we set the same unit cost to all PUs, so cy(z) = 1
Vx € V. This leads to a partial grid graph representation of
the geometric area (Figure 1b). The NP-Hardness result still
holds for that case, as we can reduce the Rectilinear Steiner
Tree (RST) problem, which is NP-Complete [Garey and John-
son, 1977], to BCCD.
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(a) Raster representation. (b) Graph representation.

Figure 1: Raster and graph representation of a geographic area using
the four-connected adjacency relation; terminals are in green.

3 Illustration of the Naive CP Approach in a
New Caledonian Case Study

The previous CP approaches to the BCCO problem can be
described as “naive” in the sense that they do not take ad-
vantage of the relationships between the budget, the connec-
tivity metric, and the geometric properties of the problem.
The main limitation of such approaches is that they are only
effective in instances with poor spatial resolution. To illus-
trate this, we rely on the case study introduced in [Justeau-
Allaire et al., 2023], which consists in planning reforestation
actions in the Kaala Mount mining area in New Caledonia.
Like most New Caledonian mining areas, the Kaala Mount
is home to a high diversity of plant species. Indeed, more
than 3200 native vascular plant species can be found in New
Caledonia, most being endemic (~75%) [Jaffré et al., 1994;
Birnbaum er al.,, 2015]. However, in such mining areas,
this biodiversity is under severe threat, and therefore, min-
ing companies have a legal obligation to invest in ecological
restoration in their operating zones.

In the Kaala Mount case study, the aim was to restore the
forest fragmentation level of 1976, based on an expert forest
digitisation from 1976 aerial images and an automated 2021
forest digitisation from Landsat satellite images time series.
Since the publication of the Kaala Mount case study, an up-
dated map of New Caledonian forests was published [Birn-
baum er al., 2024]. This map was digitised by experts from
aerial images that have a much higher spatial resolution than
Landsat satellite images. Therefore, it is better adapted for
comparison with the 1976 forest map, notably because the
automated approach can confuse shrubland with forest. The
comparison between the 1976 forest and this updated 2021
forest map shows a net forest area loss of ~354 ha (see Fig-
ure 2). We rely on this updated dataset, which we rasterised
to a spatial resolution of 30m x 30m (0.09 ha), to formulate
a BCCO problem instance:

With a maximum budget corresponding to 20% of the
forest cover loss that occurred between 1976 and 2021
in the Kaala Mount mining area (= 71 ha), identify
accessible areas to reforest in order to minimize forest
fragmentation. Accessible areas are defined by a 150 m
buffer around existing tracks, and the forest fragmenta-
tion is measured as the number of forest patches.

By following the graph transformation method illustrated

~ | Forest cover change
between 1976 and 2021 |
\ “ | ™ No change
M Forest gain
M Forest loss
Accessible

Figure 2: Case study area and input data: forest cover in both 1976
and 2021 digitised by experts from aerial images, and accessible
areas for reforestation actions, defined by a 150 m buffer around
existing tracks.

in Figure 1 and by aggregating all connected terminals into
one single terminal node, we construct the graph Gg =
(T'U A, E) with T the set of forest patches in the 2021 map,
corresponding to the terminals, and A the set of pixels located
in accessible areas not covered by forest. Given that, the base
naive BCCO CP model, as defined in [Justeau-Allaire et al.,
2021; Justeau-Allaire et al., 2023], is composed of a node-
induced graph variable Gy = (Vy, En) € [Gs[T],Gs],
the habitat graph, and a node-induced subgraph view G =
G [Vu \ T}, the restoration graph (see [Justeau-Allaire and
Prud’homme, 2022] for more details on subgraph views).
Then, a budget integer variable b € [0, B] is defined such
that b = > c(x), with c the cost function corresponding
to PUs’ restorable areas and the set variable R being a view
on the nodes of G. Finally, we define an integer variable
NCC = connect(Gy) € [1,|T], which is the number
of connected components (number of patches) of the habi-
tat graph, and set as the optimisation objective to minimise.
Thanks to the expressiveness of CP and its ability to handle
abstract and complex mathematical constructs, this model is
highly compact and readable.

We implemented this model using Choco-solver
[Prud’homme and Fages, 2022] and ran it on an Ubuntu
laptop (Intel Core i7-12700H x 20; 32GB of RAM)), setting a
time limit of 10h. As expected, the solver could not complete
the problem within the time limit. We therefore reduced
the 30m x 30m spatial resolution of the input data using
restoptr’s aggregation method [Justeau-Allaire et al., 2023].
We repeated this procedure until the solver could solve the
problem. This led us to an extremely degraded instance with
pixels of 300m x 300m (see Figure 7a).

4 A Preprocessing Method Based on Hanan
Grids and Graph Reductions

The BCCO problem is similar to Steiner tree problems. Be-
cause we consider the restricted case of the regular square
grid tessellation with unit costs, it resembles the Rectilinear
Steiner Tree (RST) problem in the plane. More specifically,
it resembles the Obstacle Avoiding Rectilinear Steiner Tree
(OARST) problem [Ganley and Cohoon, 1994] as some PUs
are not accessible and thus cannot be reforested.
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In this section, we consider a version of the BCCO prob-
lem expressed in the plane instead of in the raster, we call
it Rectilinear BCCO (R-BCCO). We present techniques for
reducing the search space for R-BCCO inspired by what ex-
ists for OARST, and we exploit these techniques in the raster
representation.

An instance Z of R-BCCO is a plane containing com-
plex rectilinear polygons that are either terminals or obstacles
(Figure 3-left). These polygons are delimited by horizontal
and vertical segments, called boundary edges. The boundary
of a polygon is the set of points that belong to at least one
of its boundary edges. The interior of a polygon is the set of
points that belong to the polygon but not to its boundary.

The feasible region is the minimal rectangular region of the
plane that contains all polygons. A feasible solution 7 is a rec-
tilinear forest , i.e. a union of disjoint rectilinear trees made
up of horizontal and vertical segments that do not intersect
with the interior of any polygon and that belong to the feasi-
ble region. The set of feasible solutions is denoted F(Z). The
total length of 7 is denoted £(7) and corresponds to the sum
of the lengths of the segments that make it up. The length of
a segment is the rectilinear distance between its two extremi-
ties. The set of terminals is denoted 7. We define the function
C : F(I) — FT), with F(T) the set of all partitions of
T, where C(7) is the set of maximal and disjoint subsets of
terminals that are interconnected by segments of 7, either di-
rectly or via other terminals and segments of 7. These subsets
are referred to as the connected components of 7. The con-
nectivity connect : F(Z) — N is the number of connected
components of a feasible solution: connect(r) = |C(7)|.

Definition 2 (The R-BCCO problem). Let Z be a plane with
complex rectilinear terminals and obstacles. Given a maxi-
mum budget B € N, R-BCCO is defined as follows:

minimise connect (1)
TEF(T) 2)
subject to: £(7) < B

Note that OARST consists in minimising £(7) under the
constraint that connect(7) = 1. Theorems 1 and 2 stated
in this section also hold for OARST.

4.1 The Complex Rectilinear Grid

The Hanan Grid [Hanan, 1966] plays an important role in
solving the RST problem in the plane by transforming it into
a graph problem of finite size. The idea is to draw vertical
and horizontal lines from the terminals, which are points of
the plane. This defines a region of the plane that contains at
least one optimal solution to the optimisation version of RST.
Then, a weighted graph is constructed from the grid. The
nodes are the terminals and the intersection points between
the lines, called Steiner points. An edge exists between two
nodes if they lie on the same segment of the grid, and if no
other node lies between them on that segment. The weight is
the rectilinear distance between the two nodes. Many studies
have been devoted to Hanan grids and graph transformations
for variants of OARST. For example, [Ganley and Cohoon,
1994] introduced the concept of the Escape Graph when rec-
tilinear obstacles are present; [Zachariasen, 2001] proposed

a more general problem than RST, encompassing many vari-
ants of it, for which they showed that an optimal solution be-
longs to the Hanan grid; [Huang and Young, 2013] presented
a more reduced graph, called the Virtual Graph, when obsta-
cles are complex rectilinear polygons, not just rectangles.

However, none of these works provide a reduced size grid
when both terminals and obstacles are complex rectilinear
polygons. We therefore propose a grid similar to the escape
graph for this particular type of instance. Let I be a plane
with complex rectilinear terminals and obstacles. The Com-
plex Rectilinear grid CR(I) is obtained by taking all obsta-
cle boundaries and constructing vertical and horizontal lines
from each convex corner of terminals and obstacles. A con-
vex corner of a rectilinear polygon is a corner in which the
interior of the polygon forms a 90° angle. Inversely, a con-
cave corner is a corner in which the interior of the polygon
forms a 270° angle. Lines are extended until they hit a termi-
nal or obstacle. Lines do not go along terminal boundaries.
More formally, for any convex corner c, there is a unique hor-
izontal (resp. vertical) segment h(c) (resp. v(c)), external to
the polygon of ¢, that connects c to the boundary edge of a
polygon (terminal or obstacle) or to an edge of the feasible
region. Let CR’(I) = BO U Uchonvex corners {h‘(c)7 U<C)}’ with
Bo the set of obstacle boundary edges. See Figure 3-left.

Theorem 1. Let I be a plane with complex rectilinear termi-
nals and obstacles, and B be a non-negative integer. CR(I)
does contain an optimal solution to the R-BCCO problem.

Proof. The proof is inspired by [Ganley and Cohoon, 1994].
The idea is to consider an optimal solution and move it to
CR(I) without making it unfeasible or non-optimal. Obvi-
ously, there is an optimal solution to R-BCCO within the
feasible region. Let 7 C F(Z) be the set of optimal solu-
tions (i.e. minimising connect) of minimum total length,
and let 7 be a solution with minimum number of maximal
segments among 7. A maximal segment of 7 is a seg-
ment that cannot be extended in 7. By definition, C(7) =
{C1, ..., Connect (r) } is the set of subsets of 7" connected by
7, and let 71, ..., Tonnect () be the trees of T such that 7y
connects the terminals in Cf, with 1 < k < connect(r).

Let s be a maximal segment of 7 such that s does not be-
long to CR(I). Without loss of generality, say that s is hori-
zontal. Let a be the number of vertical segments of 7 above
s that cross it, and b be the number of vertical segments of
T below s that cross it. 7 is of minimum total length, so s
cannot overlap a terminal boundary edge, as all points on the
boundary of a same terminal are already connected. Thus,
there is room to move s up or down.

If a > b (resp. a < b), then sliding s up (resp. down) by
an infinitesimal distance, as well as the extremity of each ver-
tical segment crossing s, would strictly decrease £(7) while
maintaining connect(7) and the feasibility of 7. This con-
tradicts the fact that 7 has minimum total length, so a = b.

The edges of the feasible region belong to CR(I), so there
is at least one horizontal line from CR(I) which is above s.
Then, we slide s up until it encounters a line from CR(I),
as well as the extremity of the vertical segments crossing s.
Suppose that s hits a terminal boundary edge before a line
from CR(I). In that case, s would overlap with a terminal
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Figure 3: An example of the search space, represented by the red lines, for an instance of R-BCCO and derived from: CR(I) (left); the filling
procedure and then CR (1) (middle); the filling procedure, CR(I) and then the graph simplification (right).

boundary edge, and the overlapping part of s could be re-
moved without disconnecting any terminal. This contradicts
the fact that s is an optimal solution of minimum total length.
Suppose that s hits another horizontal segment s’ of 7 before
a line from CR(I). Then, merging s with s’ would lead to an
optimal solution that is either shorter in total length (if s N s’
is a segment) or of the same length but with fewer maximal
segments (if sM s’ is a point). This contradicts the hypotheses
about 7. Thus, s will necessarily hit a line from CR(I) first.

Because a = b and because no other horizontal segment of
7 is crossed when sliding s up until it hits a line from CR(I),
the total length of 7 does not increase. If s does not touch
any terminal, then moving s does not disconnect any termi-
nals from C}, since the extremity of each vertical segment of
T crossing s is also moved. If an extremity of s touches a ver-
tical boundary edge e of a terminal in C}, the up-extremity
of e is either a convex corner generating a line from CR(I)
or a concave corner whose horizontal boundary edge is above
s. Thus, s cannot be slid beyond the up-extremity of e, as
it will hit a line from CR(I) before it happens. This proves
that moving s to CR(I) does not disconnect any terminal in
C', and thus does not increase connect (7), maintaining the
optimality of 7.

The complex rectilinear grid in the raster representation.
In practice, we will directly draw the complex rectilinear grid
within the raster representation. By analogy with R-BCCO,
a terminal is a block of terminal PUs connected in the four-
connected adjacency relationship, while an obstacle is a block
of non-accessible PUs connected in the eight-connected adja-
cency relationship (where two diagonal pixels are connected).
Terminal boundaries belong to terminals, so do the convex
corners. While obstacle boundaries do not belong to obsta-
cles, so the convex corners are on the outside of obstacles
(see Figure 4). Lines are drawn from the convex corners, and
drawing a line from a given pixel consists in scanning acces-
sible pixels in one direction and marking them as a horizontal
or vertical line of the grid. A Steiner point is a pixel marked as
both a horizontal and a vertical grid line (see Figure 6). The-
orem 1 also holds for the raster representation; the reasoning
behind the proof is the same.

4.2 Reducing the Complexity of Obstacles

A key point in efficiently solving problems that rely on Hanan
grids is to generate the fewest possible lines, as they represent
the search space and thus the combinatorics of the problem.
That is why we proposed the complex rectilinear grid CR(I)

| ] | ] | ] | ]
|
| ] [ |
| ] | | ] [ |
. Obstacle Convex
@ Terminal [] Obstacle [ | Boundary Corner

Figure 4: Convex corners of terminals and obstacles in the raster

based on the particularities of our instances. However, we can
further reduce the size of the resulting grid by transforming
the instance itself. Indeed, lines are drawn from the convex
corners of terminals and obstacles. Thus, finding an equiva-
lent instance with fewer convex corners will reduce the size of
the generated grid. With this in mind, we provide two rules
to reduce the number of convex corners of the obstacles by
filling them up (see Figure 5 for an illustration):

e ) Let O be an obstacle, and ¢ be one of its convex cor-
ners. Let us draw a line L. from c. If L, hits O without
intersecting with any other obstacle, then let A be the
area defined by L. and the boundary of O. If no termi-
nal nor other obstacle intersects with the interior of A,
then merge it into O, filling it up.

* 2) Let O be an obstacle and (c1, ¢2) be two of its con-
vex corners. Let us draw orthogonal lines L., and L.,
from ¢; and cy. If these lines cross each other without
intersecting with any other obstacle, then let A be the
area defined by L.,, L., and the boundary of O. If no
terminal nor other obstacle intersects with the interior of
A, then merge it into O, filling it up.

Apply these two rules until no area can be filled up, we call
this procedure the filling procedure.

Obstacle Filled
icz Up Area
FilledUp  So
Area

Figure 5: Rules /) and 2) of the filling procedure in the plane
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Figure 6: The raster-to-graph transformation

Theorem 2. The filling procedure converges in polynomial
time and preserves the optimal value for R-BCCO.

Proof. Let B € N and S be an optimal solution to R-BCCO.
Let O be an obstacle and A be an area that can be filled up
by rule 7) or 2). If S intersects with A, then let S’ be the
solution obtained from S by moving S N A to the boundary
of O U A (O after filling up A). This does not disconnect any
terminal nor increases the total length of .S; thus S’ is also an
optimal solution to R-BCCO. Also, every time rule /) or 2) is
applied, the number of convex corners decreases by at least
one, so the procedure converges in polynomial time. O

Remarks. The result of the filling procedure is not unique
and depends on the order in which we consider the convex
corners to which we apply rule /) or 2). Theorem 2 also holds
for the raster representation; the reasoning behind the proof
is the same.

See Figure 3-middle for an illustration of the impact of the
filling procedure on the search space.

4.3 Equivalent Graph

The idea of using Hanan grids is to transform the original in-
stance in the plane into an instance in the graph. This way the
search space becomes finite and a solution can be computed.
The equivalent graph is composed of two types of nodes: a) a
terminal node represents a complex rectilinear terminal, and
b) a Steiner node represents a Steiner point, i.e. an intersec-
tion point between two lines of the grid. There is an edge in
the graph when two nodes touch the extremities of the same
grid segment, with no other node between them on the seg-
ment. The weight of the edge is the segment length. Multiple
edges linking the same two nodes may appear because of the
polygonal terminals, keep only the one of minimum weight.

The equivalent graph for the raster representation. In
the raster, the grid lines have a non-zero width; thus we need
to add weight to the nodes too. Terminal nodes have weight
0 while Steiner nodes have weight 1, and the length of a seg-
ment is the number of PUs separating its two extremities, as
illustrated in Figure 6.

Once the graph is constructed, we can solve the BCCO
problem. However, the graph now has weights on both nodes
and edges, which is not the case in the original formulation.
For this reason, we introduce the Weighted BCCO (W-BCCO)
problem, a generalisation of BCCO. The connectivity func-
tion (connect) is the same as for BCCO.

Definition 3 (The W-BCCO problem). Let G be a simple and
undirected graph. Let wy : V(G) — Nand wg : E(G) — N

be weight functions on both nodes V(G) and edges E(G).
Given a set of terminals 77 C V(@) and a maximum budget
B € N, W-BCCO expresses as follows:

minimise connect(S)

SeP(G)
subject to: 7' C V(.9) (3)
Z wy (v) + Z wp(e) < B
vEV(S) ecB(S)

We can construct an optimal solution S* to R-BCCO (resp.
BCCO) in polynomial time from an optimal solution Sjj, to
W-BCCO in the equivalent graph. Each node in the graph
corresponds either to a terminal or a Steiner point in the orig-
inal instance.

* If a node v belongs to Sy, then add the corresponding
Steiner point or terminal to S*;

o If an edge (u,v) belongs to S}, then add to S* a short-
est path between v and v in the original instance.

It is easy to verify that S* is indeed an optimal solution to
R-BCCO (resp. BCCO).

4.4 Reducing the Graph Size

After our instance has been transformed into a graph thanks
to the complex rectilinear grid, the next preprocessing stage
consists in reducing the graph size. Although graph reduc-
tion techniques for the Minimum Steiner Tree problem in the
Graph (MSTG) have already been studied in the literature
[Rehfeldt and Koch, 2023], we use three simple reduction
rules for W-BCCO that exploit the fact that we do not need to
retain all optimal solutions, but only at least one of them. Re-
member that both nodes and edges have a weight; we define
the weight w(P) of a path P from u to v as the sum of the
weight of its edges and nodes, except the weights of v and v.

* Node removal: Let s be a Steiner node of degree at most
one, remove it from the graph.

» Edge merging: Let s be a Steiner node of degree 2 with
u and v its two neighbours. Create the edge (u,v) of
weight wg (u,v) = wg(s,u) + we(s,v) + wy(s), then
remove s from the graph. If the edge (u,v) already ex-
ists, then keep only the one of minimum weight.

» Edge removal: Let (u,v) be an edge of the graph. If
there is a path P from u to v of weight w(P) < wg(u,v)
such that (u, v) ¢ P, then remove (u, v) from the graph.

Apply these three rules until no changes are made to the
graph; we call this procedure graph simplification.

Theorem 3. Graph simplification converges in polynomial
time and preserves the optimal value for W-BCCO.

Proof. 1t is rather straightforward to prove that each rule pre-
serves the optimal value. Also, the size of the graph decreases
by at least one whenever a change occurs after applying a
rule, so the procedure converges in polynomial time. O

Remark. Graph simplification does not alter the construction
of an optimal solution in the original instance.

See Figure 3-right for an illustration of the impact of graph
simplification on the search space.
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S Experiments on the Use Case

We implemented the preprocessing method described in Sec-
tion 4 and applied it to the reforestation planning problem
described in Section 3. We obtained an undirected graph
with 1026 nodes and 1785 edges. Relying on this graph,
we proposed the following CP model for the W-BCCO prob-
lem: Let G = (V,E) € [G,G] be an undirected graph
variable such that G is the set of terminal nodes, without
edges, and G the graph obtained after the preprocessing
method. We associate a set of Boolean variables Bg with
the Steiner nodes of G such that Bg(z) = 1 if and only if
x € V. We also associate a set of Boolean variables Bg
with the edges of G, such that Bg(z,y) = 1 if and only
if (x,y) € E. We define the budget with an integer vari-
able b € [0, B], with B the maximum budget, and such that
b =3 ,cvBs(®) + X er Be(z,y) X wp(z,y). Fi-
nally, the NCC € [1,|T] integer variable is defined such
that NCC' = connect(G) (number of patches), and set as
the objective to minimise. We implemented this model using
Choco-solver and ran it on a laptop (Intel Core i7-12700H
x 20; 32GB RAM), setting the same 10h time limit as in
Section 3. The preprocessing took ~=33s to complete, and
the solver could find an optimal solution within no more than
~21.6s. We finally projected this solution on the original raster
grid by running a breadth-first search to associate a shortest
path in the raster grid with each edge of the optimal solution
to W-BCCO (see Figure 7b). The associated data and source
code is available in Zenodo [Justeau-Allaire et al., 2025].

We show the impact of each step of the preprocessing pro-
cedure in Table 1 with the number of nodes and edges of the
equivalent graph, the preprocess and solving times, and the
value of the best solution found within 10h in three configura-
tions: CR(I) only (CR); the filling procedure and then CR(I)
(FP+CR); the filling procedure, CR (I) and then graph simpli-
fication (FP+CR+GS). The solving time is the time to find the
best solution in CR and FP+CR (optimality was not reached),
and to find and prove the optimal solution in FP+CR+GS. The
graph for the naive CP model had 24 581 nodes.

M Forest
Accessible
B Solution

M Forest
Accessible

(a) Without preprocessing. (b) With preprocessing.
Figure 7: (a) Solution with the highest spatial resolution obtained us-
ing the “naive” CP approach. The input resolution had to be reduced
from 30m X 30m (0,0%ha) to 300m x 300m (9ha) to complete the
problem. (b) Solution obtained using the preprocessing method of
Section 4 and projected on the original 30m x 30m raster grid.

CR FP+CR | FP+CR+GS
#Nodes 18082 | 3044 1026
#Edges 34743 | 5630 1785
Preprocess time 0.09s 1.14s 32.68s
Solving time 781.2s | 253.6s 1.6s
#Patches (connect) 81 72 65*

Table 1: Statistics for the three configurations (* = optimal)

6 Discussion

In this study, designed by computer scientists, natural scien-
tists, and environmental managers, we formalised the BCCO
problem. This problem addresses concrete needs for biodi-
versity conservation and restoration planning. To overcome
the current limitations of CP approaches to the BCCO prob-
lem, we proposed a polynomial time preprocessing method
based on Hanan grids that greatly reduces the combinato-
rial complexity of our instances while preserving the exis-
tence of an optimal solution. We experimented with this ap-
proach on a real reforestation case study in New Caledonia
and demonstrated the ability of this novel approach to tackle
real instances without degrading the spatial resolution. This
advance also opens up new challenges to fully take advan-
tage of spatial planning problems properties. For instance,
can we devise a filtering scheme taking advantage of the re-
lationships between the budget variable and the connectivity
metric which could be directly incorporated into the CP solv-
ing procedure? How can we express additional constraints
(e.g. geometrical) on the graph obtained after the prepro-
cessing procedure to allow for more expressiveness in prob-
lem formulation? Can we extend our approach to other met-
rics than connect? Etc. Nonetheless, this result is highly
promising and provides many perspectives to provide better
decision support in biodiversity conservation and restoration
projects, especially given the current Kunming-Montreal 30
by 30 target. In particular, discussions with natural scientists
and environmental managers suggest that our approach could
also be used well ahead restoration actions and directly in the
impact avoidance and reduction phases of mining projects.

Collaborations with stakeholders and domain experts.
Codesigned by Al researchers, multi-disciplinary domain ex-
perts, and an environmental manager, this work is part of the
[Justeau-Allaire, 2023] research project. This work builds on
nearly 15 years of collaboration between the AMAP lab and
forest conservation and restoration stakeholders in New Cale-
donia (e.g. Provinces, nonprofit organizations, mining com-
panies). This long-term anchorage in the New Caledonian
institutional landscape allows a fluid dialogue and mutual un-
derstanding of biodiversity and spatial planning challenges.
The results presented in this article enable us to maintain this
dialogue and to conduct concrete reflections on conservation
and restoration policies while reducing the gap between man-
agement and science. Finally, this “living laboratory” con-
figuration enables the production of tools and practices that
are useful in other projects and in other parts of the world.
For example, we are initiating similar approaches for restor-
ing the Mesoamerican corridor in Panama and preserving and
restoring tropical forests in Madagascar and Guinea.
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