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Abstract

Recent advancements in large language models
(LLMs) have revolutionized research discovery
across various scientific disciplines, including ma-
terials science. The discovery of novel materi-
als, particularly crystal materials, is essential for
achieving sustainable development goals (SDGs),
as they drive breakthroughs in climate change mit-
igation, clean and affordable energy, and the pro-
motion of industrial innovation. However, unlock-
ing the full potential of LLMs in materials re-
search remains challenging due to the lack of high-
quality, diverse, and instruction-based datasets.
Such datasets are crucial for guiding these mod-
els in understanding and predicting the structure,
property, and function of materials across various
tasks. To address this limitation, we introduce
Mat-Instruction, a large-scale inorganic material in-
struction dataset, specifically designed to unlock
the potential of LLMs in materials science. Ex-
tensive experiments on fine-tuning LLaMA with
our Mat-Instruction dataset demonstrate its effec-
tiveness in advancing progress for materials sci-
ence. The code and dataset are available at
https://github.com/zjuKeLiu/Mat-Instructions.

1 Introduction

Recent advancements in Large Language Models (LLMs),
including GPT-4 [Achiam et al., 2023], LLaMA [Touvron
et al., 2023], and DeepSeek [Liu et al., 2024] have signif-
icantly transformed the field of Natural Language Process-
ing (NLP). These models, characterized by their vast param-
eter counts, are trained on extensive text corpora and ex-
cel in generating human-like text and understanding complex
contexts. To adapt these general-purpose models for spe-
cific tasks, researchers have adopted instruction tuning tech-
niques [Ouyang et al., 2022; Sanh et al., 2022], which involve
training LLMs on specialized instruction datasets to enhance
their performance in targeted domains.

Several instruction datasets have been developed to boost
the efficiency of LLMs in general-purpose applications. The
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Stanford Alpaca dataset [Taori ef al., 2023] provides prompts
and annotations for controllable text generation, while the
GPT4All dataset [Anand et al., 2023] encompasses diverse
formats such as code, stories, and dialogue for training and
evaluating general-purpose language models. Similarly, the
COIG dataset [Zhang et al., 2023] integrates multiple cor-
pora, including translated texts, exam questions, and human
value alignment instructions, specifically designed for Chi-
nese language processing.

The success of LLMs in traditional text processing or
general-purpose applications is largely attributed to the avail-
ability of extensive, high-quality instruction datasets. De-
spite the initial success of LLMs [Antunes er al., 2024;
Merchant et al., 2023] in specific materials science prob-
lems such as crystal structure prediction (CSP), property
analysis, and novel material discovery, their full potential in
materials science is still limited by the lack of dedicated,
domain-specific instruction datasets. This limitation arises
from three primary challenges: (1) High Cost of Data Ac-
quisition and Annotation: Material data is inherently com-
plex and information-rich, making its collection and annota-
tion resource-intensive. (2) Interdisciplinary Knowledge Re-
quirements: Materials science integrates insights from crys-
tallography, computational materials science, and materials
engineering, necessitating a broad and specialized knowledge
base. (3) Lack of Standardized Representations: Unlike NLP,
materials science lacks a unified framework for representing
materials and their computational properties, complicating
the development of a universally applicable dataset.

To address these challenges, we introduce Mat-
Instruction, a comprehensive instruction dataset to meet the
unique requirements of LLM for crystal materials science.
Mat-Instruction is structured around six core components:

* Crystal Structure Prediction Instructions: Focused on
the properties and behaviors of crystal materials, this com-
ponent addresses fundamental challenges in Crystal Struc-
ture Prediction (CSP) and material design.

* Property Prediction Instructions: Designed for predict-
ing material properties, this component supports tasks re-
lated to structure and property prediction, facilitating data-
driven material design.

* Description-guided Crystal Design Instructions: Tai-
lored for NLP tasks in materials informatics, this com-
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ponent includes information extraction and description-
guided crystal structure design.

* Crystal Reaction Instructions: Centered on chemical re-
actions with crystal materials, this component provides
guidance for predicting reaction products.

* Crystal Retrosynthesis Instructions: Dedicated to syn-
thesis processes, this component offers instructions for de-
signing synthetic routes, selecting reaction conditions, and
anticipating outcomes for crystalline compounds.

* Crystal Description Instructions: Aimed at interpreting
material data, this component provides instructions for de-
scribing the properties, structures, applications, and behav-
iors of crystal materials.

The development of Mat-Instruction involved curating ma-
terial data from licensed sources and transforming them into
task-specific instruction formats. By equipping LLMs with
material-specific knowledge, Mat-Instruction enhances their
capability to understand and predict material structures, prop-
erties, and functions, thereby revolutionizing the interpreta-
tion and discovery of material data.

To evaluate the effectiveness of Mat-Instruction, we con-
ducted extensive experiments using a representative LLM as
the base model. Instruction tuning was performed across the
six components of instructions, and the results demonstrate
that Mat-Instruction significantly improves the versatility and
comprehension of LLMs in materials science. This work lays
the foundation for novel scientific discoveries by enabling
LLMs to understand and analyze crystal material science data
with outstanding effectiveness.

2 Related Work

2.1 Existing Material Science Datasets

The emergence of datasets in materials science has provided
critical support for data-driven research, driving innovations
in material discovery, property prediction, and multi-scale
modeling. Established repositories such as the NOMAD
Repository integrate quantum mechanical calculations, ex-
perimental data, and machine learning models, providing
multidimensional coverage of crystal structures and elec-
tronic properties [Miret and Krishnan, 2024]. The Materi-
als Genome Initiative (MGI) Database accelerates material
discovery by aggregating global research outputs and en-
abling high-throughput computational and experimental data
storage [de Pablo er al., 2019]. Traditional databases like
MatWeb [Gao et al., 2013], which focus on material perfor-
mance parameters, are increasingly being supplanted by on-
line platforms such as Materials Project [Jain ef al., 2013] and
AFLOWIib [Curtarolo et al., 2012], which automate data col-
lection and analysis through integrated computational tools.
In contrast to traditional databases, newly emerged datasets
such as LLM4Mat-Bench [Rubungo er al, 2024] and
OMat24 [Barroso-Luque et al., 2024] further expand the
boundaries for material science. LLM4Mat-Bench contains
1.97 million crystal structure entries spanning 45 material
properties, supporting multimodal inputs (e.g., CIF files and
textual descriptions) for task-specific predictive modeling.
OMat24 aggregates 110 million Density Functional Theory

(DFT) calculations with formation energy errors as low as 20
meV/atom, establishing a high-precision benchmark for sta-
bility prediction. However, existing datasets still face chal-
lenges such as data heterogeneity (e.g., inconsistent formats
and units) and insufficient integration of multimodal repre-
sentations (e.g., text, diagrams, and code).

2.2 Instruction Tuning in Materials Science

Instruction tuning has emerged as a pivotal approach for en-
hancing the reasoning capabilities of large language mod-
els (LLMs) in scientific domains. In chemistry, instruction
datasets such as SMollnstruct and ChemLLMBench have
demonstrated remarkable efficacy in molecular design and re-
action prediction tasks, significantly improving model perfor-
mance in chemical reasoning [Choi and Lee, 2024]. Honey-
Bee, trained on the MatSci-Instruct dataset, pioneers the spe-
cialization of billion-parameter LLMs for materials science.
Its innovative iterative instruction generation and validation
mechanism has achieved state-of-the-art accuracy in material
property analysis [Song et al., 2023]. However, they do not
include the crystal structure in their work. General-purpose
LLMs also exhibit promising performance in material in-
struction datasets via few-shot learning. For instance, GPT-
4 achieves a classification accuracy of 96.1% in the battery
material classification task with a small number of training
samples. Despite the progress, existing instruction datasets
(e.g., Stanford Alpaca [Taori et al., 2023] and COIG [Zhang
et al., 2023]) primarily address general NLP tasks, lacking the
fine-grained knowledge for material science domain-specific
tasks, especially crystal structure-related problems. This lim-
itation is particularly evident in handling complex scenar-
ios involving symbolic diversity (e.g., multiple crystal struc-
ture representations) and cross-modal alignment (e.g., linking
Crystallographic Information File (CIF) files to textual de-
scriptions). This underscores the need for domain-specific in-
struction datasets like Mat-Instruction, proposed in this work.

2.3 Challenges in Material Science LLMs

The challenges of LLM for materials science applications are
summarized below:

e Data Credibility and Integration: Material data origi-
nates from diverse sources (e.g., experiments, simulations,
literature), necessitating standardized tools like Robocrys-
tallographer to convert CIF files into parseable text and
quality control mechanisms (e.g., expert validation).

* Deep Domain Knowledge: Material science requires inter-
disciplinary expertise (e.g., crystallography, computational
chemistry), yet LLMs struggle with complex terms (e.g.,
Wyckoff positions) and unit conversions (e.g., A vs. nm).
[Miret and Krishnan, 2024] reveal error rates exceeding
60% in numerical tasks and 3D symmetry interpretation.

¢ Multimodal and Open-Access Limitations: Material data
often combines text, diagrams, and videos, but high-
quality datasets are frequently locked behind paywalls
(e.g., closed-source journals). Open platforms like arXiv
require extensive data cleaning and annotation.

Recent works attempted to address these issues through
retrieval-augmented generation (RAG) and integration with
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Figure 1: Overview of the Mat-Instruction dataset construction process, including the data collection, data preprocessing, annotation &

validation, instruction generation, and integration.

Materials Project databases, enabling end-to-end material de-
sign [Miret and Krishnan, 2024]. However, challenges such
as hallucinated references and incomplete external knowl-
edge integration persist.

3 Mat-Instruction Construction

We construct Mat-Instruction by integrating data from mul-
tiple sources and transforming it into instruction-based for-
mats. Different from [Song et al., 2023], our Mat-Instruction
consists of structure and description-related tasks. Structure-
related tasks include crystal structure prediction, property
prediction, and description-guided crystal design since prop-
erties of crystals are determined by their structures and these
are important challenges in crystal material science [Tilley,
2020]. Description-related tasks consist of crystal reac-
tion, crystal retrosynthesis, and crystal description predic-
tion, which are tailored to synthesize desired materials. These
tasks are essential for understanding and predicting the func-
tion, structure, and property of materials across various do-
mains. Then we construct our Mat-Instruction dataset for
these tasks by following steps: data collection, data prepro-
cessing, instruction generation, annotation, and validation, as
well as integration as shown in fig. 1. By following these
steps, we create a robust and comprehensive dataset that em-
powers LLMs to excel in material science tasks, driving in-
novation and discovery in the field.

3.1 Data Collection

We collect data from various licensed sources, including
Materials Project [Jain et al., 2013], JDFT [Choudhary et
al., 20201, MatKG [Venugopal and Olivetti, 2024], Synthe-
sis [Wang et al., 2022], NERRE [Dagdelen et al., 2024],
and MGED-KG [Zhang et al., 2024]. Each source provides
unique insights into different aspects of material science,
such as crystal structures, properties, and synthesis pathways.

These data are carefully processed to ensure relevance and
quality, allowing LLM to learn from diverse sources of infor-
mation. All data sources are licensed under Creative Com-
mons or GNU General Public License to ensure open access
and sharing of data. Throughout the data collection process,
we adhered to strict license agreements and ethical guidelines
to ensure that the data was used in a responsible and ethical
manner. To access the data, we mainly download the data
from the official websites of these datasets or through the
Accessible Programming Interfaces (APIs) provided by the
dataset providers, as shown in fig. 1 Step 1.

3.2 Data Preprocessing

The collected data undergoes preprocessing to ensure consis-
tency and quality as shown in fig. 1 Step 2. The row data
from different sources may have different formats and units,
which need to be standardized. This includes cleaning, nor-
malization, and transformation into a unified format suitable
for instruction tuning. First of all, we extract the data rele-
vant to the tasks we defined in the previous step. Then we
format the data to ensure that it is in a consistent structure
and format. For example, the crystal structure in the Vienna
Ab initio Simulation Package (VASP) [Hafner, 2008] and CIF
files [Hall et al., 1991] are different, so we convert the data
into a standardized text format. The reaction data in the Syn-
thesis dataset may contain multiple steps, we extract the key
information and format it into a structured format. By pre-
processing the data, we ensure that it is ready for instruction
generation and tuning, enabling LLMs to learn from the data
effectively.

3.3 Annotation and Validation

As shown in fig. 1 Step 3, to ensure the accuracy and rele-
vance of the descriptions, we added annotations from domain
experts to the data for each task. The annotated data is then
validated through multiple iterations to refine the instructions
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Figure 2: Mat-Instruction dataset statistics. Left: Overview of Mat-Instruction dataset statistics on six core components. Right: Statistics of

property prediction part of the Mat-Instruction dataset.

and enhance their effectiveness. The validation process in-
volves checking for redundancy, error, and inconsistencies,
to ensure that LLMs can effectively learn from the data. For
redundancy screening, we identify and remove duplicate in-
structions to prevent model overfitting and improve general-
ization. Error detection involves identifying and removing in-
accurate descriptions and invalid crystal structures, ensuring
that LLMs receive accurate and reliable information. Incon-
sistency resolution involves harmonizing conflicting instruc-
tions to provide coherent and unified learning for LLMs. So
we remove the instructions that are not consistent for the same
crystal in terms of structure, property, reaction, and synthesis.
By annotating and validating the instructions, we ensure that
LLMs can learn from the data effectively and make accurate
predictions in various crystal material science domains.

3.4 Instruction Generation

An instruction consists of a task description prompt, a con-
text input, and an expected output target. As shown in fig. 1
Step 4, we design specific and diverse prompts for each of the
six core components via human-Al collaboration [Fang er al.,
2023]. Since the same task can be described in multiple ways
in the real world, we use a combination of human-written and
Al-generated prompts to ensure diversity and coverage. For
example, a human expert writes a prompt like “Predict the
crystal structure of a given material based on its chemical
composition”, and then we use an LLM to generate varia-
tions of this instruction, such as “Determine the crystal lat-
tice structure from the provided chemical formula.” This ap-
proach ensures that the dataset includes a wide range of in-
structions, covering different aspects and nuances of material
science tasks. By generating diverse and specific instructions,
we equip LLMs with the knowledge and guidance needed to
excel in material science tasks.

3.5 Integration

With the diverse task descriptions (prompts), contexts (in-
puts), and expected outputs (targets) generated, we use a tem-
plate, as shown in listing 1, to integrate the validated instruc-
tions into the Mat-Instruction dataset, as illustrated in fig. 1,
Step 5 [Taori er al., 2023]. Finally, we integrate the six tasks
into our unified Mat-Instruction dataset. Each entry of the

Listing 1 Python Code for Prompt Formatting

Instruction = f'Below is an instruction that
describes a task, paired with an input
that provides further context. Write a
response that appropriately completes the

request.\n\n ### Instruction:\n{Prompt}\
n\n ### Input:\n{input}\n\n ### Response
:\n'

dataset contains a task description, context, and expected out-
put, enabling LLMs to learn from the data effectively.

4 Mat-Instruction Statistics

4.1 Data Overview

Mat-Instruction comprises a total of 349,090 instructions
across the six core components, as shown in fig. 2 (left),
including 183,654 property prediction instructions, 51,027
CSP instructions, 35,675 crystal retrosynthesis instructions,
20,502 crystal reaction instructions, 7,205 crystal description
instructions, and 51,027 description-guided crystal design in-
structions.

4.2 Task Specific Statistics

Property Prediction Instructions. The property predic-
tion instruction component is the largest (52.6%), aligning
with the central importance of property prediction in mate-
rials science research. This task involves predicting mate-
rial properties based on their crystal structures. It consists of
diverse property prediction tasks as shown in fig. 2 (right),
including band gap, formation energy, elastic constant, etc.
Formation energy and energy above the hull are two of the
most common property prediction tasks, which are essen-
tial for understanding the stability and reactivity of materi-
als. Meanwhile, bandgap also accounts for 27.8%, which
is an important property in materials science, affecting the
electronic structure and conductivity of materials. The pro-
portions of other properties are relatively small because they
are less studied in materials science research. However, they
remain important components of the field. By continuously



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Crystal Structure Prediction

5000
L 0.06
4000 1 L0.05
= L0.04
23000 >
o] G
=) L0.03 &
o o)
= 2000
L0.02
1000 | Lo.01
L 0.00
0

0 5 10 15 20 25 30 35 40
Atom count

Property Prediction

25000 1
£0.08
20000
> £0.06
c =
@ 150001 @
- 5
g t0.04 8
10000 {
0.02
5000 1
£0.00
0

0 5 10 15 20 25 30 35 40
Atom count

Figure 3: Mat-Instruction dataset atom count statistics. Left: Crystal Structure Prediction part. Right: Property prediction part.

collecting and organizing data in future work, we will further
expand Mat-Instruction to cover a broader range of material
property prediction tasks. For example, after inputting the
crystal structure to the LLM and asking it to predict the band
gap of the material, the LLM would then generate a response
that predicts the band gap value of the input crystal structure.

Crystal Structure Prediction Instructions. The CSP in-
struction component is the second largest (14.6%), fulfilling
the needs of CSP in material design and discovery. This task
involves predicting the crystal structure of a material based on
its chemical composition, which is essential for understand-
ing its properties and behavior. For instance, we input the
chemical composition of a material to the LLM and ask it to
predict the crystal structure of the material. The LLM will
then generate a response that describes a stable crystal struc-
ture of the material based on the input chemical composition.

Description-guided Crystal Design Instructions. 14.6%
of the instructions pertain to description-guided crystal de-
sign, which involves predicting the crystal structure of a ma-
terial based on its description. For example, this includes de-
signing a crystal structure with a specific property or space
group. This task is crucial for developing materials with tai-
lored properties, enabling researchers to create novel materi-
als with desired characteristics. Different from the CSP in-
structions, the description-guided crystal design instructions
provide additional context and constraints for the LLM to
generate a crystal structure that meets specific requirements.
For example, we input a description of a material with spe-
cific properties to the LLM and ask it to design a crystal struc-
ture that exhibits these properties. The LLM will then gener-
ate a response that describes a crystal structure that meets the
requirements specified in the input description.

Crystal Retrosynthesis Instructions. The crystal ret-
rosynthesis instruction component is the fourth largest
(10.2%), supporting the development of new crystal synthesis
approaches in materials science research. This task involves
predicting synthesis pathways, conditions, and outcomes of
crystal materials, allowing researchers to design and fabricate

materials with specific properties. For example, we input the
chemical composition of a material into the LLM and ask it to
predict the synthesis pathway of the material. The LLM will
then generate a response that describes the steps and condi-
tions required to synthesize the material based on the input
chemical composition.

Crystal Reaction Instructions. The crystal reaction in-
struction component is the fifth largest (5.9%), offering in-
sights into crystal reactions in materials science research.
This task involves predicting reactions and their outcomes in
crystal materials, providing insights into the chemical pro-
cesses that govern material behavior. For example, we input
the reactants of a chemical reaction to the LLM and ask it to
predict the reaction product. The LLM will then generate a
response that describes the products of the reaction based on
the input reactants.

Crystal Description Instructions. The crystal description
instruction component is the fifth largest (2.1%), supporting
the study of crystal description in materials science research.
This task involves interpreting material data and describing
the properties, structures, and behaviors of crystal materials,
enabling researchers to analyze and understand material prop-
erties. For example, we input the chemical composition of a
material to the LLM and ask it to describe the material. The
LLM will then generate a response that describes the proper-
ties, structures, and applications of the material based on the
input chemical composition.

4.3 Atom Count Distribution

We select the crystal materials containing fewer than 40
atoms for our Mat-Instruction to ensure a balance between
computational efficiency, and experimental feasibility for ma-
chine learning modeling, thereby enhancing the scientific
value and practical usability of the dataset. The atom count
distribution of the CSP instructions is shown in fig. 3. The
distribution is skewed towards smaller atom counts, with the
majority of instructions containing 1-10 atoms. This reflects
the prevalence of crystals with a small number of atoms in
CSP tasks, which are often used as building blocks for more
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Model Reaction Retrosynthesis Description
Right(%) Rouge BLEU Bert Right(%) Rouge BLEU Bert Rouge BLEU Bert
opt-6.7B 0.00 0.000 0.000 0.791 0.00 0.000 0.000 0.757 0.000 0.000 0.775
Mistral-7B 12.60 0.186 0.000 0.846 0.10 0.056 0.000 0.786 0.126 0.000 0.825
HoneyBee-7B 13.40 0.042 0.000 0.838 270 0.075 0.000 0.798 0.106 0.002 0.817
vicunal.5-7B 1250 0.160 0.000 0.841 233 0.115 0.000 0.802 0.082 0.002 0.811
LLaMA-7B 13.55 0.044 0.000 0.838 2.18 0.076 0.000 0.798 0.103 0.002 0.809
LLaMA2-13B 13.60 0.055 0.000 0.840 1.50 0.044 0.000 0.791 0.134 0.001 0.827
Galactica-6.7B 1696 0.061 0.000 0.803 497 0.087 0.000 0.790 0.097 0.003 0.783
LLaMA-13B 16.09 0.022 0.000 0.827 235 0.049 0.000 0.782 0.097 0.002 0.802
Gemma-7B 17.40 0.032 0.000 0.841 1.40 0.065 0.000 0.805 0.123 0.001 0.824
Qwen2-7B 19.60 0.214 0.000 0.844 200 0.118 0.000 0.800 0.077 0.001 0.807
LLaMA3-8B 21.10 0.126 0.000 0.841 2.80 0.064 0.000 0.806 0.135 0.001 0.828
LLaMA-7B (FT) 4973  0.545 0.012 0.931 42.06 0206 0.008 0.838 0.418 0.209 0.885

Table 1: Results on the test set of the Mat-Instruction dataset.

Model Property Prediction Crystal Structure Prediction Description guided
R? MAE Match(%) Valid(%) Str Comp Match(%) Valid(%) Str  Comp
Mistral-7B -0.8726  80.64
LLaMA2-13B  -0.8122  80.30
Gemma-7B -0.9743 82.86
HoneyBee-7B  -1.0416  77.86 NS N
Qwen2-7B -0.6775  74.14
Vicunal.5-7B -0.8293  59.71
LLaMA-7B (FT) 0.7896 3.472 1.29 19.83  0.395 0.975 0.02 4474 0429 0.817

Table 2: Results on the test set of the Mat-Instruction dataset, where Str and Comp are the average string and composition similarity scores.
(N/A indicates the models lack the ability to generate valid crystal structures.)

complex materials. The distribution also includes a small
number of instructions with larger atom counts, indicating the
presence of more complex materials in the dataset. By cov-
ering a wide range of atom counts, Mat-Instruction enables
LLMs to learn from diverse material structures and predict
crystal structures across different domains.

5 Mat-Instruction Potential

To evaluate the efficacy of Mat-Instruction in enhancing LLM
performance in material science tasks, we conduct extensive
instruction tuning experiments on a representative LLM. We
use the LLaMA-7B as the base model and fine-tune it on the
Mat-Instruction dataset across the six core components. The
results demonstrate the effectiveness of Mat-Instruction in
improving the LLM’s understanding and prediction of crystal
materials, thus advancing progress within the field.

5.1 Setup

We conduct instruction tuning experiments on the representa-
tive opensource LLM, LLaMA-7B, using the Mat-Instruction
dataset [Touvron et al., 2023]. The LLaMA-7B model is a
large language model with 7 billion parameters, pre-trained
on a diverse range of text corpora.

Data Splitting. We split the Mat-Instruction dataset into
training, validation, and test sets with a ratio of 80%, 10%,
and 10%, respectively. The training set is used to fine-tune

the model, while the validation set is used to tune the hyper-
parameters and monitor the model performance during train-
ing. The test set is used to evaluate the model’s performance
on unseen data and assess its generalization ability. We report
the model performance on the test set across various tasks.

Baseline Model. We compare the performance of the
fine-tuned LLaMA-7B with the base LLaMA-7B models,
opensource LLMs (including LLaMA-13B, LLaMA2-13B,
LLaMA3-8B [Touvron et al., 2023], Qwen [Bai et al., 2023],
Mistral-7B [Jiang et al., 2023], Gemma-7B [Team er al.,
2024], and Vicuna-7B [Chiang ef al., 2023]), and science
LLMs (Galactiva-6.7B [Taylor er al., 2022] and HoneyBee-
7B [Song et al., 2023)).

Evaluation Metrics. For crystal property prediction tasks,
we mainly employ the Mean Absolute Error (MAE) and
Pearson relation coefficient (R2) to evaluate the model’s
performance. For structure-related tasks, including CSP and
description-guided crystal design, we report the Match rate,
Valid rate, structure similarity, and composition similar-
ity. Match rate indicates the percentage of predicted struc-
tures that match the ground truth structures. Valid rate in-
dicates the percentage of valid structures predicted by the
model. Structure similarity measures the similarity between
the predicted and ground truth crystal structures. Composi-
tion similarity measures the similarity between the predicted
and ground truth chemical compositions of the crystal struc-
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tures. For description-related tasks, including crystal descrip-
tion, retrosynthesis, and reaction, we report the BLEU score,
ROUGE score, and BERT score, which are commonly used
evaluation metrics in natural language processing (NLP) and
text generation tasks. They measure the similarity between a
generated text and a reference text, providing insights into the
prediction quality. Besides, we report the correctness rate
(Right) for reaction and retrosynthesis tasks, which indicates
the percentage of correct predictions made by the model.

5.2 Experimental Results

We present the experimental results of the fine-tuned
LLaMA-7B model on the Mat-Instruction dataset across the
six core components. The results demonstrate the effective-
ness of Mat-Instruction in enhancing the LLM’s performance
in material science tasks, enabling it to understand and pre-
dict crystal materials with high accuracy and precision.

Description-related Tasks. The fine-tuned LLaMA-7B
model demonstrates strong performance in crystal reaction
prediction tasks, retrosynthesis prediction tasks, and crys-
tal description tasks, as shown in table 1. For crystal re-
action prediction tasks, the correctness rate is 49.73%, with
ROUGE, BLEU, and BERT scores of 0.545, 0.012, and
0.931, respectively, all of which significantly outperform the
baseline model. For retrosynthesis prediction tasks, the cor-
rectness rate is 42.06%, with ROUGE, BLEU, and BERT
scores of 0.206, 0.008, and 0.838, respectively, also demon-
strating a substantial improvement over the baseline model.
For crystal description tasks, the ROUGE, BLEU, and BERT
scores are 0.418, 0.209, and 0.885, respectively, again ex-
hibiting a significant performance gain over the baseline
model. Comparing the fine-tuned LLaMA-7B model with the
baseline model, we observe a substantial improvement in the
model’s performance across all tasks, highlighting the effec-
tiveness of Mat-Instruction in enhancing the LLM’s under-
standing and prediction of crystal materials.

Structure-related Tasks. The fine-tuned LLaMA-7B
model achieves high accuracy in predicting material prop-
erties, generating valid crystal structures, and describing
crystal materials as shown in table 2, where N/A indicates
the model’s lack of the ability to predict crystal structures.
For the task of property prediction, the R? score achieves
0.789, and the MAE is 3.472, indicating the model’s high
accuracy in predicting material properties. For CSP tasks,
the match rate is only 1.29%, and the valid rate is 19.83%,
demonstrating the model’s ability to generate valid crystal
structures, while it’s hard to match the ground truth structure.
The structure similarity and composition similarity of the
model in the CSP task achieves 0.395 and 0.975, respec-
tively, which indicates the ability of the fine-tuned model to
generate crystal structures following the given composition.
For description-guided crystal design tasks, the match rate
is only 0.02%, while the valid rate achieves 44.74%, which
also indicates the model’s ability to generate valid crystal
structures. The structure and composition similarity achieve
0.429 and 0.817 respectively. Compared to CSP, structural
similarity is higher due to the inclusion of more structural
information in the instructions. = However, composition

similarity is lower, as in practice, only specific properties
may be required, and composition details are not always
provided in the instructions. The other models that are not
fine-tuned on Mat-Instruction, can hardly generate valid
structures or make correct property predictions.

6 Discussion

6.1 Crystal Structure Representations

In this work, we employ a concise yet comprehensive crystal
structure format, VASP [Hafner, 2008], to represent the crys-
tal structures in the Mat-Instruction dataset. This format in-
cludes lattice parameters, atomic species, and fractional coor-
dinates, providing a standardized and detailed representation
of crystal materials. While crystal structures can be repre-
sented in various formats, like CIF and VASP formats, which
include additional details like symmetry operations, the rep-
resentation used in our dataset remains complete and can be
converted into any other format as needed. Future research
on LLMs in materials science could take advantage of diverse
crystal structure representations to further enhance the under-
standing and representation learning of crystal materials.

6.2 Model Performance & Task Complexity

The fine-tuned LLaMA-7B model demonstrates significant
improvements in performance across all tasks, as shown in
table 1 and table 2. However, the match rate and valid rate
for CSP and description-guided crystal design tasks are rel-
atively low, indicating the complexity and challenges asso-
ciated with these tasks for LLMs. We attribute this to the
intricate nature of crystal structures and the diverse require-
ments of the tasks, which may involve multiple constraints
and conditions. Future research on LLMs in materials sci-
ence could explore ways to address these challenges with our
Mat-Instruction dataset.

7 Conclusion

In this work, we introduce Mat-Instruction, a comprehen-
sive instruction dataset tailored to the unique challenges of
crystal materials science. Mat-Instruction comprises six core
components, each designed to address specific materials sci-
ence tasks, including crystal structure prediction, property
analysis, and crystal design. To construct Mat-Instruction,
we integrate data from multiple sources, transform it into
instruction-based formats, and validate the instructions with
domain experts. Our extensive experiments on open-source
LLMs demonstrate the effectiveness of Mat-Instruction in
enhancing LLM performance in materials science tasks, en-
abling more accurate understanding and prediction of crystal
materials. By equipping LLMs with domain-specific knowl-
edge, Mat-Instruction would pave the way for new scientific
discoveries and innovations in material science. Thus, we
plan to open source Mat-Instruction, allowing the community
to further expand and refine it. Our goal is to further im-
prove LLM’s understanding and prediction of crystal materi-
als, with the expectation of driving significant advancements
in materials science research and fostering societal progress.
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