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Abstract
Knowledge Graphs (KGs) have revolutionized
structured knowledge representation, yet their ca-
pacity to model real-world complexity and hetero-
geneity remains fundamentally constrained. The
emerging paradigm of Multi-View Knowledge
Graphs (MVKGs) addresses this gap through
multi-view learning, but existing research lacks
systematic integration. This survey provides the
first systematic consolidation of MVKG method-
ologies, with four pivotal contributions: 1) The first
unified taxonomy of view generation paradigms
that rigorously categorizes view into four types:
structure, semantic, representation, and knowl-
edge & modality; 2) A novel methodological ty-
pology for view fusion that systematically clas-
sifies techniques by fusion targets (feature, de-
cision, and hybrid); 3) Task-centric application
mapping that bridges theoretical MVKG con-
structs to node/link/graph-level downstream tasks;
4) A forward-looking roadmap identifying un-
derexplored challenges. By unifying fragmented
methodologies and formalizing MVKG design
principles, this survey serves as a roadmap for ad-
vancing KG versatility in complex AI-driven sce-
narios. In doing so, it paves the way for more ef-
ficient knowledge integration, enhanced decision-
making, and cross-domain learning in real world.

1 Introduction
KGs [Singhal, 2012] are structured representations of knowl-
edge that model entities as nodes and the relationships be-
tween them as edges, which are enriched with attributes that

∗Corresponding author.

1. View Generation

Structure View

Semantic View

Representation
View

Knowledge Graph

Other data
sources

Downstream
Applications

2. View Fusion

Fused
Knowledge

Knowledge &
Modality View

Figure 1: General workflow of multi-view learning in Knowledge
Graph (KG). Dashed lines indicate the introduction of external data
combined with the original KG to form new views.

capture additional information [Hogan et al., 2021]. This
graph-based framework provides a powerful and interpretable
way to encode and organize information from various data
sources. Over the past decade, KGs have been widely em-
ployed in diverse fields, including natural language pro-
cessing (NLP) [Chen and Luo, 2019; Huang et al., 2019],
recommendation system [Guo et al., 2020], search engine
[Zou, 2020] and biomedical research [Nicholson and Greene,
2020]. Recent advancements, such as the large language
models (LLMs) [Radford, 2018], multi-modal learning [Xu
et al., 2023], and graph neural networks (GNNs) [Kipf and
Welling, 2016] has opened new avenues for KGs to integrate
with cutting-edge technologies.
Motivation of MVKG. As real-world data grows increas-
ingly complex, traditional KGs face significant challenges
in modeling and interpreting heterogeneous data effectively.
Monolithic frameworks for KG reasoning are often insuffi-
cient for capturing the structural and semantic variations in-
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20121998

Multi-view Learning 
[Blum and Mitchell, 1998]

Google Knowledge Graph
[Singhal, 2012] 

2019

CAKE [Niu et al., 2022]

KGSum [Wang et al., 2022]

... 20232022

MV-NET [Zhang et al., 2024a]

SDMKGE [Zhang et al., 2024c]

Mvtucker [Wang et al., 2024a]

AR-Align [Liang et al., 2024b]

MMGCL [Jiang et al., 2024b]

ProMvSD [Zhou et al., 2024]

CMRP [Jiang et al., 2024a]

MKNBL [Wang et al., 2024b]

MGIF [Li et al., 2024]

MVFF [Xu et al., 2024]

FKGC [Ma et al., 2024]

MVCLF [Xia et al., 2024]

Aic [Zhang et al., 2024b]

HyRel [Yang et al., 2024]

AMMCN [Yuan et al., 2024]

MV-Mol [Luo et al., 2024]

2025

SM-GNN [Dong et al., 2025]

KHIM [Zeng et al., 2025]

MVKC [Yang et al., 2025]

Time
2024

FuAlign [Wang et al., 2023]

FLow-MV [Pei et al., 2023]

KMVG [Chen et al., 2023]

AEKE [Zhang et al., 2023]

KSR [Xiao et al., 2019]

MultiKE [Zhang et al.,2019]

...

Figure 2: A timeline of key developments in Multi-View Knowledge Graph (MVKG), beginning with foundational work in multi-view
learning (1988) and Google Knowledge Graph (2012). The first work on MVKG was proposed in 2019, followed by steady growth, then a
significant surge in 2024. Expectations are for continued advancements in the future.

herent in many datasets. These limitations hinder the full
utilization of data and constrain generalization performance.
To address these challenges, the concept of multi-view learn-
ing [Blum and Mitchell, 1998] presents a promising solution.
Multi-view learning in KGs typically involves two key steps
(illustrated in Figure 1): (i) generating multiple views that
capture diverse aspects of the data, and (ii) fusing the view-
specific knowledge. This process enables a more nuanced un-
derstanding of the heterogeneous datasets and overcomes the
limitations of traditional KG reasoning approaches in manag-
ing data variations. Combining the principles of multi-view
learning and KG, a MVKG extends traditional KGs by struc-
turing data into distinct views, then integrates these views to
maximize the utility of their combined information.
Scope of the Survey. Although both MVKGs and multi-
modal knowledge graphs (MMKGs) [Liu et al., 2019] such
as Richpedia [Wang et al., 2020] and MKGAT [Sun et al.,
2020] may involve data from different modalities, they differ
significantly in their data sources and objectives. MMKGs
primarily focus on integrating multi-modal data, such as text,
images, and audio, to construct a unified KG. Such KGs
have been covered in previous surveys [Zhu et al., 2022;
Liang et al., 2024a]. In contrast to MMKGs, MVKGs lever-
age existing KGs to achieve a more comprehensive under-
standing of knowledge. Specifically, MVKGs mainly oper-
ate on existing KGs and generate multiple views by inter-
preting the data from various dimensions, including struc-
ture [Chen et al., 2023], semantics [Xiao et al., 2019;
Zhang et al., 2019] or representation encoders [Pei et al.,
2023]. In some cases, data from other modalities can be com-
bined with the original KG and added as an additional view to
provide complementary knowledge [Luo et al., 2024]. Once
these views are generated and represented, they are fused to
enable a more comprehensive and effective utilization of the
information. This facilitates better solutions to diverse down-
stream tasks, such as entity alignment [Wang et al., 2023],
recommendation [Wang et al., 2024c] and KG completion
[Niu et al., 2022]. To the best of our knowledge, this is the
first survey paper on MVKGs that provides a comprehensive
overview of view generation and fusion, applications, and fu-

ture research directions.
Contributions. This work aims to present a comprehensive
survey on MVKGs, focusing view generation and fusion tech-
niques, downstream applications, and future directions. The
key contributions of this survey are as follows:
a. We offer the first systematic and comprehensive review

of MVKGs, distinguishing them from traditional KGs and
MMKGs by providing a formal definition of key concepts
underlying MVKGs in Section 2. A brief timeline of key
techniques and reviewed works is given in Figure 2.

b. We introduce a unified framework for MVKGs, emphasiz-
ing two steps: view generation and view fusion. Section
3 categorizes different view types based on the generation
process as displayed in Figure 3, while Section 4 provides
an in-depth discussion of representative fusion techniques.

c. We examine the diverse downstream applications of
MVKGs in Section 5, categorized by granularity into node-
level, link-level, and graph-level tasks.

d. In Section 6, we discuss the key challenges and outline
promising research directions by offering insights to guide
future advancements in MVKGs.

2 Preliminary
2.1 Knowledge Graph
Definition. KGs are structured representations of knowledge
that capture entities, attributes, and relationships. A KG is
denoted as G = (E ,R, T ), where E is entity set, R is rela-
tion set, T is triple set. Each triple (h, r, t) ⊆ E ×R× E
represents a relational fact, where h, t ∈ E are head and tail
entities, and r ∈ R is the relation connecting them.

2.2 Multi-View Learning in Knowledge Graph
Multi-view learning originally emerged in machine learning
as a paradigm to address the limitations of single-view learn-
ing, in particular the inability to comprehensively capture the
complexity and diversity of data from a single perspective
[Zhao et al., 2017]. In KGs, multi-view learning is especially
valuable because real-world knowledge is inherently multi-
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Views in
MVKGs Representation

View External
Knowledge

Semantic View

Structure View

Knowledge &
Modality View

Entity-level

Relation-level

Subgraph-level

Semantic Graph

Text Description

Data Modality

Figure 3: A taxonomy of view types in MVKGs based on view
generation process, highlighting structure, semantic, representation,
and knowledge & modality views. The structure view is further di-
vided into entity-, relation-, and subgraph-level; semantic view can
be constructed via semantic graph or text description; knowledge &
modality View emphasizes external knowledge and data modality.

faceted, requiring integration from multiple perspectives to
fully represent entities, relationships, attributes.
View Definition. A view is a distinct representation or per-
spective of data that captures specific aspects of its structure,
semantics, or context. Within KGs, a view vi is a subset of
the KG G and optionally an extra data source K, denoted as
vi = gi(G,K), where gi is a mapping function that extracts
or constructs the i-th view.
Multi-View Learning. Multi-view learning is a machine
learning paradigm that leverages multiple views of data to im-
prove model performance. In the context of KGs, multi-view
learning aims to integrate and reason over diverse and com-
plementary information captured from different views. For-
mally, given a set of views V = {v1, v2, . . . , vn} derived from
G, the goal of multi-view learning is to obtain fused knowl-
edge Z by integrating the information from all views, such
that Z = f(V; Θ) where f is a fusion function and Θ repre-
sents the learnable parameters of the model.

As illustrated in Figure 1, the multi-view learning process
in KG typically involves two key steps:

1. View Generation: Construct a set of views V =
{v1, v2, . . . , vn}, where each view vi = gi(G,K) is de-
rived from a unique perspective of the KG.

2. View Fusion: Combine multiple views to produce fused
knowledge Z using the fusion function f .

Multi-View Knowledge Graph (MVKG) Definition. A
MVKG extends a traditional KG by integrating multiple
views to capture diverse and complementary aspects of
knowledge through the application of multi-view learning.
Formally, an MVKG is defined as (G,V, f,Θ).

2.3 Reasoning over MVKG
Building upon the foundation of MVKGs, reasoning over
MVKGs plays a crucial role in leveraging fused knowledge
from multiple views. As shown in Figure 4, reasoning over
MVKGs involves addressing four interconnected challenges:
Construction, Integration, Alignment, and Translation.
Construction. A critical challenge in reasoning over
MVKGs is the construction of multiple views, which are ex-
tracted from the underlying KG and may be enriched by ex-
ternal data sources. Each view captures a distinct aspect of
the data, such as structural patterns or semantic information.

Construction Integration

refines
Alignment

refines
Translation

provides
foundation

supports

supports

Figure 4: Relationships among four fundamental challenges in rea-
soning over MVKG.

This step lays the foundation for the subsequent challenges.
Integration. Building upon the construction of multiple
views, another pivotal challenge in MVKG reasoning is inte-
gration, which plays a central role in combining the comple-
mentary knowledge captured by each view. By fusing diverse
views, knowledge integration enables a more comprehensive
and robust understanding of data. This process supports sub-
sequent challenges such as alignment and translation.
Alignment. Following integration, a critical challenge is
alignment, which aims to align entities or relations that share
the same semantics across different views or data sources.
Typically, alignment in MVKGs focuses on cross-view align-
ment, where entities or relations from different views within
the same MVKG are matched. When external KGs are in-
corporated, cross-KG alignment may also be required. This
process ensures consistency and coherence across views, fur-
ther guiding the view construction.
Translation. Alongside alignment, translation addresses the
transfer and transformation of knowledge across different
views. This process aims to generate or retrieve missing in-
formation while maintaining semantic and informational con-
sistency. Supported by knowledge integration, view transla-
tion not only enhances the completeness and consistency of
MVKGs but also optimizes the view construction process, en-
abling the creation of more complete and accurate views.

3 View Generation
As a core component of MVKGs, view generation creates
diverse views of the given KG, each highlighting distinct as-
pects of the underlying data. To better understand the unique
characteristics captured by views and their applications in
downstream tasks, we organize views in existing MVKGs
into four main categories based on specific data features to be
emphasized: structure, semantic, representation, and knowl-
edge & modality, as illustrated in Figure 1.

3.1 Structure View
The structure view focuses on the connectivity and topolog-
ical relationships between entities and relations in a KG. It
captures the relational patterns and structural characteristics
of entities within the KG, emphasizing the graph’s inherent
connectivity and hierarchy. Based on the level of structural
analysis, the structure view can be further categorized into
three types: entity-level, relation-level, and subgraph-level.

Entity-level
The entity-level structure view analyzes the topological or-
ganization of individual entities in a KG by capturing local
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r

Relation-level Structure View

Sub-graph 1
Sub-graph 2

Sub-graph 3

...

Relation
EntitySub-graph-level Structure View

Figure 5: Structure view in MVKGs: illustration at entity-level,
relation-level, and subgraph-level.

structural patterns from their immediate relationships. For
example, CAKE [Niu et al., 2022] uses a fact view for entity
prediction based on first-order relationships, while ProMvSD
[Zhou et al., 2024] defines the node view as a unit for evalu-
ating semantic contradictions in relational facts.

Several methods capture entity-level structure in MVKGs.
For example, MVCLF [Xia et al., 2024] uses sampling to
generate views from first-order connections, while KGSum
[Wang et al., 2022] employs Graph Transformer for node rep-
resentations. MGIF [Li et al., 2024] applies global-aware
convolution to process relational and entity features sepa-
rately, and MultiKE [Zhang et al., 2019] enriches entity em-
beddings with CNN-based attribute representations.

Entity-level views have been widely applied in KG tasks.
CAKE shows effectiveness in entity alignment and KG com-
pletion using local embeddings. In recommendation systems,
KHIM [Zeng et al., 2025] integrates entity-level knowledge
into a hierarchical intent modeling module to improve user
and item representations. Despite these benefits, the entity-
level view faces challenges such as semantic inconsistencies
[Zhou et al., 2024] and computational inefficiencies [Dong et
al., 2025] in large-scale KGs.

Relation-level
The relation-level structure view models interactions between
entities via relational connections in MVKGs. Instead of en-
tities, it highlights how relations shape knowledge represen-
tation and graph structure. For example, TransE in MultiKE
treats relations as translation vectors from head to tail entities,
providing a basic approach for relational semantics.

Various methods exploit relational structures in MVKGs.
For instance, FuAlign [Wang et al., 2023] defines an entity’s
neighborhood as its neighbors and their relations by using
context embeddings to capture local patterns. Additionally,
AEKE [Zhang et al., 2023] builds a relational hypergraph by
treating triples as nodes linked through shared entities, while
ProMvSD extends this idea with a triple view where triples
act as hypernodes.

Dynamic approaches can selectively extract relations.
CMRP [Jiang et al., 2024a] employs dynamic edge selec-

tion to focus on relevant relations, and MGIF introduces
interaction-aware convolution for encoding relation-specific
features. Moreover, SM-GNN [Dong et al., 2025] aggre-
gates relation-aware information using attention mechanisms
to differentiate contributions. In heterogeneous graphs, KG-
Sum constructs an entity-sentence graph to update sentence
representations based on entity interactions. MVKC [Yang
et al., 2025] divides user–item–entity graph into a user–item
view and an item–entity view.

Subgraph-level
The subgraph-level structure view extracts meaningful sub-
graphs from MVKGs to model complex relationships or tem-
poral dynamics. Unlike entity or relation level, it captures de-
pendencies across multiple entities and relations, which is es-
sential for temporal reasoning and subgraph-based inference.

Temporal dynamics are modeled explicitly using subgraph-
level views. For example, Mvtucker [Wang et al., 2024a] in-
troduces a temporal view to explore interactions between en-
tities, relations and time, while MVFF [Xu et al., 2024] cap-
tures evolving patterns via temporal structure view. MV-NET
[Zhang et al., 2024a] extends this idea by proposing multiple
temporal views at each timestamp. Additionally, MMGCL
[Jiang et al., 2024b] employs a dynamic sliding window to
extract meta-knowledge from a manageable temporal graph.

Beyond temporal analysis, subgraph-level views also
model pathway-based semantics and triple-level interactions.
ProMvSD introduces a pathway view to trace information
flow along sub-paths and computes semantic gaps, while SM-
GNN uses a triple view to aggregate features of relations and
tail entities. Moreover, Aic [Zhang et al., 2024b] explores
multi-granularity subgraph extraction, highlighting the im-
portance of diverse subgraph-level analysis.

3.2 Semantic View
The semantic view in MVKGs focuses on capturing the se-
mantic information of entities, relations, and their interac-
tions. Unlike structure view that emphasizes graph topology,
semantic view usually leverages semantic graph or text de-
scription to enhance knowledge representation and reasoning.

Semantic Graph
A semantic graph is a derived structure that captures implicit
semantic information in the original KG by generating new
relationships or structures. It is built by extracting, transform-
ing, or generating relational structures from entity attributes,
relation semantics, or contextual patterns. An example is
HyRel [Yang et al., 2024], which reorganizes relations based
on their relative positions and shared entity frequency.

Various methods construct semantic graphs in MVKGs.
AEKE uses triple-level hypergraphs to model attribute se-
mantics, while HyRel and MKNBL [Wang et al., 2024b] fuse
entity and relation features to produce enriched representa-
tions. For dynamic data, KMVG [Chen et al., 2023] builds
directed session graphs to capture sequential patterns. Hier-
archical methods such as KSR [Xiao et al., 2019] organize
knowledge into multi-level views and clusters. Additionally,
AMMCN [Yuan et al., 2024] combines user-item graph with
KG to construct item-item graph for recommendation tasks.
Despite their interpretability and flexibility, semantic graphs
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face challenges in computational complexity and scalability
[Zhang et al., 2023; Chen et al., 2023], and their performance
heavily depends on the quality of a KG[Wang et al., 2024b].

Text Description
The text-based semantic view leverages textual information,
such as names or descriptions, to enrich MVKG representa-
tions. Using NLP techniques as shown in [Wang et al., 2023],
this approach extracts and encodes textual semantics to im-
prove the understanding of entities and their relationships.

A common method is to employ pretrained language mod-
els (PLMs) for encoding text. For instance, SDMKGE
[Zhang et al., 2024c] uses two Siamese networks based on
PLMs to separately encode entity and structure semantics.
Similarly, AR-Align [Liang et al., 2024b] initializes entity
names and attributes using LaBSE to capture contextual se-
mantics. FKGC [Ma et al., 2024] also utilizes text descrip-
tions to achieve richer semantic representations. Entity names
often serve as a universal textual feature for semantic enrich-
ment. For instance, FuAlign emphasizes their importance as
a text source, while MultiKE uses literal embeddings to cap-
ture name semantics. Another approach focuses on domain-
scalable prompts that integrate textual inputs with graph data.
CMRP converts text into prompts that preserve semantic and
logical content while emphasizing graph information. But
while text-based views enhance reasoning, challenges like
computational overhead [Jiang et al., 2024a] and ambiguity in
descriptions [Wang et al., 2023] must be carefully addressed.

3.3 Representation View
The representation view focuses on generating diverse repre-
sentations of a MVKG by applying different encoding tech-
niques or perturbations to the same data. This approach uses
multiple encoders or augmentation strategies to create dis-
tinct views of the KG, enabling richer feature extraction and
improved downstream performance. Unlike structure or se-
mantic views that rely on explicit graph topology or semantic
information, the representation view derives alternative em-
beddings by altering feature space properties.

One common strategy is to use multiple encoders to gen-
erate different views. FLow-MV [Pei et al., 2023] employs
three encoders: a few-shot learner for relation representation,
a relation knowledge distiller for another different view, and
a perturbed few-shot learner that creates a new view via per-
turbation. Similarly, MVFF uses two encoders, one based on
tensor decomposition and another based on a relational GNN.
Another approach is to directly perturb and augment embed-
dings to create new views such as AR-Align. MVKC further
extends this idea with a stochastic scheme to generate two
augmented views for contrastive learning.

Representation views significantly enhance contrastive
learning and few-shot generalization, as demonstrated in
FLow-MV. However, challenges such as computational over-
head [Xu et al., 2024] and representation inconsistency [Yang
et al., 2025] must be addressed for scalable deployment in
real-world knowledge graphs.

3.4 Knowledge & Modality View
The knowledge & modality view enhances MVKGs by in-
corporating external knowledge or additional data modality.

View 1
View 

Encoder 1

View 
Encoder 2

Feature
Fusion

Embedding 1

Fused
Knowledge

View 2 Embedding 2

Figure 6: Feature fusion in MVKGs illustrated with two views.

This approach enriches KG representations by integrating
complementary information from diverse sources, enabling
more comprehensive and robust reasoning.

External Knowledge
Integrating external knowledge bases enriches MVKGs by
adding extra semantic constraints and relational details. For
example, FKGC introduces a commonsense view that uses
high-quality negative sampling based on complex relations.
This improves sample quality and applies semantic con-
straints to reduce overfitting. Similarly, CAKE leverages
commonsense knowledge to enhance the original KG, cap-
turing implicit relationships and constraints. Such external
knowledge provides critical contextual information absent
from the original KG that leads to a more accurate domain
representation.

Data Modality
Incorporating additional data modalities further enriches
MVKGs by integrating non-relational data like text, images,
or molecular structures. For instance, MV-Mol [Luo et al.,
2024] combines chemical structure data with unstructured
biomedical texts to create a unified representation that cap-
tures diverse aspects of the data. By fusing structured KG
knowledge with unstructured modalities, MV-Mol improves
the accuracy and interpretability of predictions in biomedi-
cal applications. This broadens the scope and adaptability of
MVKGs for complex real-world tasks.

4 View Fusion
View fusion integrates information from multiple views in a
MVKG to enhance representation and reasoning capabilities.
By combining diverse views, fusion methods provide a more
comprehensive understanding of underlying data. Depending
on the fusion targets, fusion can occur at feature level (com-
bining embeddings or raw features) or decision level (merg-
ing outputs or predictions from different views).

4.1 Feature Fusion
Feature fusion combines embeddings or raw features from
different views to create a unified and enriched representa-
tion. This occurs before the final representation is gener-
ated, enabling models to capture complementary informa-
tion for more robust and expressive embeddings. Figure
6 shows that embeddings from separate encoders are fused
to integrate knowledge across views. Techniques used in
feature fusion include direct combination [Xu et al., 2024;
Wang et al., 2023], contrastive learning [Jiang et al., 2024b],
attention mechanisms [Wang et al., 2022; Li et al., 2024], and
vector transformation [Wang et al., 2024a].
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Figure 7: Decision fusion in MVKGs illustrated with two views.

Combination-based. A straightforward approach is to di-
rectly combine feature vectors using concatenation, element-
wise addition, or pooling, often enhanced by weighting
mechanisms to emphasize important views. For example,
MVFF and FuAlign concatenate features, while MKNBL and
KMVG explore pooling and concatenation. SM-GNN selects
features from more similar views for fusion based on feature
consistency. Weighted methods, such as the weighted view
averaging in MultiKE, assign importance scores to different
views to improve fusion quality.
Contrastive Learning. Contrastive learning methods align
features from different views by maximizing similarity for
positive pairs and minimizing for negative pairs [Zeng et al.,
2025; Yang et al., 2024]. Some models use dual contrastive
learning across multiple views [Yang et al., 2024], while oth-
ers refine instance-level representations [Zhang et al., 2023].
MVCLF compares features across views, and MV-Mol ap-
plies cross-modal contrastive learning for modality align-
ment. Additionally, MMGCL proposes a meta-knowledge
transfer contrastive approach, while FLow-MV uses con-
trastive knowledge distillation for few-shot learning.
Attention Mechanism. Attention-based fusion techniques
dynamically weight features from different views to capture
their importance. KGSum uses cross-attention to combine
textual and graph context, while MGIF adopts self-attention
to correct multi-perspective feature maps. KMVG employs
soft-attention mechanism to fuse item representations from
session-view graphs. Reinforcement learning techniques,
such as collaborative policy learning scheme in CMRP, can
also be seen as a form of attention, where the model learns to
optimize edge selection strategies based on mutual rewards.
Vector-based. Vector-based methods transform features into
a shared space or decomposes them into unified representa-
tions. MultiKE induces an orthogonal mapping matrix to
project view-specific embeddings into shared latent space.
MVFF utilizes tensor decomposition to represent entities and
relations with time features. MvTucker models MVKGs as
nth-order binary tensors and uses tensor products to capture
interactions between views.

4.2 Decision Fusion
Decision fusion in MVKGs combines outputs from multiple
views to make a unified decision. Unlike feature fusion, de-
cision fusion usually merges predictions, scores, or losses at
a higher level. As shown in Figure 7, each view processes its
own embedding, and their decisions are combined to gener-
ate the final fused knowledge. Decision fusion can be done
through simple combination or weight-based methods.
Combination-based. Simple combination techniques merge
the outputs of different views without explicit weighting. For

instance, MV-Mol combines the losses from two subtasks -
KG embedding and KG completion - to incorporate multi-
view knowledge. Similarly, SDMKGE sums the entity se-
mantic similarity matrix and the structure semantic similarity
matrix to obtain the final semantic similarity matrix. While
computationally efficient this method lacks adaptability, as it
usually assumes equal contributions from all views.
Weight-based. Weight-based methods assign importance
scores to the outputs of different views, either statically or
dynamically, to balance their contributions. For example,
ProMvSD uses a static trade-off coefficient λ to balance the
influence of two hyperviews when assessing the suspicious
score of a triple. In contrast, MV-NET designs an adaptive
scoring module that customizes scores for different queries,
utilizing ConvTransE to calculate the score of a quadruple
for each view. This dynamic approach ensures that the fusion
process adapts to the specific context of the query.

4.3 Hybrid Fusion
Hybrid fusion in MVKGs refers to the integration of differ-
ent fusion strategies, with the approach typically combining
feature fusion and decision fusion at different stages of the
learning process. Unlike purely feature- or decision-based
methods, hybrid fusion leverages both early and late fusion
techniques.
Early Fusion Methods. Early fusion techniques integrate
features from different views at an initial stage, often using
contrastive learning or attention mechanisms to align repre-
sentations. For instance, AR-Align uses contrastive learning
to align entity names and attributes early on, while AMMCN
aligns embeddings from different views before combining
them. MVKC uses contrastive learning for structure views
and augmented views, enabling effective information ex-
change. FKGC introduces adaptive attention to adjust the in-
teraction between the structure and text views, ensuring focus
on the most relevant features during early fusion.
Late Fusion Methods. Late fusion techniques combine the
outputs of different views at a later stage, often using filter-
ing, summing, or concatenation to refine the final predictions.
For instance, AMMCN sums and concatenates embeddings
in late fusion. CAKE filters candidate entities with com-
monsense knowledge before predicting final answer entities.
FKGC also uses commonsense knowledge to filter out irrel-
evant candidates, narrowing the range for link predictions.
MVKC sums and concatenates the representations from dif-
ferent views to generate the final output, ensuring that both
structure and augmented views contribute to the decision.

5 Downstream Applications
Having explored the generation and fusion of multiple views
in MVKGs, we turn our focus to the diverse downstream
applications that leverage these enriched knowledge repre-
sentations. By integrating diverse views, MVKGs provide a
structured knowledge representation, making them valuable
for various applications at different levels of graph analysis.
These applications can be categorized into node-level, link-
level, and graph-level. The following section examines the
impact of MVKGs across these levels of analysis.
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5.1 Node-level
Node-level applications in MVKGs focus on analyzing in-
dividual entities by leveraging multi-view representations to
enhance entity alignment, retrieval, enrichment, and predic-
tion tasks.
Entity Alignment & Retrieval. Entity alignment aims to
match equivalent entities across different KGs, addressing in-
consistencies in naming conventions, languages, and struc-
tural representations. AR-Align, FuAlign, and SDMKGE
highlight how multi-view fusion improves cross-lingual en-
tity alignment by incorporating graph structures and auxiliary
semantic information. Additionally, MultiKE emphasizes the
importance of treating entity features equally across views to
ensure robust alignment. In entity retrieval, multi-view repre-
sentations refine entity search results by integrating semantic
and structural knowledge [Xiao et al., 2019].
Entity Enrichment & Prediction. Entity enrichment inte-
grates additional attributes into entity representations to en-
hance their utility for downstream tasks. For example, AEKE
enhances entity enrichment through a multi-view framework
by modeling KG topology and attributes as hypergraphs. MV-
Mol demonstrates how enriched representations aid molecu-
lar property prediction by refining entity attributes with di-
verse knowledge sources. Entity prediction involves infer-
ring missing attributes or relationships. MV-NET evaluates
multi-view entity prediction models across diverse datasets,
showing clear effectiveness in predicting missing entities us-
ing structural and semantic information.

5.2 Link-level
Link-level applications in MVKGs focus on tasks related to
entity-entity interactions, including link prediction and rec-
ommendation systems.
Link Prediction. Link prediction aims to infer missing or
potential edges in KG by analyzing multi-view structural re-
lationships. MVFF and HyRel demonstrate how multi-view
representations improve prediction by capturing hidden de-
pendencies and semantic similarities between entities.
Recommendation. MVKGs enhance recommendation sys-
tems by leveraging semantic information for refined user-item
interaction predictions. KMVG integrates session-based and
pairwise views via a global item-item graph to improve accu-
racy. AR-Align and KHIM capture user preferences through
multi-view interactions and semantic graphs. Contrastive
learning propagates neighboring node information while dis-
tinguishing importance levels [Xia et al., 2024]. To tackle
data sparsity and cold-start issues, MKNBL employs a multi-
channel knowledge-aware network using KGs as side infor-
mation. MMGCL and MVKC further optimize recommenda-
tions via meta-knowledge-enhanced contrastive learning and
GNN-based multi-view fusion.

5.3 Graph-level
Graph-level applications in MVKGs extend beyond individ-
ual entities and links, focusing on holistic graph-wide tasks
such as KG completion [Pei et al., 2023; Niu et al., 2022]
or multi-domain applications [Jiang et al., 2024a]. These ap-
plications leverage multi-view structures, semantic represen-

tations, and cross-domain integration to improve reasoning,
retrieval, and interpretability.
KG Completion. KG completion (KGC) infers missing
triples by leveraging multi-view structural and semantic re-
lationships. FLow-MV addresses long-tail entity issues in
low-resource KGC, while CAKE refines predictions with a
coarse-to-fine link prediction module using commonsense
and fact-based views. MGIF enables cross-view knowledge
sharing to resolve multi-domain semantic inconsistencies.
FKGC demonstrates that integrating multiple perspectives
enhances completion accuracy. In multilingual settings, SM-
GNN advocates simplified GNN to handle large-scale graphs
with heterogeneous linguistic structures.
Multi-Domain Tasks. MVKGs facilitate knowledge trans-
fer across different domains, allowing for integration between
graph learning and NLP tasks. For example, CMRP demon-
strates the versatility of MVKGs by evaluating them on thir-
teen graph learning datasets and ten NLP datasets, showing
that graph-based reasoning enhances language-based tasks.

6 Conclusion and Future Directions
In conclusion, this paper provides a comprehensive survey of
MVKGs, covering definitions, methodologies, and applica-
tions. We now highlight the current research landscape and
suggest future directions to address existing challenges and
further expand the field.
Benchmarking and Evaluation. Despite numerous MVKG
models, standardized evaluation methodologies are lacking.
Current benchmarks focus on single-task performance with-
out assessing view quality, informativeness, or fusion gen-
eralization. Future research should establish comprehen-
sive frameworks that systematically compare MVKG models
across view generation and fusion techniques.
Advanced Representation Learning. Enhancing represen-
tation learning techniques is another key direction. This in-
cludes exploring multi-modal and cross-lingual embeddings
to capture richer semantic information across diverse data
sources and languages. Additionally, development of em-
bedding models that leverage higher-order neighborhood in-
formation, logic paths, and global KG structures can provide
more comprehensive representations.
Few-shot Learning and Noise Reduction. Few-shot learn-
ing and noise reduction are crucial for low-resource and noisy
environments. Soft sampling for k-shot learning enhances
performance with limited labeled data, while knowledge dis-
tillation reduces noise and improves robustness, especially in
recommendation systems with incomplete or noisy data.
Integration with LLMs. Integrating MVKGs with LLMs
enables better reasoning and inference by aligning textual
knowledge with structured KG data. Developing prompt tem-
plates can enhance this synergy. Future research may explore
using LLMs to generate or refine views, bridging unstruc-
tured text and structured knowledge.
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