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Abstract

Early detection of Alzheimer’s disease (AD)
through spontaneous speech analysis represents a
promising, non-invasive diagnostic approach. Ex-
isting methods predominantly rely on fusion-based
multimodal deep learning, effectively integrating
linguistic and acoustic features. However, these
methods inadequately model higher-order interac-
tions between modalities, reducing diagnostic ac-
curacy. To address this, we introduce SpeechHGT,
a multimodal hypergraph transformer designed to
capture and learn higher-order interactions in spon-
taneous speech features. SpeechHGT encodes mul-
timodal features as hypergraphs, where nodes rep-
resent individual features and hyperedges represent
grouped interactions. A novel hypergraph atten-
tion mechanism enables robust modeling of both
pairwise and higher-order interactions. Experimen-
tal evaluations on the DementiaBank datasets re-
veal that SpeechHGT achieves state-of-the-art per-
formance, surpassing baseline models in accuracy
and F1 score. These results highlight the potential
of hypergraph-based models to improve Al-driven
diagnostic tools for early AD detection.

1 Introduction

Early diagnosis of Alzheimer's disease (AD) is crucial for
timely intervention and improved patient outcomes [Alberdi
et al., 2016; Shehzad et al., 2025]. AD is a neurode-
generative disorder characterized by memory loss, cogni-
tive decline, and behavioral changes [Marvi et al., 2024;
Zhang et al., 2024]. While neuroimaging techniques like
MRI and PET can detect brain alterations, their utility is
limited by high costs, restricted accessibility, and radiation
exposure from repeated PET scans [Ahmed et al., 2019;
Yu et al., 2024; Yang et al., 2022]. Consequently, there
is a growing need for cost-effective, non-invasive diagnos-
tic methods [Petti er al., 2020; Ding et al., 2024]. Speech
analysis shows promise for early AD detection, leveraging
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both linguistic (e.g., word choice, syntactic complexity) and
acoustic (e.g., speech rate, pitch) features [Pulido e al., 2020;
Pacheco-Lorenzo et al., 2024]. However, effectively integrat-
ing these diverse speech features to capture the intricate pat-
terns of cognitive decline necessitates further research and ad-
vanced modeling approaches.

Previous methods in speech-based AD detection can be
categorized into unimodal and multimodal approaches, each
employing distinct computational methodologies [Latif et
al., 2021; Shehzad et al., 2024]. Acoustic methods utilize
prosodic features, such as pitch, formant frequencies, and
temporal variations, to identify vocal anomalies linked to AD-
related neurodegeneration [Luz et al., 2024; Zhang et al.,
2021]. Linguistic approaches focus on lexical, syntactic, and
semantic features, examining word frequency, sentence struc-
ture, and narrative coherence to detect cognitive impairments.
However, unimodal methods often neglect cross-modal in-
teractions, leading to incomplete assessments and reduced
diagnostic accuracy. Therefore, multimodal architectures
integrating information from multiple sources are adopted
[Vrindha et al., 2023; Venugopalan et al., 2021]. These sys-
tems integrate acoustic and linguistic representations through
hierarchical fusion strategies [Turrisi et al., 2024]. Recent
advances employ graph transformers to model complex in-
termodal relationships in multimodal data, enhancing diag-
nostic performance [Ektefaie er al., 2023; Peng et al., 2024].
By leveraging attention mechanisms, these models effectively
capture intricate feature dependencies, demonstrating signif-
icant potential for improving AD classification from sponta-
neous speech [Bessadok et al., 2022].

Despite advancements, current multimodal speech analy-
sis techniques often miss crucial, complex interactions be-
tween linguistic and acoustic features—interactions vital for
early Alzheimer’s disease (AD) detection [Ying et al., 2023;
Priyadarshinee ef al., 2023]. These interactions, like the in-
terplay of pitch, tempo, and prosody, reflect cognitive impair-
ments in AD. Traditional methods, such as linear aggregation,
typically treat these features independently, assuming sim-
ple additive relationships [Ilias and Askounis, 2022a]. This
overlooks the inherent non-linear dependencies in speech
data [Pérez-Toro et al., 20211, potentially leading to delayed
or inaccurate diagnoses. We hypothesize that incorporating
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these higher-order interactions will significantly improve di-
agnostic accuracy, aligning with neurolinguistic theories of
cognitive decline [Dell, 1986]. This study aims to validate
this hypothesis and enhance non-invasive diagnostic tools for
early AD detection.

To address these challenges, we propose SpeechHGT', a
multimodal hypergraph transformer, to model higher-order
interactions between linguistic and acoustic speech features
for improved AD detection. SpeechHGT extracts discrim-
inative features from preprocessed audio, representing AD-
related speech characteristics. We construct a multimodal
hypergraph where nodes denote individual features, and hy-
peredges capture grouped interactions. This hypergraph in-
tegrates both simple edges for pairwise relations and hy-
peredges for higher-order dependencies. To process this
hypergraph-structured data, we design a novel hyperedge
attention-based transformer model, which captures both pair-
wise and higher-order interactions. Transformed node fea-
tures are aggregated for binary classification, distinguishing
AD from speech samples. Experimental results demonstrate
that SpeechHGT outperforms baseline models in accuracy
and F1-score, offering an effective approach for early AD de-
tection and improved diagnostic reliability.

Our contributions are as follows.

1. We propose SpeechHGT, a novel multimodal hyper-
graph transformer that captures higher-order interac-
tions between linguistic and acoustic speech features,
overcoming the limitations of existing fusion-based ap-
proaches for AD detection in capturing complex depen-
dencies.

2. We design a dual-layer hypergraph attention mechanism
that effectively models both pairwise and higher-order
dependencies, which can improve the integration of mul-
timodal speech features for robust classification.

3. Extensive experiments on multiple real-world datasets
show that SpeechHGT outperforms state-of-the-art
methods in speech-based AD classification. It achieves
higher accuracy, and Fl-score on all benchmark
datasets, demonstrating its effectiveness in improving
early AD diagnosis from spontaneous speech.

2 Related Work

2.1 Speech Analysis for Brain Disease Diagnosis

The diagnosis of speech-based neurodegenerative diseases
traditionally relies on acoustic or linguistic representations
[Luz et al., 2024]. Acoustic methods analyze prosodic and
voice quality characteristics, including pitch contours, speak-
ing rate, and jitter, to identify early markers of AD. [Luz et al.,
2020] proposes a standardized acoustic preprocessing frame-
work, demonstrating that prosodic indices alone reveal mea-
surable cognitive impairment. Linguistic methods, in con-
trast, focus on transcribed speech, examining lexical diver-
sity, syntactic complexity, and semantic coherence. [Searle
et al., 2020] shows that advanced language embeddings, such

'The source codes are available at:
Ahsan-Shehzad/SpeechHGT.

https://github.com/

as DistiIBERT [Sanh, 2019], can enhance detection accuracy
in machine learning models using textual transcripts. Despite
their utility, unimodal approaches fail to integrate prosodic
and linguistic features, limiting the exploration of holistic
speech characteristics that are essential for comprehensive di-
agnostic assessments.

Current multimodal speech analysis techniques aim to en-
hance diagnostic accuracy by integrating acoustic and lin-
guistic features using early or late fusion strategies [Ilias and
Askounis, 2022b]. [Martinc and Pollak, 2020] shows that op-
timized combinations of text and audio outperform unimodal
approaches in AD detection. Multimodal deep learning mod-
els, such as BILSTM or Transformer architectures, improve
feature integration by combining acoustic waveforms with
textual transcripts. [Rohanian ef al., 2021] demonstrates that
gating mechanisms in sequence models align prosodic and
lexical-semantic features to enhance predictions. [Zhu et al.,
2021] refines semantic embeddings using non-semantic fea-
tures, like pause duration, via Wav2vec. However, existing
methods often fail to model complex intermodal relationships
and higher-order dependencies, neglecting critical biomark-
ers such as semantic confusion and speech disfluencies in
AD.

2.2 Graph Transformers

Graph transformers integrate the representational power of
graph neural networks (GNNs) with attention-based Trans-
former mechanisms to model relational data [Liu et al.,
2021]. These architectures propagate node-level information
across structured connections while using attention coeffi-
cients to weight node or edge importance. Recent advance-
ments in protein folding and language modeling demonstrate
their ability to address complex relational data domains [Ying
et al.,2021]. In clinical research, graph-based methods model
disease progression, predict pathological links, and identify
biomarkers [Luo et al., 2024]. Their strength lies in captur-
ing long-range dependencies while preserving structural in-
formation. However, applying Graph Transformers to mul-
timodal data presents challenges, such as heterogeneous fea-
ture spaces and sparse cross-modal relationships [Li er al.,
2024].

3 Design of SpeechHGT

3.1 Problem Formulation

This study proposes SpeechHGT, a multimodal hypergraph
transformer, for early AD detection using DementiaBank
speech data. Speech features include linguistic (F) and
acoustic (F'4), forming a combined set F' = F U Fy. A
hypergraph H = (V, ) models higher-order feature inter-
actions, where nodes ())) represent features and hyperedges
(&) encode relationships. SpeechHGT learns node (h,) and
hyperedge (h.) embeddings via hypergraph attention, out-
putting a binary classification (y € {0,1}) for AD presence.
The model optimizes accuracy by minimizing the loss func-
tion £. This approach enhances AD detection and provides
insights into cognitive decline. Figure 1 illustrates the frame-
work.
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Figure 1: Illustration of SpeechHGT framework.

3.2 Audio Preprocessing

We preprocess raw audio to standardize data quality for reli-
able feature extraction and classification. This includes noise
reduction, volume normalization, segmentation, augmenta-
tion, and transcription. All recordings are converted to WAV,
resampled to 16 kHz with 16-bit depth, and set to mono us-
ing SoX?. NoisePy> applies spectral subtraction-based noise
reduction using STFT-estimated noise spectrum N (f). RMS
normalization ensures uniform amplitude. Voice activity de-
tection (VAD) via py-webrtcvad* segments recordings. These
steps improve analytical robustness.

3.3 Data Augmentation

We apply data augmentation to enhance diversity and model
robustness. Speed perturbation adjusts playback speed (a €
{0.9,1.0,1.1}) while preserving pitch. Pitch shifting mod-
ifies frequency components via the semitone factor 5 (8 €
{—=2,—-1,1,2}). Gaussian noise n(t) ~ N(0,0?) is added,
maintaining a 20 dB SNR. Augmentations are implemented
using librosa’.

3.4 Transcription

We use Whisper®, an ASR model, to transcribe audio z(t)
into text T' [Liu et al., 2024]. Tt captures filler words, disfluen-
cies, and unintelligible segments: T = fasr(2(t); ©), where
fasr is the model and © its parameters. This transcription
supports linguistic analysis and feature extraction.

3.5 Feature Extraction

Linguistic Feature

We analyze speech transcripts for cognitive and communica-
tive disruptions linked to Alzheimer’s Disease (AD). Utiliz-
ing advanced Natural Language Processing (NLP) tools like
spaCy7, NLTKS, and Transformers®, we extract a wide range
of linguistic features. Lexical analysis includes word count,

*http://sox.sourceforge.net/
3https://github.com/noisepy/NoisePy
*https://github.com/wiseman/py-webrtcvad
>https:/librosa.org
Shttps://github.com/openai/whisper
https://spacy.io/

8https://www.nltk.org/
*https://huggingface.co/docs/transformers

Type-Token Ratio (TTR), Part-of-Speech (POS) tag distribu-
tions, Brunet’s Index, and Honore’s Statistic. Syntactic fea-
tures encompass sentence complexity, grammatical correct-
ness, parsing tree depth, and clause-to-sentence ratios. Se-
mantic features, derived from contextual embeddings (e.g.,
BERT), evaluate coherence, semantic similarity, and named
entity detection. We use Latent Dirichlet Allocation (LDA)
for topic modeling. Discourse analysis involves pausing pat-
terns, pronoun usage, narrative coherence, and topic mainte-
nance. All features are consolidated into a structured vector
L; for each audio sample.

Acoustic Feature

We analyze audio signals to capture prosodic, articulatory,
and spectral properties of speech. Using LibROSA and
OpenSMILE!?, we extract phonation features, including jit-
ter, shimmer, Harmonics-to-Noise Ratio (HNR), and Cep-
stral Peak Prominence (CPP), which reflect vocal stability
and clarity. Temporal features, such as speaking rate, silent
and filled pause durations, and turn-taking timing, character-
ize fluency and rhythm. Spectral features, including formant
frequencies (F1, F2), Mel-Frequency Cepstral Coefficients
(MFCCs), spectral slope, flux, centroid, and bandwidth, de-
scribe spectral energy distribution and dynamics. Energy-
based features, such as Zero-Crossing Rate (ZCR), intensity
contours, sub-band energy distribution, and loudness profiles,
quantify energy variations. All acoustic features are encap-
sulated into a feature vector A;, providing a comprehensive
representation of the audio signal.

3.6 Multimodal Hypergraph Construction

Defining Nodes

Each node in the hypergraph represents a unique linguistic
or acoustic feature extracted from the DementiaBank dataset.
We define the set of nodes as V = {vy,v2,...,v,}, where
each node v; corresponds to a specific feature F;. Each fea-
ture is assigned a unique identifier, such as F} for Vocabulary
Richness or F; for Pitch Variability. The attribute vector a;
for each node v; includes the feature type (linguistic or acous-
tic) and its statistical properties, specifically the mean (u;)
and variance (07). Accordingly, the feature vector for node
v; is expressed as:

x; = [ID(F;), Type;, j1;, o). (1)

"https://audeering.com/opensmile/
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Identifying Hyperedges

We identify hyperedges to capture higher-order interactions
influencing AD detection through statistical correlation anal-
ysis and clustering. First, we compute Pearson correlation
coefficients (p;;) for all feature pairs (F;, F}):

oy S cov(FZ,Fj)' @
0,0
Next, we apply the spectral clustering algorithm to the corre-
lation matrix to cluster features with high inter-correlations.
Let C = {C4,C4,...,Cy,} denote the resulting set of clus-
ters. Each cluster C}, corresponds to a hyperedge ey, defined
as:

e = {Ui ey | F; € Ck}. 3)
This method ensures that hyperedges represent synergistic
feature groups with collective relevance to AD detection.

Incorporating Pairwise Edges

We incorporate pairwise edges to capture direct interactions
between individual feature pairs, complementing hyperedges.
For a given feature pair (F;, F;), we compute the mutual in-
formation I(Fj; F}) to quantlfy feature dependency:

p(f27f])
=2 2 #lfudi)ios (p<fi>p<fj>)' S

Jfi€F; f;€F;

A pairwise edge is established between nodes v; and v; if
I(F;; F}) exceeds a predefined threshold 6. These pairwise
edges capture direct feature dependencies absent in higher-
order groupings, enhancing the hypergraph’s structural com-
plexity and representational depth.

I(F;; F))

Representing the Hypergraph

We represent the hypergraph using an incidence matrix H €
{0,1}™*™ where n is the number of nodes and m is the num-
ber of hyperedges. Each matrix element H j, is defined as:

1 if node v; bel toh d
Hip = if no e.v elongs to hyperedge ey . )
0 otherwise

We encode nodes and hyperedges with feature vectors to fa-
cilitate learning within the hypergraph framework. Each node
v; is represented by a normalized feature vector x;, defined
as:

) 2 _ 452
o — [ i~ finin_ 07 = o Type} R
HMmax — Mmm Omax — m1n
Hyperedge features are aggregated from constituent node
vectors. The aggregated feature vector yj, for hyperedge eg

is computed as:

1
Ye= 1 > xi (7)

This encoding captures collective node information, en-
abling the multimodal hypergraph transformer (SpeechHGT)
to learn complex feature interactions. The hypergraph con-
struction module outputs the incidence matrix H, node fea-
tures {x; }"_,, and hyperedge features {y} 7" .

3.7 Multimodal Hypergraph Transformer

The Hypergraph Transformer constitutes the core of our
SpeechHGT architecture, designed to leverage hypergraph-
structured data for capturing pairwise and higher-order fea-
ture interactions in spontaneous speech.

Hypergraph Attention Mechanism

We design the hypergraph attention mechanism to extend
standard self-attention for modeling higher-order interac-
tions. Our approach employs dual attention layers: Node-
Level Attention and Hyperedge-Level Attention. The Node-
Level Attention captures pairwise node interactions, formu-
lated as:

Attention(Q, K, V') = softmax (QKT> V. (8)
) b \/@ )
where ), K, and V' denote the query, key, and value matrices,
and dy, represents the key vector dimensionality. To comple-
ment this, we implement Hyperedge-Level Attention, which
aggregates features across hyperedges to capture higher-order
dependencies:

Hyperedge-Attention(Q., K., V.) = softmax (QEK;—> Ve
Yp g erhey, Ve) = /. e-
©))

Here, Q., K., and V, correspond to hyperedge-specific ma-
trices, with d. as the dimensionality of hyperedge key vec-
tors. This dual-layer design allows us to capture both direct
and collective feature interactions effectively.

Aggregate Hyperedge Embeddings

We represent the collective influence of hyperedges on con-
nected nodes using an iterative embedding update mecha-
nism. Each hyperedge e € E starts with an initial embedding

h§0>, which we iteratively refine based on connected node
features. The embedding update rule is defined as:

h() = 5 (We -Mean ({hg” lve e}) + be) . (10)

Here, W, and b, are trainable parameters, o represents the
activation function, and hq(}l) denotes the node embedding at
layer [. This mechanism ensures that hyperedge embeddings
effectively capture aggregated information from their associ-

ated nodes.

Structural Positional Encodings

We incorporate structural positional encodings to capture
nodes’ structural relationships and positional contexts within
the hypergraph. These encodings preserve structural integrity
and enable the learning of positional dependencies. Each
node’s degree, defined by the number of hyperedges it partic-
ipates in, is encoded as: pi*®® = Linear (log(1 + deg(v)))
where deg( ) represents the degree of node v, and Linear
denotes a linear transformation. We also encode centrality
measures, including betweenness (3(v)) and closeness (y(v))

centrality, as: pi™™™ = Linear (8(v),v(v)) . The final po-

sitional encoding combines degree and centrality encodings:
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Po = pgegree || pf}entrality' (11)
We integrate these encodings into node representations, en-
hancing the Transformer’s ability to leverage structural in-
formation. This approach improves the model’s ability to
capture nuanced feature interactions essential for Alzheimer’s
disease detection.

Classification

The Classification module utilizes transformed node features
from the Hypergraph Transformer to perform binary classi-
fication of AD in speech samples. It converts node embed-
dings, which capture linguistic and acoustic interactions, into
a unified graph-level representation z through an attention-
based readout function:

2= ahy, (12)
veV
where «,, is the attention weight for node v, calculated as:

exp(w 'h,)
Y ouey exp(why)

The attention mechanism ensures that significant nodes have
a larger influence on z. The aggregated representation z is
then processed through a fully connected layer followed by a
sigmoid function to produce the probability y of AD:

13)

Ay =

g=0(Wz+b). (14)

The model is optimized using binary cross-entropy loss. The
pseudocode of SpeechHGT is given in Algorithm 1.

Algorithm 1 SpeechHGT Algorithm

Input: Raw speech audio X
Output: AD prediction ¢
1: procedure SPEECHHGT(X)
2: X p <+ Preprocess(X)
3 X4 < Augment(Xp)
4: T < Transcribe(X 4)
5: L + ExtractLinguisticFeatures(7")
6.
7
8

A «+ ExtractAcousticFeatures(X 4)
V<~ LUA
: & < HypergraphConstruction())
9: H, < InitializeEmbeddings(V, &)
10 Hg + ApplyStructuralEncodings(Hy, &)

11: Initialize Transformer weights 6

12: E < number of training epochs

13: for e <~ 1to E do

14: Hy + NodeLevelAttention(Hg, &)

15: Hpg + HyperedgeLevelAttention(Hy, £)
16: end for

17: Z « AggregateEmbeddings(Hg)

18: J—o(Wp...oc(W1Z+by)---+by,)
19: Compute loss L

20: Update 6 using backpropagation

21: return gy

22: end procedure

Dataset Number of Samples Average Age (Years) Gender (M,F))

ADReSS 156 (78 AD + 78 CN) 66.8 AD, 66.8 CN 44.9% M, 55.1% F
ADReSSo 237 (122 AD +115CN)  69.38 AD, 66.06 CN 34.9% M, 65.1% F
ADReSS-M 271 (132 AD + 139 CN) 69.9 AD, 66.2 CN 33.6% M, 66.4% F

Table 1: Summary of key features and characteristics of datasets.

4 Experiments

4.1 Experimental Settings

Datasets

We evaluate SpeechHGT using three benchmark datasets
from the DementiaBank repository: ADReSS, ADReSSo,
and ADReSS-M. These datasets, derived from the Cookie
Theft Picture Description Task, are designed for AD detec-
tion based on spontaneous speech data. Table 1 summarizes
their key characteristics, with details provided below.

e The ADReSS dataset [Luz et al., 2020] includes 156
samples (78 AD, 78 cognitively normal [CN]) with bal-
anced gender representation (44.9% male, 55.1% fe-
male) and a mean age of 66.8 years. A 70/30 train-test
split is employed, but its small size limits robust training
and increases overfitting risk.

e The ADReSSo dataset [Luz et al., 2021] contains 237
samples (122 AD, 115 CN), with a higher female rep-
resentation (34.9% male, 65.1% female) and greater age
variability. The mean ages are 69.38 years (AD) and
66.06 years (CN). Its moderate size and demographic
diversity enable model evaluation under variable condi-
tions.

e The ADReSS-M dataset [Luz et al., 2024], the largest,
comprises 271 samples (132 AD, 139 CN), with a gen-
der distribution of 33.6% male and 66.4% female. The
dataset uses an 80/20 train-test split, offering stability for
model training while presenting demographic imbalance
challenges.

4.2 Baselines

Challenge Baselines

These correspond to the methodologies established in the
ADReSS, ADReSSo, and ADReSS-M challenges, which
serve as standardized benchmarks for AD classification and
cognitive score prediction.

Conventional Machine Learning Models

We implement Random Forest (RF), Support Vector Ma-
chines (SVM), and AdaBoost, focusing on linguistic features
extracted from speech data. These models benchmark classi-
cal techniques against deep learning methods.

Unimodal Speech Models

These models utilize either linguistic or acoustic features for
Alzheimer’s detection. For instance, [Searle et al., 2020]
employ TF-IDF and DistilBERT embeddings, while [Pérez-
Toro et al., 2021] use X-vectors, prosody, and emotional em-
beddings. We replicate their feature extraction pipelines and
training procedures.
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Methods ADReSS Dataset ADReSSo Dataset ADReSS-M Dataset
Type Models Accuracy  Precision Recall F1-Score  Accuracy Precision Recall Fl1-Score  Accuracy Precision Recall F1-Score

Challenge

Baselines Baselines 62.50 63.50 62.50 62.00 78.87 79.00 79.00 77.78 7391 75.00 68.20 71.40

Conventional RF 61.25 65.66 58.18 57.05 63.86 72.13 50.57 59.46 60.84 67.74 48.28 56.38

ML models SVM 59.64 61.90 59.77 60.82 6539 5874 5301 55.84 58.43 60.71 58.62 60.82

! s AdaBoost 60.42 63.16 53.33 55.81 64.84 59.30 44.25 50.39 61.23 55.65 32.86 41.15

Unimodal Searle et al. 81.00 80.50 83.00 85.00 82.16 84.12 79.84 81.32 77.31 81.82 73.56 76.24

Speech Methods ~ Pérez-Toro et al. 76.20 77.00 75.32 76.15 78.00 88.89 71.43 80.00 75.92 76.94 75.92 75.80

Martinc et al. 77.08 76.50 76.50 77.00 81.67 81.69 81.94 81.69 72.73 73.51 72.73 72.50

Rohanian et al. 79.17 79.37 79.17 79.13 84.00 83.30 84.16 81.43 70.42 71.72 70.42 69.88

Multimodal Zhu et al. 77.08 80.95 70.83 75.56 83.10 83.55 83.02 70.91 75.08 77.27 70.83 7391

Speech Methods ~ Chen et al. 80.42 81.72 80.42 79.88 80.42 81.72 80.42 79.88 79.57 72.73 66.67 69.57

Tamm et al. 74.65 80.56 80.56 76.32 80.06 80.69 78.39 78.72 78.30 75.00 73.42 74.30

Lin et al. 83.15 82.12 76.70 79.27 84.51 83.64 79.92 81.66 83.44 82.67 77.21 79.70

Ours SpeechHGT 86.32 86.14 85.28 86.69 88.18 89.27 88.54 87.86 82.82 83.17 82.41 81.37

Table 2: Performance comparison with different baselines (%).

Multimodal Speech Models

These models integrate linguistic and acoustic features to ad-
dress AD-related speech complexities. The baselines include
[Martinc and Pollak, 20201, [Rohanian et al., 20211, [Zhu et
al., 2021], [Chen et al., 2023], [Tamm et al., 2023], [Lin and
Washington, 2024]. We adhere to the architectures and pa-
rameter configurations described in their experiments.

4.3 Implementation Details

We implement the SpeechHGT framework using the Py-
Torch Geometric library to model multimodal hypergraphs
efficiently. The architecture includes two key modules: mul-
timodal hypergraph construction and the multimodal hyper-
graph transformer. We evaluate the framework on ADReSS,
ADReSSo, and ADReSS-M datasets, training and testing
separately. The training uses the Adam optimizer (learn-
ing rate: 0.001, batch size: 32) with early stopping based
on validation loss (patience: 10 epochs). Hyperparameters,
including attention heads, hidden dimensions, and dropout
rates, are optimized via grid search. All experiments uti-
lize an NVIDIA RTX 4090 GPU, Intel i9 13th Gen CPU,
and 64GB RAM, ensuring scalability and computational effi-
ciency. This implementation achieves robust higher-order in-
teraction modeling, validating our framework’s effectiveness.

4.4 Performance of SpeechHGT

We evaluate SpeechHGT on ADReSS, ADReSSo, and
ADReSS-M datasets using standard binary classification met-
rics. Results (Table 2) confirm high precision and reliability
in AD detection. On ADReSS, the model achieves an accu-
racy of 86.32%, precision of 86.14%, recall of 85.28%, and
Fl1-score of 86.69%. For ADReSSo, it attains an accuracy
of 88.18%, with precision of 89.27% and recall of 88.54%,
leveraging hypergraph attention for linguistic-acoustic de-
pendencies. Despite greater heterogeneity in ADReSS-M,
it maintains an accuracy of 82.82%, demonstrating robust-
ness while identifying areas for improved adaptation to out-
lier speech patterns.

4.5 Comparison with Baseline Methods

The proposed SpeechHGT model demonstrates consistent
superiority across the ADReSS, ADReSSo, and ADReSS-
M datasets compared to four baseline categories: chal-
lenge baselines, conventional machine learning models (e.g.,

RF, SVM, AdaBoost), unimodal speech models, and state-
of-the-art multimodal approaches (Table 2). On average,
SpeechHGT achieves 85.77% accuracy, 86.33% precision,
85.74% recall, and 85.97% F1-score, outperforming the best-
performing model in each baseline group. Compared to chal-
lenge baselines (62.50% accuracy), SpeechHGT improves
performance by 23.27% on average. Against conventional
ML models (best: 65.39% accuracy), it achieves gains of
20.38-24.98%. Unimodal models like [Pérez-Toro et al.,
2021] are outperformed accuracy by 10.18% and F1-score by
7.86%. Finally, SpeechHGT surpasses state-of-the-art multi-
modal baselines, improving F1-score by 4.26% on average.
While SpeechHGT slightly underperforms [Lin and Wash-
ington, 2024] in accuracy on ADReSS-M (-0.62%), it outper-
forms them in F1-score (+1.67%) and demonstrates superior
consistency across all datasets, highlighting its robustness and
generalizability.

4.6 Ablation Study

We conducted an ablation study to evaluate SpeechHGT
framework components by disabling specific elements. First,
we removed hyperedge-level attention, limiting interactions
to pairwise features. Next, hyperedges were eliminated, re-
ducing the graph to pairwise connections. We also assessed
modality-specific contributions by excluding linguistic and
acoustic features individually. The impact of structural posi-
tional encodings (e.g., node degrees, centrality) was also eval-
uvated. Comparisons with a multimodal baseline highlighted
their significance. As shown in Table 3, ADReSS accuracy
dropped from 86.32% to 78.55% without hyperedge-level at-
tention, and further to 76.82% without hyperedges. Remov-
ing linguistic and acoustic features resulted in 81.14% and
80.28% accuracies, respectively, while eliminating structural
positional encoding led to an 82.87% accuracy.

4.7 Analysis of Higher-Order Interactions

We employ the SpeechHGT model to systematically iden-
tify and quantify higher-order interactions indicative of
Alzheimer’s Disease (AD)-related cognitive decline. This
model utilizes a hypergraph attention mechanism, which
effectively prioritizes clinically significant speech features
while concurrently minimizing extraneous noise. Key re-
sults, illustrated in Figure 4, underscore the pivotal role
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Figure 2: The accuracy and F1-score of SpeechHGT w.r.t. different k values on three datasets.
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Figure 3: The accuracy and F1-score of SpeechHGT w.r.t. different [ values on three datasets.

. ADReSS ADReSSo ADReSS-M
Model Variant A A A
ccuracy ccuracy ccuracy

SpeechHGT (Full Model) 86.32 88.18 82.82
w/o Hyperedge Attention 78.55 79.36 76.19
w/o Hyperedges 76.82 77.60 74.54
w/o Linguistic Features 81.14 82.01 78.68
w/o Acoustic Features 80.28 81.13 77.85
w/o Structural Positional Encodings 82.87 83.77 79.51

Table 3: Ablation study on different components of SpeechHGT on
three datasets.

of these interactions, such as semantic coherence and nar-
rative structuring, in AD detection. Identified disruptions
in logical flow and prosodic control align with neurolin-
guistic theories linking conceptual organization and motor-
speech processes to cognitive decline [Rumelhart et al., 1986;
Dell, 1986].

Word Choice, Acoustic Prosody,
and Speech Rate
Sentence Complexity, Intonation Contours,
and Grammar Errors
Word-Finding Difficulty, Acoustic Variability,
and Semantic Coherence
Semantic Coherence, Acoustic Stability,
and Narrative Coherence
Semantic Coherence, Pausing Patterns,
and Speech Rate
Phonological Errors, Intensity Contours,
and Acoustic Variability
Pronoun Usage, Speech Rate,
and Pausing Patterns
Topic Maintenance, Voice Onset Time (VOT),
and Silent Pause Frequency
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Mean Feature Importance

Figure 4: Importance ranking of different higher-order interactions
in AD detection.

4.8 Parameter Analysis

The selection of hyperparameters significantly impacts
SpeechHGT’s ability to model higher-order interactions in

spontaneous speech. We analyze the number of clusters
(k) for hyperedge construction and transformer depth (/) for
hierarchical representation learning. A grid search across
k € [2,10] and I € [2,10] on ADReSS, ADReSSo, and
ADReSS-M datasets identifies dataset-specific optima. Fixed
hyperparameters (learning rate: 10~%, batch size: 16, atten-
tion heads: 8, dropout: 0.3) isolate the effects of k and [. As
illustrated in Figure 2 and Figure 3. Optimal cluster counts
(k*) are k = 3 for ADReSS and ADReSS-M and k = 4 for
ADReSSo, with higher & reducing accuracy due to hyperedge
fragmentation. Transformer depth (I*) varies, favoring [ = 4
for ADReSS, [ = 2 for ADReSSo, and | = 6 for ADReSS-M,
reflecting dataset-size dependencies. These results confirm
SpeechHGT’s sensitivity to parameter tuning across hetero-
geneous datasets.

5 Conclusion

This study presents SpeechHGT, a novel multimodal hyper-
graph transformer designed to address the limitations of ex-
isting fusion-based models in AD detection through sponta-
neous speech analysis. By introducing a hypergraph-based
approach to represent and learn higher-order interactions be-
tween linguistic and acoustic features, SpeechHGT achieved
significant improvements in diagnostic accuracy, F1-score on
the benchmark datasets, outperforming state-of-the-art meth-
ods. Future research will explore the application of Speech-
HGT to other neurodegenerative diseases and datasets, along-
side architectural enhancements to further refine its diag-
nostic capabilities. These findings underscore the potential
of hypergraph-based learning frameworks to advance non-
invasive, speech-based diagnostic tools, providing new in-
sights into the cognitive decline associated with Alzheimer’s
disease.
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