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Abstract
Human action recognition in dark videos is a chal-
lenging task for computer vision due to the low
quality of the videos filmed in the dark. Re-
cent studies focused on applying dark enhance-
ment methods to improve the visibility of the
video. However, such video processing results
in the loss of critical information in the original
(un-enhanced) video. Conversely, traditional two-
stream methods are capable of learning informa-
tion from both original and enhanced videos, but
it can lead to a significant increase in the computa-
tional cost. To address these challenges, we pro-
pose a novel knowledge-distillation-based frame-
work, named Dual-Lightness KnowleDge Distilla-
tion (DL-KDD), which simultaneously resolves the
aforementioned issues by enabling a student model
to obtain both original features and light-enhanced
knowledge without additional complexity, thus im-
proving the performance of the model and avoid-
ing extra computational cost. Through comprehen-
sive evaluations, the proposed DL-KDD, with only
original video required as input during the infer-
ence phase, significantly outperforms state-of-the-
art methods on the widely-used dark video datasets.
The results highlight the excellence of our pro-
posed knowledge-distillation-based framework for
dark video human action recognition.

1 Introduction
Action Recognition is a popular task in computer vision that
plays a key role in various applications, like autonomous ve-
hicles [Xu et al., 2022; Tammvee and Anbarjafari, 2021] and
intelligent surveillance [Kardas and Cicekli, 2017], etc. Ac-
curately recognizing human actions enables these technolo-
gies to function reliably in real-world scenarios. As a result,
increasing research has focused on this task in recent years
[Wasim et al., 2023; Xian et al., 2024b; Zhang et al., 2024;
Xian et al., 2024a]. While action recognition under well-
lighted conditions is relatively well-understood, recognizing
actions in dark environments is more challenging due to the

∗Corresponding author.

Figure 1: Comparison of original and enhanced video frame: (a)
A sampled frame from the ARID dataset. The original frame suf-
fers from low visibility. However, it preserves native features of the
action. (b) Corresponding frame enhanced by ZeroDCE. The main
subject is more precise due to the enhancement, while some blurring
occurs as a side effect. Both frames contain crucial information for
action recognition.

degradation of the information in the videos. However, many
real-world applications, such as nighttime surveillance, rely
on action recognition in low-light conditions. In these sce-
narios, ensuring reliable performance is essential for main-
taining safety and functionality under poor visibility environ-
ments. Therefore, developing an effective dark action recog-
nition method is crucial for enabling action recognition in
real-world applications under low-light conditions.

In response to this challenge, recent studies [Chen et al.,
2021; Singh et al., 2023; Tu et al., 2023] have proposed
various frameworks to achieve better performance with dark
video inputs. Common approaches include utilizing light
enhancement methods such as ZeroDCE [Guo et al., 2020]
and Gamma Intensity Correction(GIC) to improve video fea-
tures and visibility, followed by 3D convolutional networks
like R(2+1)D [Tran et al., 2018] or 3D-ResNext [Hara et al.,
2018] as the backbone classifiers. Two main architectures to
incorporate these components are: 1) directly integrating two
models [Singh et al., 2023; Tu et al., 2023], which takes the
enhanced video frames generated by the enhancement mod-
ule as input features as the backbone classification model. 2)
using a two-stream method [Tran et al., 2018] to improve the
accuracy of action prediction from dark videos.

Recent researches [Singh et al., 2023; Tu et al., 2023] fo-
cused on applying enhancements and taking enhanced video
as model inputs. While such approaches improve the features
contained in videos, the enhancement process often leads to
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losing original content, which contains critical information
for action recognition, such as motion cues and original tex-
ture. On the other hand, the work [Chen et al., 2021] con-
sidering the importance of the original input in dark video
human action recognition applies traditional two-stream [Si-
monyan and Zisserman, 2014] method, which takes both the
original and enhanced video as the inputs to the model. This
approach significantly increases the computational load, es-
pecially when the input data is video-based, making it slower
to perform predictions during inference. In contrast, other
methods using only the original video as input result in a per-
formance gap compared to previously mentioned techniques
since the model will only get less information from the origi-
nal video without enhancement.

In summary, the three main challenges for current research
on dark video human action recognition are: 1) Information
Completeness: Ensuring the model to learn from enhanced
video with essential information from the original video pre-
served. 2) Complexity Tradeoff: Making full use of original
video and considering enhanced features (extracted from en-
hanced video) without additional model complexity for input
features. 3) Consistent Performance: Improving the perfor-
mance even if using only original video without enhancement
as input during the inference phase.

To the best of our knowledge, no existing studies fully
addressed these three challenges concurrently. To address
these challenges, we propose a knowledge-distillation-based
framework, Dual-Lightness KnowleDge Distillation (DL-
KDD) for action recognition in the dark. Without additional
computational cost required, the DL-KDD can achieve robust
accuracy by taking only original video as input during infer-
ence, which simultaneously overcomes the three challenges.
Specifically, a student model is used to exclusively process
the original video, while a teacher model takes the role of
enriching the learning of the student model. It provides aug-
mented features extracted from the enhanced video for the
student to learn from. Knowledge distillation [Hinton et al.,
2015], in this context, serves as an effective method, helping
the model to learn from the information of the teacher model
without increasing the input feature set. Thus, during the in-
ference phase, we only need to use the original video as input
without any additional enhancement or dual input to achieve
state-of-the-art accuracy.

As this is the first work that addresses these three problems
as mentioned above simultaneously, the main contributions of
this work are threefold:

1. We propose a novel knowledge-distillation-based archi-
tecture named Dual-Lightness KnowleDge Distillation
(DL-KDD), specially designed for action recognition in
the dark. By leveraging both the original video and
the enhanced features, our approach facilitates more ef-
fective knowledge transfer. Unlike conventional knowl-
edge distillation which primarily focuses on model com-
pression, our method innovatively distills complemen-
tary knowledge for the student model, leading to a more
robust learning paradigm for action recognition in the
dark.

2. Our model can use only original video input without ad-

ditional features or enhancement during inference, mak-
ing it more efficient in real-world applications. This also
avoids the need for additional decisions regarding the
use of the enhancement module in real-world scenarios.

3. We achieve state-of-the-art performance in dark video
human action recognition across widely-used datasets
with the model complexity maintained. The perfor-
mance improvement demonstrates the robustness of our
proposed framework.

The remaining of this paper is organized as follows. Sec-
tion 2 reviews action recognition methods and knowledge
distillation strategies. Section 3 presents the proposed DL-
KDD framework, including the teacher-student architecture,
dual-lightness learning, and dynamical loss balancing with
alpha decay. Section 4 provides detailed information on the
datasets, implementation, experimental results, and compar-
ison with recent dark action recognition methods. Finally,
Section 5 concludes the paper and discusses future directions.

2 Related Work
2.1 Video-Based Action Recognition
In recent studies, various model architectures have been pro-
posed for human action recognition. The most common
approaches are those based on 3D Convolution Networks
(3D-CNNs) [Tran et al., 2015; Feichtenhofer et al., 2019;
Hara et al., 2018; Hara et al., 2017]. The success of 3D-
ResNet in action recognition demonstrates the effectiveness
of deeper networks in video classification. 3D-ResNext [Hara
et al., 2018] incorporates the concept of cardinality to fur-
ther improve the learning process of the model. The split-
transform-merge method enables the model to learn more ef-
ficiently with the same number of parameters and achieve
high performance in action recognition. More recently, Tran
et al. proposed an architecture known as R(2+1)D [2018],
which differs from typical 3D-CNNs. The R(2+1)D decom-
poses 3D features into 2D and 1D components by employ-
ing both 2D and 1D convolutions for spatial and temporal
features in the video. This method has improved the fea-
ture learning ability of the model and further enhanced the
accuracy of action recognition. Transformer-based meth-
ods have also been explored recently [Bertasius et al., 2021;
Liu et al., 2022; Yang et al., 2022]. These technologies per-
form well under well-lit conditions for action recognition.
However, their performance degrades while facing low-light
videos. In our research, we build on the foundation of these
action recognition models with training strategy specifically
designed for such conditions to enhance the performance in
dark/night conditions.

2.2 Action Recognition in the Dark
To overcome the challenge of performance degradation for
action recognition in dark environments, innovative ap-
proaches have been introduced to address the problem, there
are video-based approaches [Chen et al., 2021; Singh et al.,
2023; Tu et al., 2023], and cross-modality approaches such
as infrared [Jiang et al., 2017; Akula et al., 2018] or skeleton
based [Duan et al., 2022; Yan et al., 2018] data, where most
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of them selected CNN based model as the backbone due to
their effectiveness. Although multi-modality data can pro-
vide diverse types of features, it also complicate data collec-
tion and processing. As a result, recent studies have focused
on applying enhancement methods [Guo et al., 2020] to im-
prove model performance with video-based data. [Chen et
al., 2021] proposed DarkLight, which utilizes both original
and frames enhanced by Gamma Intensity Correction (GIC)
for action prediction. The method represents a significant ad-
vancement in this field, demonstrating the effectiveness of
light enhancement for action recognition in the dark. The
experiments also indicate that the dual-path approach, which
utilizes both original and enhanced frames, captures more
features than methods that estimate optical flow [Carreira
and Zisserman, 2017], thereby achieving better performance.
Building on these advancements, recent studies [Singh et al.,
2023; Tu et al., 2023] have further improved the accuracy
of action prediction by incorporating ZeroDCE [Guo et al.,
2020], a light enhancement module. These studies have in-
tegrated ZeroDCE with backbone classifiers and showed re-
markable performance gains. Consequently, the architecture
that directly utilizes enhanced video as input has emerged as
the most prevalent method in the field.

For the datasets, while there are numerous datasets for
action recognition in normal conditions [Carreira and Zis-
serman, 2017; Soomro et al., 2012; Kuehne et al., 2011;
Goyal et al., 2017; Karpathy et al., 2014], there are less
datasets for action recognition in dark conditions. [Xu et
al., 2021] introduced the ARID dataset, the first dataset for
action recognition in the dark. As the first dataset of the
task, ARID has become a foundational dataset for several
studies in this field [Chen et al., 2021; Singh et al., 2023;
Tu et al., 2023] . To enrich the scene of the data, an ex-
panded version called ARID V1.5 with more data collected
was later released. More recently, [Tu et al., 2023] high-
lighted the problem, which is the scarcity of datasets for this
topic. They gathered video with extremely low light from
multiple sources to propose the Dark-48 dataset, offers a
larger number of action videos and more diverse data classes,
providing a more challenging benchmark for action recogni-
tion in the dark.

Our DL-KDD addresses the issue of overlooking the im-
portance of original video in recent studies, and the increased
computational cost brought by two-stream methods by apply-
ing knowledge distillation with an enhancement module. We
evaluated our model performance with all the three datasets
— ARID [Xu et al., 2021] and its updated version ARID
V1.5, and Dark-48 [Tu et al., 2023] — in dark video human
action recognition to demonstrate the effectiveness of our ap-
proach.

2.3 Knowledge Distillation
Knowledge distillation [Hinton et al., 2015] has been applied
across various sub-tasks within human action recognition, in-
cluding cross-modality knowledge distillation [Thoker and
Gall, 2019; Liu et al., 2021], multi-view knowledge distilla-
tion [Lin and Tseng, 2023], and low-resolution action recog-
nition [Purwanto et al., 2019]. Such methodologies improve
model performance, particularly when limited input is avail-

able during inference. [Lin and Tseng, 2023] proposed a
Multi-view knowledge distillation framework that enables the
model to efficiently learn from a single view while effectively
capturing knowledge from all views. This demonstrates the
capability of knowledge distillation to enable models to learn
and integrate information from diverse sources. For light
enhancement learning in dark environments, several studies
[Park et al., 2022; Li et al., 2023] have also utilized knowl-
edge distillation and achieved notable success in the upstream
enhancement task. Finally, for the specific task of human ac-
tion recognition in the dark, [Jin et al., 2023] highlighted the
critical role of knowledge distillation, due to the high compu-
tational cost of video input. Their experiments showed that
integrating knowledge distillation with optical flow and RGB
features effectively supports model training. In our research,
we aim to explore a novel approach by applying knowledge
distillation to the downstream classification task using the en-
hanced features. This strategy allows the student model to
benefit from light enhancement while only requiring the orig-
inal video input, which optimizes both performance and com-
putational cost.

3 Proposed Methods
3.1 Problem Setup
Action recognition aims to predict action labels from given
input videos. Formally, let D = {(xi, yi)}ni=0 be a video-
based dataset, where xi is a sample input, yi is the corre-
sponding action label, and n is the number of samples. The
goal is to train a model that takes each video inputs xi to pre-
dict its action label ŷi and minimizing the difference between
each yi and ŷi.

In our method using knowledge distillation, we train a
teacher model to transfer its knowledge to a separate student
model. During training phase, we train a teacher model T ,
which consists of an enhancement module Te and a backbone
classifier Tc , and a student model S separately. For teacher
model T , given training samples X = {x1, x2, ..., xj} from
Dtrain as the input of Te, the module would generate en-
hanced samples X ′. After that, X ′ will be served as the input
of Tc, which predict on X ′ to the probability of each class,
denote as ŷt:

ŷt = Tc(x
′) = Tc(Te(x)) = T (x), (1)

The loss function is then applied on ŷt and ground truth y.
For the student model S, given training samples X =

{x1, x2, ..., xj} from Dtrain as the input of S, the model gen-
erates the probability of each class, denoted as ŷs. To train the
student model with both ground truth and the knowledge pro-
vided by the teacher model, the loss function is then applied
on ŷs, ŷt and the ground truth y. Detailed loss function will
be explained in section 3.4. The process of the student model
can be denoted as:

ŷs = S(x). (2)

During the inference phase, only the student model S will be
in use for prediction. The student model takes the video in-
puts xi and generates their prediction labels ŷi, this completes
the action recognition process.
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Figure 2: The overall architecture of DL-KDD. The teacher model includes a light enhancement module and an action classifier. The student
model includes only an action classifier. Knowledge distillation is applied to train the student model from the representation generated by the
teacher model.

3.2 Overview of the Proposed Framework
The overall architecture of the proposed DL-KDD is shown
in Figure 2. It consists of two main components: a teacher
model and a student model. The two models are trained with
a dual-lightness knowledge distillation process, which is the
core novel part of our research. Our framework offers an ef-
fective learning process for the model to learn diverse knowl-
edge efficiently from the input source. Specifically, the com-
ponents and workflow of the entire workflow are as follows.
The teacher model includes a light enhancement module fol-
lowed by an action classifier. The module first enhances the
original video frames to improve visibility in order to extract
features that may be loss in the dark. These enhanced fea-
tures are then fed into the action classifier to generate feature
representations.

After training the teacher model, we train the student
model by taking original video frames without enhancement
as input. This approach allows the student model to learn
directly from the original data, ensuring that the model is not
dependent on enhanced inputs during inference, which results
to a reduction of computational cost. The student model is
an action classifier, and the training of the student model in-
volves a dual learning process:

1. Direct Learning: The student model learns directly from
the ground truth labels.

2. Distillation Learning: The student model is trained using
the outputs from the teacher model as soft targets, which
allows the student model to learn from the feature repre-
sentation that has been extracted from enhanced frames
by teacher model.

Due to the relatively high computational cost of the video in-
put compared to regular image-based input, we train the two
models separately to minimize the computational load during
the training phase. The teacher model’s parameters are frozen
while training the student model. Since the teacher model is
fully trained at this point, it provides high-quality soft targets
for the student model. This ensures the student model can ob-
tain more accurate knowledge and avoids the potential nega-
tive impact of incorrect information during the early stages
of training if the two models are trained simultaneously. This
architecture make use of both enhanced and original video,
which optimizes the model’s performance without additional
computational cost of using both data or processing enhance-
ment during inference.

3.3 Feature Enhancement and Backbone Classifier
In this section, we will discuss the selection of the enhance-
ment module and backbone classifier, which are foundational
to our proposed framework. Our architecture can be gen-
eralized across different enhancement methods and back-
bone classifiers. However, a suitable choice of these features
can further amplify the benefits brought by our framework.
Therefore, we selected these components based on the fol-
lowing reasons:

Light Enhancement Module. For the light enhancement
module, we selected ZeroDCE [Guo et al., 2020] to generate
enhanced video frames. Compared to other light enhance-
ment methods [Fu et al., 2016; Guo et al., 2016] , ZeroDCE
performs well in enhancing low-light samples by dynamically
adjusting parameters with different inputs. It preserves the
relationships between pixels in the frames, which has proven
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effective in supporting action classification in dark video hu-
man action recognition. This functionality makes it an ideal
choice for the enhancement module in the teacher model of
our framework.
Action Classifier. Inspired by [Chen et al., 2021; Singh et
al., 2023], we have adopted the R(2+1)D [Tran et al., 2018]
combined with a self-attention block as our action classi-
fier. The R(2+1)D can effectively capture critical informa-
tion from the input video by decomposing the input into 2D
and 1D components, which form spatial and temporal infor-
mation in the video. The self-attention block further enables
the model to recognize long-term dependencies between the
extracted features, allowing the model to interpret complex
activities in the videos. In our framework, we integrate the
enhancement module and classifier to form the teacher model
and a separated classifier as the student model to build a
Knowledge Distillation framework. Detailed discussions on
the KD learning process will be presented in the following
section.

3.4 Dual-Lightness Knowledge Learning
Enhanced Frame Extraction. The teacher model’s train-
ing begins with enhancing the original video frames. The
enhancement module transforms the input X into X’. This
enhancement improves the feature visibility and information
for action recognition in dark videos. After enhancement, the
action classifier processed the enhanced frames into a set of
feature representations ŷt that capture the crucial information
of the action label. A standard Cross-Entropy Loss is applied
here for training the teacher model:

Lteacher(y, ŷ
t) = −

C∑
i=1

yi log(ŷ
t
i), (3)

where y is the class label of the input video, and ŷt is the
feature representation extracted by the teacher model, and C
is the number of class labels.
Original Representation Learning. Unlike the teacher
model, the student model directly takes the original video
frames X as input. The action classifier is the same as that of
the teacher models, but there is no enhancement module for
the student model. The inputs are processed by the student
model to generate the results ŷs, and a cross-entropy loss is
applied here to align the student model’s prediction with the
ground truth:

LAR(y, ŷs) = −
C∑
i=1

yi log(ŷ
s
i ). (4)

Dual Knowledge Learning. In addition to learning from
the ground truth, a knowledge distillation process is applied
to the student model, where it learns from the feature repre-
sentation ŷt generated by the teacher model. This is achieved
by minimizing the Kullback-Leibler divergence between the
student model’s output ŷs and the soft targets provided by the
teacher model, which indirectly transfers the enhanced fea-
tures knowledge from the teacher to the student model:

LKD(ŷ
t, ŷs, τ) =

C∑
i=1

ŷti(τ) log

(
ŷti(τ)

ŷsi (τ)

)
. (5)

In this case, τ served as the temperature used to adjust the
smoothness of the softmax function. The temperature param-
eter helps soften the probability distribution of the model out-
put, which makes it more suitable for transferring the light-
enhanced knowledge from the teacher model to the student
model. Specifically, the logits are scaled by τ before apply-
ing the softmax function. The use of τ can be formalized as:

ŷi(τ) =
exp(zi/τ)∑C
j=1 exp(zj/τ)

, (6)

where zi represent the logits of the models.
The overall loss function for training the student model is

a combination of these two loss functions — Cross-Entropy
loss for learning from the ground truth and KL divergence for
knowledge transfer from the teacher model, with a hyperpa-
rameter α to control the weight of the knowledge distillation
loss. The total loss function for the student model is denoted
as:

Lstudent = LAR + αLKD, (7)
Alpha Decay. Unlike conventional knowledge distillation
frameworks where the student model remains inferior to the
teacher, our student model surpasses the teacher model af-
ter integrating dual-lightness knowledge. As a result, over-
relying on the teacher’s distribution might limit the student’s
potential during later training stages. To address this, we in-
troduce an alpha decay mechanism that dynamically reduces
the importance of the knowledge distillation loss:

αt = α0 · γt (8)

where α0 is the initial weight, γ is the decay rate, and t de-
notes the epoch. This adjustment ensures a smooth transi-
tion from teacher-guided learning to independent optimiza-
tion by ground truth, which allows the student model to adapt
its learning focus at different training periods.

4 Experimental Evaluations
4.1 Experiment Settings
Dataset. We evaluated our method on three datasets:
ARID [Xu et al., 2021] and its updated version ARID V1.5,
and Dark-48 [Tu et al., 2023]. These datasets provide var-
ious scenes and lightness conditions to validate the gener-
alizability of the model. For the experiments of all three
datasets used in this work, the training and testing set-
tings are the same as the original work [Xu et al., 2021;
Tu et al., 2023]. The splits and folds are fixed to ensure fair
comparisons.

The ARID [Xu et al., 2021] dataset has been a primary
benchmark of dark video human action recognition. It con-
tains over 3780 video clips collected with 11 action classes,
and the training and testing set ratio is 7:3. The videos are
collected in 9 outdoor and 9 indoor scenes.

To further enhance the complexity of the dataset, ARID
V1.5 was introduced. The class number remains the same, but
the video count is expanded to 6207, and the videos are col-
lected from 24 scenes, with 12 indoor and 12 outdoor scenes.
There are more than 320 clips for each action class in this
version.
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Model Method Input Feature Top-1 Accuracy (%)
Training Inference

I3D-RGB - Original Original 68.29
I3D Two-stream Two-Stream Original + Optical Flow Original + Optical Flow 72.78
3D-ResNet-101 - Original Original 71.57
3D-ResNext-101 - Original Original 74.73
Video-Swin-B - Original Original 89.79
DarkLight Two-Stream Original + GIC Original + GIC 94.04
DTCM - ZeroDCE ZeroDCE 96.36
R(2+1)D-GCN+BERT - ZeroDCE ZeroDCE 96.60

DL-KDD (Ours) KD Original + ZeroDCE Original 97.64

Table 1: Comparison with state-of-the-art (SOTA) methods on the ARID dataset with detailed method descriptions. The ‘Method‘ column
specifies the approach used to integrate multiple features, where a dash (-) indicates models that do not utilize multiple features. The ‘Input
Feature‘ section details the data used for training and inference, specifying any enhancement techniques. Finally, the ‘Top-1 Accuracy‘
column presents the classification performance of each model.

Model Top-1 Accuracy (%)
I3D-RGB 48.75
I3D Two-stream 51.24
DarkLight 84.13
R(2+1)D-GCN+BERT 86.93

DL-KDD (Ours) 88.12

Table 2: Comparison with state-of-the-art (SOTA) methods on the
ARID V1.5 dataset. The ‘Top-1 Accuracy‘ column presents the clas-
sification performance of each model.

The Dark-48 [Tu et al., 2023] dataset comprises 8815 dark
videos from more than 40 scenes, featuring 48 classes with
over 100 videos each. The dataset is split into training and
testing sets in a ratio of 8:2.
Implementation Details. This work is implemented with
PyTorch [Paszke et al., 2019]. Inspired by [Chen et al., 2021]
, we selected R(2+1)D [Tran et al., 2018] followed by BERT
[Devlin et al., 2018] in replace of the conventional temporal
global average pooling layer as our backbone classifier. The
backbone classifier was pretrained on IG65M [Ghadiyaram
et al., 2019] . For the enhancement module of the teacher
model, we selected ZeroDCE [Guo et al., 2020] with original
pretrained weight. The input sequences were resized to 112
x 112 pixels, and the final input shape was 3 x 64 x 112 x
112 with batch size 8. We trained the teacher and the student
model with AdamW [Loshchilov and Hutter, 2017] optimizer
with a 0.0001 learning rate and a 0.00001 decay rate. The
parameter α for the loss function was set to 1.5, the alpha
decay rate γ is set to 0.95, and the temperature τ was set
to 5.0. We trained 30 epochs for the ARID and ARID V1.5
datasets, and for Dark-48, we trained 50 epochs to optimize
the parameters of the model. The experiments are conducted
on a server with a Tesla V100 GPU.
Metrics. In this task, we recorded both top-1 and top-5
accuracy to evaluate the performance of the model. Since the
ARID and ARID V1.5 [Xu et al., 2021] datasets contain only
11 classes and most previous work has almost reached 100%

Model Top-1 (%) Top-5 (%)
I3D-RGB 32.25 65.35
3D-ResNext-101 37.23 68.86
DarkLight 42.27 70.47
DTCM 46.68 75.92

DL-KDD (Ours) 52.26 80.18

Table 3: Comparison with state-of-the-art (SOTA) models on the
Dark-48 dataset. The ‘Top-1 Accuracy‘ and ‘Top-5 Accuracy‘
columns represent the classification performance of each model.

top-5 accuracy, the comparison of this metric becomes less
meaningful in these datasets. To provide more insight within
the limited space, we primarily present the top-1 accuracy for
ARID and ARID V1.5.

4.2 Comparison with State-of-the-Art Methods
We conduct extensive experiments to compare our work with
the recent state-of-the-art methods in dark video human ac-
tion recognition, including DarkLight [Chen et al., 2021],
DTCM [Tu et al., 2023], and R(2+1)D-GCN+BERT [Singh et
al., 2023] across the ARID, ARID V1.5, and Dark48 datasets.
Partial results from previous works are collected from [Chen
et al., 2021; Singh et al., 2023; Tu et al., 2023].

Table 1 presents detailed results of the ARID Dataset. De-
spite high baseline performances on the dataset, our proposed
method outperforms existing methods and reached 97.64%
accuracy, achieving the State-of-the-Art result in the dataset.

Table 2 presents detailed results for the ARID V1.5 dataset,
which is a more complicated version of the ARID dataset.
Our model obtains the best performance in this dataset with
an accuracy of 88.12%, which demonstrates the robustness of
our model in diverse data conditions.

Table 3 indicates that our model reached a Top-1 accuracy
of 52.26% on the Dark-48 dataset. This demonstrates a sig-
nificant improvement over the best previously reported result
on Dark-48 by 5.58%. Compared to the ARID datasets, the
Dark-48 dataset is more complex in the video scene and has a

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Model Top-1 Accuracy (%)
Backbone Only 92.97

DL-KDD-Teacher 95.73
DL-KDD-Student (Ours) 97.64

Table 4: Comparative performance of DL-KDD on the ARID
dataset. The student and backbone models share the same archi-
tecture, while our method shows a 4.67% improvement.

more significant number of action classes. The performance
improvement shows the effectiveness of our proposed strat-
egy to learn features more efficiently in complex scenarios.

These results illustrate that our proposed knowledge dis-
tillation framework successfully enhances the information
learned by the model, which enables our model to achieve
best performance while using only the original video input
during testing.

4.3 Ablation Study
In this section, we focus on an ablative comparison on the
ARID dataset to demonstrate the effectiveness of our pro-
posed framework. To illustrate the efficacy of our training
method, we present results comparing the backbone model
trained with and without our method. Additionally, compar-
isons between the teacher and student models are displayed to
show that the student network can achieve better results even
without enhancement after the knowledge distillation train-
ing. Table 4 provides a detailed display of the final perfor-
mance of the teacher, student model of DL-KDD, and the
performance of similar architecture without knowledge dis-
tillation training method. To assess the computational effi-
ciency of our method, Table 5 reports the computational cost
of different training methods using the same backbone model.
Effectiveness of Knowledge Distillation. As shown in Ta-
ble 4, our knowledge distillation training method improved
the performance of the same architecture by 4.67%, which
shows the effectiveness of learning from the knowledge dis-
tilled from the enhanced features by the teacher model. With
the additional knowledge provided by the teacher model, the
student model can take advantage of enhanced representation
even without enhanced feature inputs during testing. Fur-
thermore, the comparison between the student and teacher
models shows that even though the student model uses a sim-
pler architecture, it achieves an improvement of 1.91% over
the teacher model, which indicates that the original video
also contains critical information that improves model perfor-
mance. Our knowledge distillation approach does not simply
align student model’s performance to the teacher model. In-
stead, it focuses on integrating the features extracted from the
teacher model into the student model. Besides the knowl-
edge provided by the teacher model, learning from original
inputs allows the student model to access additional informa-
tion from enhanced features, resulting in better performance
than the teacher model.
Computational Cost Comparison. Table 5 presents a
comparison of computational cost among our method,
enhancement-based method (with ZeroDCE), and traditional

Method GPU Memory (MB) GFLOPs
Enhancement-based 2133 310.28
Two-stream 1599 674.84

DL-KDD (Ours) 1597 305.51

Table 5: Computational cost comparison of different methods in
terms of GPU memory and GFLOPs during inference. DL-KDD
achieves the lowest computational cost.

two-stream methods (with rule-based enhancement). To en-
sure a fair comparison, all methods share the same backbone
model architecture. Compared to enhancement-based meth-
ods, which require frame-wise enhancement due to the video
input, our approach eliminates the need for an enhancement
module during inference, leading to a 25% reduction in GPU
memory requirement. On the other hand, in comparison to
traditional two-stream methods, our method shows advantage
in its computational efficiency. Although two-stream meth-
ods leverage weight-sharing to maintain the model size, they
have to process the input video twice for each stream, result-
ing in doubled GFLOPs compared to our method. These re-
sults demonstrate that our method incorporating knowledge
distillation optimizes both memory usage and computational
efficiency, making it more suitable for real-world applica-
tions.

5 Conclusion
In this work, we propose a novel knowledge-distillation-
based framework named DL-KDD for dark video human
action recognition, emphasizing the importance of utilizing
both the original video and the enhanced features to pre-
vent the loss of original information. Moreover, the proposed
framework avoids the additional cost brought by two-stream
methods. We effectively distill the knowledge of light en-
hancement to the student model, enabling the student model
to use only original videos as input during inference and
achieve better results. The excellent performance on the
ARID, ARID V1.5 and Dark-48 datasets proves the effec-
tiveness of our method.

One limitation of the proposed architecture is that the
teacher-student framework requires training an additional
model compared to regular single-model approaches. How-
ever, this is a necessary trade-off that brought the advantage
of higher performance with efficient use of resources during
inference, which is crucial for real-world applications.

For future work, the proposed DL-KDD can be extended
with a more complex knowledge distillation process or pro-
vide diverse features such as cross-modality data to further
improve performance. Additionally, this work is flexible for
modifications as a more lightweight architecture for various
real-time applications.

Acknowledgements
This research was supported in part by National Science and
Technology Council Taiwan under grant no. NSTC 113-
2223-E-A49-008 and 113-2634-F-A49-005.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Akula et al., 2018] Aparna Akula, Anuj K Shah, and Ripul

Ghosh. Deep learning approach for human action recog-
nition in infrared images. Cognitive Systems Research,
50:146–154, 2018.

[Bertasius et al., 2021] Gedas Bertasius, Heng Wang, and
Lorenzo Torresani. Is space-time attention all you need for
video understanding? In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 813–824. PMLR, 2021.

[Carreira and Zisserman, 2017] J. Carreira and A. Zisser-
man. Quo vadis, action recognition? a new model
and the kinetics dataset. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4724–4733, 2017.

[Chen et al., 2021] Rui Chen, Jiajun Chen, Zixi Liang,
Huaien Gao, and Shan Lin. Darklight networks for action
recognition in the dark. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 846–852, 2021.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Duan et al., 2022] Haodong Duan, Yue Zhao, Kai Chen,
Dahua Lin, and Bo Dai. Revisiting skeleton-based action
recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2969–2978, June 2022.

[Feichtenhofer et al., 2019] Christoph Feichtenhofer, Haoqi
Fan, Jitendra Malik, and Kaiming He. Slowfast networks
for video recognition. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2019.

[Fu et al., 2016] Xueyang Fu, Delu Zeng, Yue Huang, Xiao-
Ping Zhang, and Xinghao Ding. A weighted variational
model for simultaneous reflectance and illumination esti-
mation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2782–2790,
2016.

[Ghadiyaram et al., 2019] Deepti Ghadiyaram, Du Tran, and
Dhruv Mahajan. Large-scale weakly-supervised pre-
training for video action recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12046–12055, 2019.

[Goyal et al., 2017] Raghav Goyal, Samira Ebrahimi Kahou,
Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter
Yianilos, Moritz Mueller-Freitag, et al. The” something
something” video database for learning and evaluating vi-
sual common sense. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5842–5850,
2017.

[Guo et al., 2016] Xiaojie Guo, Yu Li, and Haibin Ling.
Lime: Low-light image enhancement via illumination

map estimation. IEEE Transactions on image processing,
26(2):982–993, 2016.

[Guo et al., 2020] Chunle Guo, Chongyi Li, Jichang Guo,
Chen Change Loy, Junhui Hou, Sam Kwong, and Runmin
Cong. Zero-reference deep curve estimation for low-light
image enhancement. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1777–1786, 2020.

[Hara et al., 2017] Kensho Hara, Hirokatsu Kataoka, and
Yutaka Satoh. Learning spatio-temporal features with 3d
residual networks for action recognition. In Proceedings
of the IEEE international conference on computer vision
workshops, pages 3154–3160, 2017.

[Hara et al., 2018] K. Hara, H. Kataoka, and Y. Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet? In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6546–
6555, 2018.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Jiang et al., 2017] Zhuolin Jiang, Viktor Rozgic, and Sancar
Adali. Learning spatiotemporal features for infrared action
recognition with 3d convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, July 2017.

[Jin et al., 2023] Ruibing Jin, Guosheng Lin, Min Wu, Jie
Lin, Zhengguo Li, Xiaoli Li, and Zhenghua Chen. Un-
limited knowledge distillation for action recognition in the
dark. arXiv preprint arXiv:2308.09327, 2023.

[Kardas and Cicekli, 2017] Karani Kardas and Nihan Kesim
Cicekli. Svas: Surveillance video analysis system. Expert
Systems with Applications, 89:343–361, 2017.

[Karpathy et al., 2014] Andrej Karpathy, George Toderici,
Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolu-
tional neural networks. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[Kuehne et al., 2011] Hildegard Kuehne, Hueihan Jhuang,
Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre.
Hmdb: a large video database for human motion recogni-
tion. In 2011 International conference on computer vision,
pages 2556–2563. IEEE, 2011.

[Li et al., 2023] Ziwen Li, Yuehuan Wang, and Jinpu Zhang.
Low-light image enhancement with knowledge distilla-
tion. Neurocomputing, 518:332–343, 2023.

[Lin and Tseng, 2023] Ying-Chen Lin and Vincent S. Tseng.
Multi-view knowledge distillation transformer for human
action recognition. arXiv preprint arXiv:2303.14358,
2023.

[Liu et al., 2021] Yang Liu, Keze Wang, Guanbin Li, and
Liang Lin. Semantics-aware adaptive knowledge distilla-
tion for sensor-to-vision action recognition. IEEE Trans-
actions on Image Processing, 30:5573–5588, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Liu et al., 2022] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3202–3211, 2022.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[Park et al., 2022] Jeong-Hyeok Park, Tae-Hyeon Kim, and
Jong-Ok Kim. Dual-teacher distillation for low-light im-
age enhancement. In 2022 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Con-
ference (APSIPA ASC), pages 1351–1355, 2022.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[Purwanto et al., 2019] Didik Purwanto, Rizard Renanda
Adhi Pramono, Yie-Tarng Chen, and Wen-Hsien Fang.
Extreme low resolution action recognition with spatial-
temporal multi-head self-attention and knowledge distilla-
tion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV) Workshops, 2019.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Two-stream convolutional networks for
action recognition in videos. Advances in neural informa-
tion processing systems, 27, 2014.

[Singh et al., 2023] Himanshu Singh, Saurabh Suman,
Badri Narayan Subudhi, Vinit Jakhetiya, and Ashish
Ghosh. Action recognition in dark videos using
spatio-temporal features and bidirectional encoder rep-
resentations from transformers. IEEE Transactions on
Artificial Intelligence, 4(6):1461–1471, 2023.

[Soomro et al., 2012] Khurram Soomro, Amir Roshan Za-
mir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[Tammvee and Anbarjafari, 2021] Martin Tammvee and
Gholamreza Anbarjafari. Human activity recognition-
based path planning for autonomous vehicles. Signal,
Image and Video Processing, 15, 2021.

[Thoker and Gall, 2019] Fida Mohammad Thoker and Juer-
gen Gall. Cross-modal knowledge distillation for action
recognition. In 2019 IEEE International Conference on
Image Processing (ICIP), pages 6–10, 2019.

[Tran et al., 2015] Du Tran, Lubomir Bourdev, Rob Fergus,
Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), December 2015.

[Tran et al., 2018] D. Tran, H. Wang, L. Torresani, J. Ray,
Y. LeCun, and M. Paluri. A closer look at spatiotemporal
convolutions for action recognition. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6450–6459, 2018.

[Tu et al., 2023] Zhigang Tu, Yuanzhong Liu, Yan Zhang,
Qizi Mu, and Junsong Yuan. Dtcm: Joint optimization of
dark enhancement and action recognition in videos. IEEE
transactions on image processing : a publication of the
IEEE Signal Processing Society, PP, 2023.

[Wasim et al., 2023] Syed Talal Wasim, Muhammad Uzair
Khattak, Muzammal Naseer, Salman Khan, Mubarak
Shah, and Fahad Shahbaz Khan. Video-focalnets: Spatio-
temporal focal modulation for video action recognition.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 13778–13789, October
2023.

[Xian et al., 2024a] Ruiqi Xian, Xijun Wang, Divya
Kothandaraman, and Dinesh Manocha. Pmi sampler:
Patch similarity guided frame selection for aerial action
recognition. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV),
pages 6982–6991, January 2024.

[Xian et al., 2024b] Ruiqi Xian, Xijun Wang, and Dinesh
Manocha. Mitfas: Mutual information based temporal fea-
ture alignment and sampling for aerial video action recog-
nition. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV), pages
6625–6634, January 2024.

[Xu et al., 2021] Yuecong Xu, Jianfei Yang, Haozhi Cao,
Kezhi Mao, Jianxiong Yin, and Simon See. Arid: A
new dataset for recognizing action in the dark. In Deep
Learning for Human Activity Recognition: Second Inter-
national Workshop, DL-HAR 2020, Held in Conjunction
with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021,
Proceedings 2, pages 70–84. Springer, 2021.

[Xu et al., 2022] Feiyi Xu, Feng Xu, Jiucheng Xie, Chi-
Man Pun, Huimin Lu, and Hao Gao. Action recognition
framework in traffic scene for autonomous driving system.
IEEE Transactions on Intelligent Transportation Systems,
23(11):22301–22311, 2022.

[Yan et al., 2018] Sijie Yan, Yuanjun Xiong, and Dahua
Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings of the
AAAI conference on artificial intelligence, volume 32,
2018.

[Yang et al., 2022] Jiewen Yang, Xingbo Dong, Liujun Liu,
Chao Zhang, Jiajun Shen, and Dahai Yu. Recurring the
transformer for video action recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14063–14073, 2022.

[Zhang et al., 2024] Haosong Zhang, Mei Chee Leong,
Liyuan Li, and Weisi Lin. Pgvt: Pose-guided video trans-
former for fine-grained action recognition. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pages 6645–6656, January
2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


