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Abstract
Stellar flare events are critical observational sam-
ples for astronomical research; however, recorded
flare events remain limited. Stellar flare forecast-
ing can provide additional flare event samples to
support research efforts. Despite this potential, no
specialized models for stellar flare forecasting have
been proposed to date. In this paper, we present ex-
tensive experimental evidence demonstrating that
both stellar physical properties and historical flare
records are valuable inputs for flare forecasting
tasks. We then introduce FLARE (Forecasting
Light-curve-based Astronomical Records via fea-
tures Ensemble), the first-of-its-kind large model
specifically designed for stellar flare forecasting.
FLARE integrates stellar physical properties and
historical flare records through a novel Soft Prompt
Module and Residual Record Fusion Module. Ex-
periments on the Kepler light curve dataset demon-
strate that FLARE achieves superior performance
compared to other methods across all evaluation
metrics. Finally, we validate the forecast capability
of our model through a comprehensive case study.

1 Introduction
Stellar flares are defined as the rapid release of magnetic field
energy stored in a star’s atmosphere, as illustrated in Figure 1.
These phenomena are crucial for understanding stellar struc-
ture, evolution, and magnetic activity, as well as exploring
potentially habitable exoplanets and extraterrestrial life [Yong
and Lin, 2024]. Flare records are currently obtained through
continuous scanning of stars using survey telescopes in con-
junction with manual analysis. Despite these efforts, the
quantity of observed flare samples remains limited, rendering
them inadequate for comprehensive research needs. Conse-
quently, forecasting stellar flare timing holds significant im-
portance for astronomical studies. However, to date, there has
been no published research addressing this area.

(a) 2003-09-04

Non-Flare

(b) 2003-10-28

Flare

(c) 2003-11-24

Non-Flare

Figure 1: Star observations in multiple Extreme Ultraviolet (EUV)
wavelengths before, during, and after a stellar flare.

Solar flare prediction has garnered significant research at-
tention [Deshmukh et al., 2022; Abduallah et al., 2023;
Wen et al., 2023], but stellar flare forecasting presents dis-
tinct challenges compared to solar flare prediction. Lever-
aging the solar proximity, researchers can easily obtain solar
magnetograms and magnetic field parameters, facilitating ac-
curate solar flare predictions. In contrast, stellar flare fore-
casting predominantly relies on light curves. As depicted in
Figure 2, a light curve represents the chronological variation
of a stellar luminosity, measured in flux using Julian Date as
the time axis. This figure illustrates that light curves often
have missing data points. Additionally, two key characteris-
tics emerge from the analysis: (1) A single star exhibits vary-
ing trend patterns across different time periods (refer to Fig-
ure 2(b)). (2) The variation trends differ significantly among
different stars (see Figure 2(c)). These complex variations
in light curves pose challenges for flare forecasting. Observ-
ably, a flare event is characterized by a rapid flux increase
followed by a gradual decline, resulting in sharp short-term
flux changes. Conversely, non-flare regions do not display
such characteristics (as shown in Figure 2(a)).

The stellar flare forecasting task focuses on using light
curves to predict whether a specified star will experience a
flare within the next 24 hours. This can be viewed as a multi-
task framework that combines both forecasting and classifi-
cation objectives. Deep learning methods [Zeng et al., 2023;
Zhou et al., 2021] have been widely applied to time series
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Figure 2: Light curves of several stars: (a) The flare region exhibits
greater intensity in flux variations compared to non-flare regions. (b)
The same star at different times displays distinct fluctuation patterns
in its light curve. (c) Different stars during the same observation
period display notable variations in their light curves, highlighting
diversity across stellar systems.

analysis with promising results. However, these methods still
do not demonstrate superior feature extraction capabilities
compared to pre-trained large multi-modal models in stellar
flare forecasting. The intrinsic characteristics of stars, their
varying evolutionary stages, and external factors such as other
celestial bodies and interstellar dust can lead to diverse pat-
terns in light curves. These external influences make achiev-
ing high accuracy in stellar flare forecasting using only light
curves particularly challenging. As a result, additional data
sources are required to improve the reliability of predictions.

In this paper, we introduce a novel task of forecasting
stellar flare events. To address this challenge, we propose
the FLARE framework (Forecasting Light-curve-based As-
tronomical Records via feature Ensemble). Through em-
pirical analysis, we observe that stellar flares exhibit strong
correlations with various stellar physical properties. Conse-
quently, FLARE incorporates these stellar features as auxil-
iary inputs to enhance light curve feature extraction and im-
prove forecasting performance. Furthermore, our investiga-
tion reveals that frequent historical flare events are positively
correlated with the likelihood of future flares. To leverage
this temporal dependency, FLARE integrates historical flare
records as additional auxiliary features for enhanced predic-
tion accuracy. We also introduce two novel components: the
Soft Prompt Module, which combines stellar physical feature
names and values to facilitate star-specific feature detection,
and the Residual Record Fusion Module, designed to inte-
grate light curves with historical flare records for improved
model robustness. Finally, we employ a large multi-modal
model fine-tuned using LoRA [Hu et al., 2022] to extract fea-
tures from the outputs of these modules, thereby enabling ac-
curate stellar flare forecasting.

The main contributions are as follows: (1) We present the
first attempt at developing a method for stellar flare fore-
casting, addressing a previously unexplored challenge in as-
trophysics. (2) Through rigorous experimental analysis, we
demonstrate that both stellar physical properties and histor-

ical flare records play significant roles in flare forecasting.
Then, we propose a large-scale model called FLARE, which
has shown remarkable effectiveness in enhancing accuracy.
(3) Extensive experimental results validate the superior per-
formance of FLARE compared to other approaches.

2 Literature Review
2.1 Time Series Representation Learning
Inspired by the efficient performance of autoregressive mod-
els, MLPs such as DLinear [Zeng et al., 2023] demonstrate
excellent performance. However, these methods often re-
quire additional design to capture time-wise dependency ef-
fectively. RNNs [Lai et al., 2018] are naturally suitable
for modeling sequential data, while they suffer from issues
such as gradient vanishing and struggle to learn relation-
ships between multivariate variables. CNNs, unlike RNNs,
are less prone to gradient vanishing and excel at capturing
the local patterns in time series. However, they often re-
quire stacking multiple convolutional layers to learn global
futures, as seen in TCN [Bai et al., 2018], which results in
a significant training time cost. GNNs [Wu et al., 2020;
Li et al., 2018] abstract variables as nodes and establish
edges between multivariate variables, learning spatial depen-
dencies through GCN [Kipf and Welling, 2017]. However,
this approach relies on message passing to capture global fea-
tures, and shows less scalable than Transformers. Leveraging
the self-attention mechanism, Transformers are particularly
adept at learning long-term temporal dependencies and com-
plex multivariate correlations. Point-wise methods [Woo et
al., 2022] learn correlations between time steps but become
computationally expensive for long sequences. Series-wise
methods [Liu et al., 2024b] pay attention to model multi-
variate dependencies by tokenization, but struggle with com-
plex temporal patterns. Patch-wise methods [Nie et al., 2023;
Zhang and Yan, 2023] adjust patch sizes for flexibility across
different time series, making them more adaptable to different
types of time series data. These methods have demonstrated
certain advantages in specific tasks, and our work also adopts
a patch-based approach in light curve processing.

2.2 Time Series Analysis based on PLMs
Among time series large models, aside from MO-
MENT [Goswami et al., 2024] and Chronos [Ansari et al.,
2024] which are trained from scratch using big time se-
ries data, most approaches are adaptations of existing PLMs.
These approaches can be sorted into three types:

Fine-tuning. Studies like UniTime [Liu et al., 2024a]
and OFA [Zhou et al., 2023] unfreeze a portion of parame-
ters, while others, including TEMPO [Cao et al., 2024] and
LLM4TS [Chang et al., 2024] leverage Parameter-Efficient
Fine-Tuning (PEFT) methods, such as LoRA [Hu et al.,
2022], adapt to new data by increasing trainable parameters
without disrupting the existing structure of the large model.

Alignment. PLMs trained on text data need to be aligned
with time series data in the same data space. Based on the
object of modification, these approaches can be divided into
two categories. The first approach fine-tunes PLMs with
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time series data to map the model parameters into time se-
ries data space, as seen in LLM4TS [Chang et al., 2024]. The
other approach maps the time series vector into text space,
as demonstrated in TIME-LLM [Jin et al., 2024], which em-
ploys multi-head attention mechanisms to achieve mapping.

Prompt-learning. Studies such as UniTime [Liu et al.,
2024a] incorporate text prompts, while TEST [Sun et al.,
2024] employs the combination of trainable vectors and tex-
tual token embeddings to improve performance.

Although these methods generally perform well on specific
tasks, they struggle to simultaneously handle multi-task time
series analysis and text feature extraction.

3 Preliminaries
3.1 Problem Definition
The stellar flare forecasting task involves predicting whether
a flare will occur in the future for a given star based on its
light curve observations, physical properties, and historical
flare records. For a star i, its physical properties are repre-
sented as Pi = {(kim, vim)|m = 0, 1, . . . ,M}, where kim and
vim are the name and the value of the m-th physical prop-
erty, respectively. Here, kim is a text, while vim ∈ R ∪ {∅},
where ∅ indicates a missing value. The observed flux for
star i at timestamp t is denoted as xi

t ∈ R ∪ {∅}. The his-
torical flare records are represented by Ri = {(tisn , t

i
en)|n =

0, 1, . . . , N}, where tisn and tien denote the start and end times
of the n-th flare, respectively. A binary indicator variable is
defined such that yit = 1 if a flare occurs at timestamp t,
i.e., if there exists a time t satisfying tisn < t < tien ; oth-
erwise, yit = 0. Additionally, yi(t0,t1) = 1 indicates that at
least one flare occurred within the interval (t0, t1). Let K
and H denote the observation window length and forecast
horizon, respectively. The observed light curve is represented
as x⃗i

t = [xi
t−K , . . . , xi

t−1]
⊤ ∈ RK , and the historical flare

records are denoted by y⃗it = [yit−K , . . . , yit−1]
⊤ ∈ RK . The

forecast probability of a flare occurring between timestamps
t and t′ = t + H − 1 is denoted by ŷi(t,t′) ∈ [0, 1]. The
forecasting task can be formalized as follows:

ŷi(t,t′) = F (x⃗i
t; y⃗

i
t;Pi; Φ), (1)

where Φ represents the model parameters of the model F .

3.2 Experimental Observations
In Table 1, we present an experimental analysis to investigate
how stellar physical properties and historical flare records in-
fluence the accuracy of flare forecasting using Kepler dataset.

Since stellar physical properties exhibit distinct character-
istics compared to light curves, we first map these property
values into a compatible dimensional space before concate-
nating them with the light curve data to derive forecast prob-
abilities. For historical flare records, which share similar tem-
poral characteristics with light curves, y⃗it and x⃗i

t are concate-
nated along the flux dimension prior to model input.

The experimental results reveal that both stellar physical
properties and historical flare records contribute meaning-
fully to forecasting performance. Furthermore, their com-
bined use yields superior predictive accuracy compared to us-
ing either type of data alone. Interestingly, we observe that

the marginal gain in performance diminishes after incorpo-
rating additional supplementary data. This finding suggests
that stellar flare forecasting should not be approached solely
as a time series prediction task based on light curves. Instead,
leveraging both stellar physical properties and historical flare
records represents an effective strategy for enhancing forecast
accuracy and achieving a more comprehensive understanding
of the underlying phenomena.

4 Methodology
In this section, we present our proposed model, FLARE. The
overall architecture of the model is illustrated in Figure 3,
which comprises three key components. First, as detailed in
Subsection 4.1, each light curve is decomposed into its trend
and residual components, with historical flare records being
integrated into the residual through a Residual Record Fusion
Module to enhance robustness. Second, Subsection 4.2 intro-
duces two prompt patterns based on tabular stellar physical
properties and employs P-tuning [Liu et al., 2022b] to dis-
tinguish between different stars effectively. Finally, Subsec-
tion 4.3 describes the fine-tuning of PLM to simultaneously
process text and light curves.

4.1 Light Curve Embedding
Typically, a flare only exists for a short period and is inde-
pendent of the overall flux variation trend of the light curve.
Furthermore, the periodic occurrence of flares only exists
when the magnetic field of the star is stable. Given this
phenomenon, separately handling the trend and the flare of
the light curve could help eliminate mutual interference and
improve light curve embedding. Even though the effective-
ness of historical flare records has been verified in Subsec-
tion 3.2, fusing them with real flare could help improve ro-
bustness and reduce the misleading effect of false positive
records. However, not all stars exhibit clear periodic lumi-
nosity variations. Moreover, their periods vary significantly,
ranging from shorter than one day to longer than the obser-
vation window. In such cases, real-time embedding can be
beneficial. Based on these considerations, we divide this sub-
section into three components: (1) normalization and decom-
position, (2) trend processing and residual record fusion, and
(3) timestamp embedding. As the light curve embedding pro-
cess is uniform across stars, in the following text, we omit
the superscript and use xt to represent the flux at timestamp
t, and similarly for yt.
Normalization and Decomposition. Due to the inherent
limitations in the precision of the telescope, flux values ex-
hibit substantial variations across different observation peri-
ods. This variation necessitates the normalization of the data
by dividing the flux values by the median, in order to effec-
tively mitigate the potential influence of systematic errors.
Besides, frequent data omissions in light curves require us
to perform a decomposition that distinguishes the overall flux
trend from local abrupt flux variations, while minimizing the
impact of missing values. Given that the time steps with miss-
ing data are usually non-consecutive, we employ a moving
average to capture the trend of the light curve’s variations,
explicitly excluding the missing data from the computation
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Light Curve Light Curve + HFRs Light Curve + SPPs Light Curve + HFRs + SPPs
Methods Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

PatchTST 61.92 69.69 64.52 70.461 64.46 70.01 68.19 72.26
iTransformer 49.99 66.67 64.73 68.46 65.46 71.25 66.86 71.53
Autoformer 50.01 66.67 64.28 67.94 66.10 71.01 66.52 70.99
Crossformer 50.00 66.67 65.33 68.69 65.64 71.21 66.58 71.35
ETSformer 50.00 66.67 65.40 69.03 65.67 71.12 67.19 70.83

Table 1: Performance on the Kepler light curve dataset with and without the use of Historical Flare Records (HFRs) and Stellar Physical
Properties (SPPs) separately, and each number represents the result of a single experimental run. (%)
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Figure 3: The overall framework of FLARE. First, the light curve is decomposed into trend and residual components, which are processed
separately through patching and the Residual Record Fusion Module integrated with flare records. Timestamp embeddings are then appended
to these processed components. Simultaneously, stellar physical properties are embedded using the Soft Prompt Module, generating a
corresponding vector representation. The resulting vectors from both pathways are concatenated and passed through a large model. Finally,
an MLP head processes the output to predict the probability of flare occurrence or non-flare conditions within the next 24 hours.

to ensure that the trend is not unduly influenced by data gaps.
This process can be represented as:

x̂j =
xj

median(x⃗t)
, (2)

xT
j =

1

dW

t+⌊ dW
2 ⌋∑

j=t−⌊ dW
2 ⌋

x̂jmj , (3)

mj =

{
0 if x̂j = ∅,

1 otherwise,
(4)

where x̂j is the normalized xj , mj is an indicator for missing
data, dW is the length of the sliding window, and xT

j repre-
sents the trend at timestamp t. x⃗T

t = [xT
t−K , · · · , xT

t−1] ∈
RK are utilized to represent the trend of the light curve, with
the rest representing the residual x⃗R

t = [xR
t−K , · · · , xR

t−1] ∈
RK , where xR

j = x̂j − xT
j , j = t−K, · · · , t− 1.

Trend Processing and Residual Record Fusion. Since both
the trend x⃗T

t and the residual x⃗R
t are univariate time series,

the temporal context at each timestamp plays a crucial role
in data embedding. We generate patches for both the trend
and the residual separately to obtain XT

t ∈ RL×P and XR
t ∈

RL×P , where L =
⌊
K−P

S

⌋
is the number of patches with

length of P , and S is the stride. The XT
t is passed through the

MLP to obtain the X̂T
t ∈ RL×d. For the residual, the gating

mechanism is applied in conjunction with the flare record y⃗t
to process XR

t . This process can be represented as:

[X̃R
t ; Ỹt] = [XR

t ;Yt]W̃ + b̃, (5)

g =σ(X̃R
t W gR + ỸtW

gY + bg), (6)

X̂R
t =(g ⊙ X̃R

t + (1− g)⊙ Ỹt)W + b, (7)

where W̃ ∈ RP×d, {W gR,W gY ,W} ⊂ Rd×d, b̃ ∈ R2L,
{bg, b} ⊂ RL. Yt is derived from y⃗t by generating patches.
X̂R

t ∈ RL×d is the embedding of the residual. σ denotes
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the sigmoid activation function and ⊙ represents Hadamard
product, respectively.
Timestamp Embedding. As stars exist beyond the solar sys-
tem, the time formatting used on Earth is not suitable and
is typically represented by Julian Date, which is a continu-
ous floating-point number. We extract the numerical values
of each digit from the hundredths place to the ten-thousands
place in a decimal manner, derive embeddings from these val-
ues, and use their sum as the timestamp embedding. Since
the light curve has been divided into multiple patches, each
patch requires a timestamp embedding. Given that the time
intervals between adjacent time steps within the same patch
are of fixed length, we employ the average timestamp em-
bedding for the patch, and the collection of all patches is
denoted as ET

t ∈ RL×d. Following the three steps out-
lined above, the final time series embedding is obtained as
XTS

t = [ET
t +XT

t ;E
T
t +XR

t ] ∈ R2L×d.

4.2 Prompt Design

The characteristics of the Stellar are as follows:
the Effective Temperature is between 5322.0 and 5685.0, the Loga-
rithm of Surface Gravity is between 4.40 and 4.62,  the Metallicity is 
between -0.92 and -0.27, the Stellar Radius is between 0.68 and 
0.89,the Stellar Mass is between 0.66 and 0.81,  the Distance to 
Stellar is between 690.58 and 957.03,……, the Rotation Period is 
0.84, the Stellar Age is [MASK], the Logarithm of R'HK is [MASK].

the is between and ,

e(   ) e(    ) e(    ) 

Type1:

the is ,

e(   ) e(   ) 

Type2:

Ex.1: the Effective Temperature is between 5322.0 and 5685.0     , 

e(Effective)e(Temperature) e(5322.0) e(5685.0)

Ex.2: the    Logarithm      of       R'HK    is     [MASK]     .

e(Logarithm) e(of) e(R'HK) e([MASK])

(a)

(b)

Figure 4: (a) A textual description of the star KIC 011924842’s
physical properties. (b) Two replacement pattens and examples.

Motivation. Stellar flares are a prominent manifestation of
stellar activity. As summarized in Yong [Yong and Lin,
2024]’s study, factors such as stellar age, rotation speed, and
stellar mass are correlated with flare frequency, which further
supports the use of stellar physical properties for flare fore-
cast task. Stellar physical properties often exhibit frequent
missing values and inconsistent numerical ranges. While in-
terpolation and standardization can be used to address these
issues separately, they may also introduce biases and lead
to the loss of valuable physical information. Given that the
physical properties of stars are presented as tabular data, and
that Hegselmann [Hegselmann et al., 2023] has experimen-
tally shown that combining column names with values leads
to better performance than using only values, we organize the
physical property values of stars along with their correspond-
ing names into a textual structure. Furthermore, inspired by
P-tuning [Liu et al., 2022b], we design the Soft Prompt Mod-
ule to learn stellar physical properties for distinguishing stars.

Soft Prompt Module. The textual description of stellar phys-
ical properties is shown in Figure 4(a), where any physi-
cal property is represented as a range of values or an exact
value. Inspired by P-tuning, which optimizes a small num-
ber of prompt embeddings and demonstrates good scalability
while saving computational resources, we propose replacing
part of the word vectors in the text with trainable parameters,
as shown in Figure 4(b). We design corresponding replace-
ment patterns based on the types of the physical property. In
both pattens, two vectors (h0, h1) are retained to represent
the start and end of a the physical property description, with
a vector h1 separating the physical name from the value. De-
pending on the type of the physical property, an additional
feature separator vector h2 will be inserted. All words except
the replaced ones are embedded by the text encoder. Addi-
tionally, trainable embedding is utilized to represent the ID of
the star. Through this prompt design, the meaning of phys-
ical property names, as well as the physical significance of
their numerical value ranges, are both preserved. Finally, we
use Xi

p ∈ RS×d to represent the embedding of the physical
properties of the star i, and S is the number of tokens in the
segmented textual descriptions.

4.3 Pre-Trained Large Model Fine-tuning
Zhou [Zhou et al., 2023] gives experimental evidence that
training PLMs from scratch harms performance, while freez-
ing most parameters and training only a small subset pre-
serves the representational learning ability of PLMs. We
freeze the majority of the parameters, particularly those in
the multi-head attention mechanism and the feed forward lay-
ers, allowing the large model to fine-tune only the LayerNorm
layers. To adapt to cross-modal inputs, we employ Low-Rank
Adaptation (LoRA) [Hu et al., 2022] to introduce trainable
low-rank matrices to the multi-head mechanism, which al-
lows effective learning of the correlation between the physical
property text vectors Xi

p ∈ RS×d and the light curve patches
XTS

t while introducing only a small number of trainable pa-
rameters. The final embedding Zi

t = PLM(Xi
p;X

TS
t ) ∈

R2L×d is obtained at the end of this process.

4.4 Loss Function
Since a portion of samples are false positives, label smoothing
is applied. After computing forecast flare probabilities with
the MLP, we use the cross-entropy loss function with label
smoothing, which can be represented as:

ŷi(t,t′) =POOLING(Zi
t)W

c + bc, (8)

Li
t =− [(1− ϵ)yi(t,t′)log(ŷ

i
(t,t′))

+ ϵ(1− yi(t,t′))log(1− ŷi(t,t′))], (9)

L =
1∑Ns

i=1 Ni

Ns∑
i=1

Ni∑
t=1

Li
t, (10)

where ϵ is the smoothing coefficient of the label, Ns denotes
the number of stars, Ni represents the number of samples for
star i, W c ∈ R1×2, bc ∈ R1, and POOLING refers to the
operation of dimensionally reduction of Zi

t .

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

5 Experiments
In this section, experiments are conducted to evaluate the ef-
fectiveness of FLARE and the indispensability of each mod-
ule, and an analysis of flare forecasting cases is presented.

5.1 Experimental Setup
Datasets. Kepler mission [Borucki, 2016] monitored the lu-
minosity variations of over 150,000 stars from 2009 to 2018.
For our study, we select high-precision light curves of 7,160
stars with flare events from 2009 to 2013, sampled every half-
hour intervals, forming the Kepler light curve dataset. Each
observation window consists of 512 data points, and the ob-
ject is to forecast whether a flare event will occur within the
next 24 hours, corresponding to 48 data points. The light
curves of each star are split into training and test sets in a 4:1
ratio based on chronological order, and the flare rate of the
test set is controlled at 50% through random sampling.
Baselines. We compare the proposed method with five type
baselines: (1) PLMs (MOMENT [Goswami et al., 2024],
Chronos [Ansari et al., 2024], OFA [Zhou et al., 2023], and
UniTime [Liu et al., 2024a]) (2) MLPs (Dlinear [Zeng et al.,
2023], TiDE [Das et al., 2023], and FreTS [Yi et al., 2023]),
(2) RNNs (GRU [Dey and Salem, 2017] and LSTNet [Lai et
al., 2018]), (3) CNNs (MICN [Wang et al., 2023], TCN [Bai
et al., 2018], and SCINet [Liu et al., 2022a]), (4) Transform-
ers (PatchTST [Nie et al., 2023], iTransformer [Liu et al.,
2024b], Autoformer [Wu et al., 2021], Crossformer [Zhang
and Yan, 2023], ETSformer [Woo et al., 2022], and In-
former [Zhou et al., 2021]).
Evaluation Metrics. To evaluate our forecasting model, we
employ five evaluation metrics: AUC, Accuracy, Recall, F1
score and Precision. We prioritize high Recall and Accuracy
while keeping adequate Precision for accurate forecasting.
Experiment Settings. We use AdamW [Loshchilov and Hut-
ter, 2019] with a learning rate of 1e-5 as the optimizer, train
for 200 epochs, and apply early stopping with a patience of
15. The PLMs, LSTNet, and TCN use publicly available code
from their original papers, while the MLPs, Transformers,
MICN, and SCINet use the code provided by TSLib1. Both
the text encoder and the PLM are BERT [Devlin et al., 2019].

5.2 Performance Comparison
We compare FLARE with various baselines, conducting at
least three runs to compute the average performance, as de-
picted in Table 2. Here, FLARE clearly outperforms other
methods and is the only one achieving an accuracy greater
than 70%. The following are three key observations:
(1) Among the five types of baselines, PLMs and RNNs typ-
ically perform well when neither historical flare records nor
stellar physical properties are employed. The effectiveness
of MOMENT and Chrones can be attributed to the knowl-
edge gleaned from pre-trained large time-series models. We
further analyze the subpar performance of OFA, which re-
sults from its simplistic approach to light curve processing. In
contrast, UniTime, based on the same PLM, performs com-
mendably. Additionally, the strong performance of RNNs is
ascribed to the temporal characteristics of light curves.

1https://github.com/thuml/Time-Series-Library

(2) Among MLPs and Transformers, only TiDE and
PatchTST show classification ability when restricted to us-
ing only light curves. An analysis of this phenomenon is
presented. The robust performance of TiDE is credited to
the Residual Block, which bolsters its resilience and enables
it to manage a certain level of noisy samples in the dataset.
Among Transformers, point-wise methods (e.g., Autoformer
and ETSformer) perform poorly, presumably because flux
values lack contextual information, rendering them inade-
quate for effective feature learning at each time step. Series-
wise methods (e.g., iTransformer) have difficulty capturing
complex temporal dependencies, while patch-wise methods,
such as PatchTST, exhibit excellent performance. Although
Crossformer, also a patch-wise method, shows poor metrics,
our analysis indicates that this is due to the mismatch between
the univariate light curve and the Cross-Dimension Attention.
(3) The inclusion of historical flare records and stellar physi-
cal properties improves the performance of all baselines, with
only minor metric differences. This result underscores the
significance of historical flare records and stellar physical
properties in stellar flare prediction.

5.3 Ablation Study
Effectiveness of Each Module An ablation study is con-
ducted to assess the effectiveness of each module within
FLARE. Results in Table 3 show individual removal or re-
placement of modules. “FLARE w/o Soft Prompt Module”
replaces its generated vector with one mapped from stellar
physical property values. “FLARE w/o Residual Record Fu-
sion Module” removes the module, concatenating historical
flare records with the light curve along the flux dimension.
“FLARE w/o LoRA” excludes LoRA during fine-tuning.

Our evaluation shows removing any of the three modules
reduces specific performance metrics, while FLARE main-
tains robust performance across all metrics. Notably, omit-
ting the Soft Prompt Module causes a significant performance
drop, aligning with Hegselmann [Hegselmann et al., 2023],
which states textual headers aid tabular data classification.
Removing LoRA slightly decreases all five metrics, confirm-
ing its value in fine-tuning. Although removing the Residual
Record Fusion Module causes minimal performance change,
retaining it improves Recall, highlighting the module’s effec-
tiveness.

5.4 Case Study
To elucidate the reasons underlying FLARE’s flare forecast-
ing capabilities, we conduct a case study to explore the work-
ing mechanism of FLARE. The forecast results of FLARE
for selected samples are visualized in Figure 5. Evidently,
FLARE can generate effective forecasts based on the obser-
vation area and can adapt to different stars and diverse flux
variation patterns. Specifically, Figure 5(g) and Figure 5(h)
demonstrate that FLARE can accurately predict flares on light
curves with distinct flux variation patterns originating from
the same star, highlighting its robust forecasting ability.

6 Conclusion
In this paper, we demonstrate that both stellar physical prop-
erties and historical flare records are beneficial for forecasting
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Methods Light Curve Methods Light Curve + HFRs + SPPs
Accuracy F1 score Recall Precision Accuracy F1 score Recall Precision

MOMENT 62.65±0.40 70.02±0.04 87.25±0.77 58.48±0.40 MOMENT∗ 68.08±0.05 72.00±0.00 82.09±0.16 64.13±0.09
Chronos 61.26±0.43 69.49±0.45 88.09±1.05 57.34±0.42 Chronos∗ 65.01±0.31 70.88±0.08 85.08±0.82 60.71±0.40
OFA 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 OFA∗ 65.47±0.34 70.24±0.08 81.50±0.76 61.72±0.44
UniTime 61.45±2.07 69.42±0.65 87.44±2.44 57.64±1.89 UniTime∗ 67.43±0.20 71.83±0.15 83.06±0.90 63.28±0.35

DLinear 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 DLinear∗ 66.04±0.22 71.18±0.03 83.87±0.66 61.83±0.31
TiDE 59.43±0.25 68.64±0.04 88.80±0.62 55.95±0.22 TiDE∗ 66.04±0.73 71.14±0.02 83.71±1.72 61.89±0.97
FreTS 49.99±0.00 66.66±0.00 99.99±0.00 49.99±0.00 FreTS∗ 65.64±0.48 70.25±0.04 81.12±1.10 61.96±0.66

MICN 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 MICN∗ 65.58±0.12 70.74±0.02 83.22±0.23 61.52±0.15
TCN OOT OOT OOT OOT TCN∗ OOT OOT OOT OOT
SCINet OOT OOT OOT OOT SCINet∗ 67.38±0.61 71.88±0.12 83.36±1.11 63.19±0.78

GRU 53.23±4.57 67.50±1.17 96.79±4.52 52.00±2.83 GRU∗ 66.54±0.63 71.14±0.04 82.49±1.54 62.57±0.87
LSTNet 60.05±0.58 68.69±0.06 87.67±1.16 56.48±0.51 LSTNet∗ 67.84±0.45 71.55±0.15 80.88±1.52 64.17±0.77

PatchTST 62.09±0.19 69.74±0.04 87.40±0.33 58.02±0.18 PatchTST∗ 68.40±0.29 72.29±0.05 82.48±0.08 64.38±0.46
iTransformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 iTransformer∗ 66.30±0.53 70.81±0.09 81.74±1.18 62.47±0.72
Autoformer 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 Autoformer∗ 63.62±0.80 69.72±0.33 83.74±1.41 59.73±0.82
Crossformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 Crossformer∗ 66.66±0.46 71.19±0.05 82.37±0.94 62.69±0.61
ETSformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 ETSformer∗ 66.46±0.16 70.73±0.25 81.05±1.06 62.75±0.30
Informer 52.93±4.13 67.38±1.00 96.97±4.28 51.78±2.51 Informer∗ 65.42±0.30 70.45±0.03 82.42±0.65 61.51±0.38

- - - - - FLARE 71.65±0.35 74.11±0.02 81.11±1.04 68.22±0.72

Table 2: Performance on the Kepler light curve dataset with and without the use of historical flare records (HFRs) and stellar physical
properties (SPPs). A baseline∗ represents the baseline that combines features learned from the light curve and historical flare records with
stellar physical properties, followed by forecasting through an MLP. OOT denotes that the running time exceeds 15 days. (%)

Method AUC Accuracy F1 score Recall Precision

FLARE w/o Soft Prompt Module 77.47 67.47 71.55 81.79 63.58
FLARE w/o Residual Record Fusion Module 79.22 71.80 74.11 80.73 68.50
FLARE w/o LoRA 79.45 71.37 73.91 81.11 67.89
FLARE 79.89 71.65 74.11 81.11 68.22

Table 3: The ablation analysis of FLARE. Bold indicates the best, and underlining denotes the second-best.

Figure 5: FLARE forecasts whether flares will occur in multiple
samples. The purple and green region represent the observation and
the forecast area, and red dots mark the time steps that belong to the
flares. “forecast flare occurrence” and “forecast non-flare period”
are used to represent the forecasting results of FLARE.

stellar flares. Hence, we propose the FLARE model, which
incorporates two specialized modules: the Soft Prompt Mod-
ule and the Residual Record Fusion Module. The Soft Prompt

Module enables the model to differentiate between various
star types, facilitating effective feature extraction tailored to
each star’s characteristics. Also, the Residual Record Fusion
Module enhances model robustness by integrating historical
flare records with light curve residuals. Experiments on the
Kepler light curve dataset underscore FLARE’s superior per-
formance compared to existing models. We expect that these
empirical results will provide valuable insights for future ad-
vancements in stellar flare forecast research.
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