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Abstract

The two-sided matching market problem has at-
tracted extensive research in both computer science
and economics due to its wide-ranging applications
in multiple fields. In various online matching plat-
forms, market participants often have unclear pref-
erences. As a result, a growing area of research fo-
cuses on the online scenario. Here, one-side partic-
ipants (players) gradually figure out their unknown
preferences through multiple rounds of interactions
with the other-side participants (arms). This survey
comprehensively reviews and systematically orga-
nizes the abundant literature on bandit learning in
matching markets. It covers not only existing the-
oretical achievements but also various other related
aspects. Based on the current research, several dis-
tinct directions for future study have emerged. We
are convinced that delving deeper into these direc-
tions could potentially yield theoretical algorithms
that are more suitable for real-world situations.

1 Introduction

The two-sided matching market, a classic model, has di-
verse applications in areas such as school admissions and
labor markets. It has been extensively explored in liter-
ature, as seen in [Gale and Shapley, 1962; Roth, 1984;
Roth and Sotomayor, 1992; Roth, 2002]. In this market,
two sets of participants exist, each having preferences for
those on the opposite side. Stability is a key property defin-
ing the matching’s equilibrium. The problem of finding sta-
ble matchings in a given market has been studied for ages,
with [Gale and Shapley, 1962] and [Roth and Sotomayor,
1992] making significant contributions. These studies usu-
ally assume that preferences are fixed and known. However,
this assumption is often unrealistic in real-world applications,
such as online labor markets where employers are uncertain
about their preferences for workers and can learn through
multiple rounds of iterative matching.

Multi-armed bandit (MAB) is an essential mechanism for
decision - making when faced with uncertainty across multi-
ple rounds. This framework typically involves a single player
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and K arms, where each arm has its own unique reward dis-
tribution that remains unknown to the player. The player’s
objective is to minimize their cumulative regret, defined as
the expectation of the difference in cumulative rewards be-
tween the arm with the highest reward and the player’s se-
lected arm over 7" rounds. Given that the player can only ob-
serve the reward of the arm they choose to pull, they need to
strike a balance between exploration, which means gathering
information about the various arms, and exploitation, which
involves choosing the arm that appears to be the best based
on the available information.

The problem of bandit learning in matching markets is
first introduced by [Das and Kamenica, 2005] and has been
studied by a rich line of work [Liu et al., 2020; Liu et
al., 2021; Basu et al., 2021; Sankararaman et al., 2021;
Kong et al., 2022; Kong and Li, 2023; Zhang et al., 2022;
Wang et al., 2022; Kong and Li, 2024; Kong et al., 2024].
Players and arms correspond to the participants on two sides
of markets. Each player has an unknown preference, while
arms are certain about their preferences over players. For
example, employers are unsure of their preferences because
they lack knowledge about workers’ capabilities, which can
only be understood through interactions. This problem aims
to minimize the stable regret, defined as the reward difference
between the stable matched arm and the player’s selected arm
over T rounds. When the stable matching is not unique, there
are mainly two types of regret: one is the player-optimal
stable regret concerning the player’s most preferred stable
matching; the other one is the player-pessimal stable regret
with respect to the player’s least preferred stable matching.

In addition to the fundamental one-to-one matching mar-
kets focused on minimizing stable regret, a series of research
efforts explore other variations. One strand of work expands
the market framework to the many-to-one scenario [Wang et
al., 2022; Kong and Li, 2024]. Here, each arm has the ca-
pacity to accept multiple players. Another line of inquiry
delves into non-stationary markets [Muthirayan et al., 2022;
Ghosh et al., 2022]. In such markets, the preferences of each
player do not remain constant but change over time. This
dynamic nature adds a layer of complexity to the match-
ing process, as algorithms must adapt to these evolving
preferences. Some studies concentrate on the setting of
two-sided unknown preferences [Pagare and Ghosh, 2023;
Zhang and Fang, 2024b]. In this case, not only are the
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players’ preferences a factor for the learner, but the prefer-
ences on the arm side are also unknown and appear random
to the learner. Finally, there are works that shift the focus
away from merely minimizing regret [Hosseini et al., 2024;
Athanasopoulos e al., 2025]. Instead, they aim to minimize
the sample complexity required to identify a stable matching.
This approach emphasizes the efficiency of the matching pro-
cess in terms of the amount of data needed, rather than just
the quality of the matching in terms of regret.

This survey situates and structures the extensive body of
literature on bandit learning for matching markets. In Sec-
tion 2 we introduce the basic framework of bandit learning in
matching markets. In Section 3 the problem lower bound is
introduced. Section 4 introduces the existing algorithm for
centralized environment and decentralized environment re-
spectively. In Section 5, we introduce the works beyond the
basic one-to-one matching markets. Section 6 summarizes
the potential future directions.

2 Preliminaries

This section introduces the model of bandit learning in the
one-to-one matching markets with one-sided unknown pref-
erences, which is a basic model studied by most works.

Suppose there are N players and K arms. Denote N =
{p1,p2, -+ ,pn} as the set of players and denote K =
{ay,as, - ,ax} as the set of arms. Most works assume
N < K to ensure no player will be unmatched. Each arm has
a fixed preference rank 7y, ; over players. 7 ; > 7y ;» means
arm ay, prefers player p; to p;,. The preference of player p;
over arm ay, is modeled by the utility p; > 0. pix > i rr
implies that player p; prefers arm ay rather than ay,. The
preferences of players are random and unknown, and can be
learned through interactive matching iterations.

For each player p; and arm a;, # ap, let A, =
|tti e — i k| be the reward gap between arm ay, and ay for
player p;. Define A = min; j 5 A; ;5 > 0 as the minimum
reward gap across all players and arms, which measures the
hardness of the learning problem.

At each round ¢t = 1,2,..., each player p; proposes
to an arm A;(t). For each arm ay, denote A, '(t) =
{pi : Ai(t) = ax} as the set of players who selects arm ay,
at round . When more than one player selects a;, it ac-
cepts its most-preferred one in A, '(t), i.e. ax will match
with p; € arg MAX,, -1 (p) Thyi- If a player p; is success-
fully matched with arm A;(¢), it will receive a random re-
ward X (¢) characterizing its matching experience, which we
assume is a 1-subgaussian random variable with expectation
Hi A, 1)- Otherwise, p; is rejected by its proposed arm and
only gets reward X;(t) = 0.

Stability is a key property of a matching in two-sided mar-
kets to prevent the system from collapse [Gale and Shap-
ley, 1962; Roth and Sotomayor, 1992]. A matching A(t) =
{(i, A;(t)) : i € [N]} is stable if no market participant
wants to break up its current matching relationship and find a
new partner. Formally speaking, there is no player-arm pair
(pi, ax) such that p; > Wi, A, (ry and T ; > T At (1) It
is worth noting that there may be multiple stable matchings
in the market. Denoted M = {m : m is stable} as the set

of all stable matchings. It is shown that there exists a sta-
ble matching m* € M such that all players are matched with
their most preferred stable arm [Gale and Shapley, 1962], i.e.,
Mi,m* = fi,m,; for any m € M,i € [N], which is called the
player-optimal stable matching. Meanwhile there also exists
a stable matching m* € M such that all players are matched
with their least preferred stable arm, i.e., Wisms < fiym, for
any m € M,i € [N], which is called the player-pessimal
stable matching.

Here we introduce a classic offline algorithm called the
Gale-Shapley (GS) algorithm that efficiently finds a stable
matching when preferences on both sides are known. This al-
gorithm is also implemented by many online matching works
thus we introduce it in this section. It proceeds in rounds: in
each round, each unmatched participant proposes to the most
preferred participant on their list who has not yet rejected
them. The participants receiving proposals tentatively accept
the best proposal they have received so far and reject the rest.
This process continues until all participants are matched. The
key feature of the GS algorithm is that it always terminates
and produces a player-optimal stable matching, providing an
efficient and reliable way to achieve stable pairings in various
matching scenarios.

Given a specified horizon T, the learning objective is to
minimize the stable regret for each player p;. Since there may
exist multiple stable matchings, there are two different defi-
nitions of regret with respect to player-optimal stable match-
ing m* and player-pessimal stable matching m* respectively.
The player-optimal stable regret is defined as the difference
between the cumulative reward received by being matched
with m} and the cumulative reward received by p; over T
rounds:

T

Z (1timr — Xi(t))‘| .

t=1

Reg;(T) =E

Here, the expectation is taken over by the randomness of the
reward generation and the randomness inherent in the player’s
strategy. Similarly, the player-pessimal stable regret is de-
fined as the difference between the cumulative reward re-
ceived by being matched with m and the cumulative reward
received by p; over T rounds.

3 Lower Bound

[Sankararaman er al., 2021] provide the regret lower bound
of Q(max{N logT/A?, KlogT/A}). They study the spe-
cial market named Optimally stable bandits (OSB) where
all arms share the same preferences and each player’s sta-
ble matched arm is exactly its optimal arm, i.e., m; =
arg maxy f1; x. In this instance, the Q(N log7/A?) comes
from the collisions when other players select the stable
matched arm of player 4, and Q(K logT//A) comes from the

necessary explorations.

Theorem 1. (Theorem 7 in [Sankararaman et al., 2021]) For
any agent i € [N), under any decentralized universally con-
sistent algorithm m on a OSB instance v satisfies
(i—1)logT KlogT

A2 A '

Reg,;(T') > max{
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Regret bound Setting
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. N5K?log*T
[Liu et al., 2021] ( NTAZ ) gapy

2
[Sankararaman et al., 2021] 0 NK logT'/A )

Q( max {NlogT/A?, KlogT/A})
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0 (K log' e T + 2(az)* ‘
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[Basu et al., 2021]

gapg
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a-reducible condition, communication-free, gap,

[Maheshwari et al., 2022] O (CNKlogT/A?)
0]

N5K2log® T

[Kong et al., 2022] 5N4A2) gaps

[Zhang et al., 2022] O (KlogT/A%)" gap,

[Kong and Li, 2023] O (KlogT/A*)" gaps

[Wang and Li, 2024] O (NlogT/A* 4+ KlogT/A) serial dictatorship, gaps
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K ., 2024 .
[Kong et al., 2024] 10) (N log T/A? + K log T/A) a-condition, gaps

Table 1: Comparisons of settings and regret bounds with works of basic one-to-one matching with one-sided unknown preference setting, *
represents the player-optimal stable regret and bounds without labeling * are for player-pessimal stable regret or the unique stable matching.
N and K are the number of players and arms with N < K, T is the total horizon, A corresponds to some preference gap, € depends
on the hyper-parameter of algorithms, and C' is related to the unique stable matching condition which can grow exponentially in N. The
definition of A in different works has different notions: gap, is the minimum preference gap between the (player-optimal) stable arm and
the next arm in the preference ranking among all players; gap, is the minimum preference gap between any two different arms among all
players; gap; is the minimum preference gap between the first NV + 1 ranked arms among all players; gap, is the minimum preference gap
between arms that are more preferred than the next arm after the player-optimal stable arm among all players. The following inequality holds

gap; > gap, > gaps > gap..

From the lower bound analysis, the regret is lower bounded
by two terms: the necessary explorations for those sub-
optimal arms, and the unavoidable collisions caused by other
players’ explorations. This analysis also guides the algorithm
design idea to attain the better regret upper bound.

4 Existing Results

In this section we review existing algorithms with their con-
ditions and the corresponding regret upper bound.

4.1 Centralized Market

[Liu et al., 2020] first theoretically analyze the online match-
ing market with the bandit problem. They consider the cen-
tralized scenario, in which a platform receives the preferences
of both sides and assign matching for each player. They apply
both the ETC algorithm and the UCB algorithm to estimate
the ranking.

In the centralized ETC algorithm, players first explore all
arms in a round-robin way in the first & rounds. After that
platforms collect players’ estimated preferences for each arm

based on empirical mean reward, and then the platform com-
putes the player-optimal stable matching by running Gale-
Shapley algorithm and each player keeps selecting its sta-
ble matched arm in the remaining rounds. Centralized ETC
requires the knowledge of reward gap A and time horizon
T to determine the explore horizon h, and it achieves the
O (K log(T)/A?) player-optimal regret.

In the centralized UCB algorithm, each player estimates
the reward of arm by UCB index. At each round the cen-
tralized platform runs Gale-Shapley algorithm based on the
preferences ranked by UCB index. Each player follows plat-
form’s assigned estimated player-optimal stable matching at
each round and updates their UCB indices. This algorithm
does not require the knowledge of A and 7', but it may fail
to converge to player-optimal stable matching and only con-
verge to a stable matching in some preference structures.
They prove the O (NK log(T')/A?) player-pessimal regret
for the centralized UCB algorithm.

Note that though the centralized UCB does not need to
know the parameters T', A beforehand, it can only achieve the
sub-linear player-pessimal regret, which is a weaker notion of
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regret compared with player-optimal regret. This is because
since each player ranks its preferences over arm based on the
UCB index, it does not imply that the player will be able to
select the arm with higher UCB index since the player might
be rejected by running GS algorithm. Thus there may ex-
ist some arms with high UCB values but never be matched,
which leads to the failure of the centralized UCB to attain
sub-linear player-optimal stable regret.

Note that in real-world case, the centralized setting is rarely
satisfied since it requires a platform that assigns actions for all
players and is hard to achieve when the market size is large.
Thus only few works study the centralized setting and most
of the works study the more general decentralized setting.

4.2 Decentralized Market

This section introduces the literature of studying the decen-
tralized market, where each player make decisions based on
its own observation without the coordination from the central
platform.

Known Matching Result at Each Round

In this subsection, we introduce decentralized algorithms that
assume players can observe the entire matching result at each
round, i.e., A;(t) for every i € [N].

[Liu ez al., 2021] and [Kong et al., 2022] propose the UCB
and TS-type algorithm for the decentralized market, respec-
tively. They both obtain O (exp(N*)N°K?log?(T)/A?)
player-pessimal stable regret. The algorithm design idea is
that each player tries to select the best possible successfully
matched arm based on the last round’s matching information,
which means they will select the best possible arm where no
collisions happen with high probability. And this selection
approach will converge to a stable matching when each player
has the correct estimation of the best possible arm, which is
guaranteed by the UCB algorithm [Liu et al., 2021] and the
TS algorithm [Kong et al., 2022], respectively.

Subsequently, [Kong and Li, 2023] carries out the in-depth
research. They put forward the explore-then-Gale-Shapley
(ETGS) algorithm. At first, each player explores all arms in
a round-robin way. When all players have identified their full
preference rankings over all arms, they terminate the explo-
ration and run the GS algorithm to obtain the player-optimal
stable matching. To make each player aware of other play-
ers exploration status, the exploration process is divided by
phases with exponentially growing length. After each phase,
each player communicate with each other by selecting certain
arms and observing the matching result. The work effectively
improves the player-optimal stable regret bound. Specifically,
it has enhanced the bound to O (K log(T')/A?).

Not Observing Matching Result

In this subsection, we introduce the decentralized algorithms
that assume players can only observe their matching informa-
tion.

Since not observing the matching result is more challeng-
ing, most of the works study the market satisfying certain
uniqueness conditions as a beginning. The uniqueness con-
dition means the preferences over arms and players satisfy
some constraints to ensure that the stable matching is unique.

The work of [Sankararaman et al., 2021] proposes the
UCB-D3 algorithm based on the assumption of serial dicta-
torship, where each arm has the same preference over play-
ers. Intuitively, each player selects the arm with the highest
UCB index while not facing colliding. Since the market satis-
fies the serial dictatorship where all arms have the same pref-
erences over players, each player will converge to its stable
matching sequentially from the most preferred player to the
least preferred one. An O(N K log T/A?) regret is derived.
They also provide the lower bound analysis.

The work of [Basu er al, 2021] assumes the market
satisfies a-condition, which generalizes the serial dictator-
ship [Sankararaman et al., 2021] and is the weakest suffi-
cient condition to guarantee the uniqueness. They propose
the UCB-D4 algorithm modified based on UCB-D3 algorithm
while maintaining an additional deleting arm set. Each player
will also converge to stable matching by the order determined
by a-condition. They also achieve the O (N K log(T)/A?)
regret bound.

[Maheshwari et al., 2022] study the market satisfying
a-reducible and proposes a communication-free algorithm,
where each player does not communicate with other play-
ers to synchronous their information. Note that other works
focusing on the same decentralized setting all permit the
communication process that exchange the information among
players, and this work only allows each player make decisions
without information from any other players. «-reducible is
also a uniqueness condition weaker than serial dictatorship
but stronger than a-condition. In their work, each player runs
a single-player adversarial bandit algorithm, which means
other players’ actions are treated as an adversary and take
actions based on that player’s strategy. Each player tunes
its stochastic policy based on collision and reward infor-
mation observed at each step. The technique of instance-
dependent regret for adversarial bandit is applied for obtain-
ing the O (N K log(T')/A?) stable regret.

As for the general matching markets, the work of [Zhang
et al., 2022] improved the player-optimal stable regret. They
have proposed the ML-ETC algorithm. By the structure of
arms’ preferences, players are divided into different levels.
The choices of players with lower levels do not influence
those with higher levels. Then the algorithm finds the player-
optimal stable matching from the highest level to the lowest.
In the same level, each player explores all arms in a round-
robin way until they identify their full rankings of all arms,
then they run the GS algorithm to find the stable matching,
similar with [Kong and Li, 2023]. The difference is that in
this work players communicate their information by colli-
sions rather than the total matching result, which avoids ob-
serving the matching result at each round. Through this al-
gorithm, they have achieved the player-optimal stable regret
bound of O (K log(T)/A?).

To improve the regret upper bound to reach the lower
bound [Sankararaman et al., 2021], [Wang and Li, 2024]
first study the market satisfying serial dictatorship. Since
players have an order from the most preferred to the least
preferred, each player runs the elimination algorithm to find
the stable matched arm sequentially. Here elimination algo-
rithm is a classic bandit algorithm where the learner explores
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arms in a round-robin way and eliminates the sub-optimal
arm when it is identified not the best. Player p; first runs
the elimination algorithm to find its best arm, while player
p2 runs the elimination algorithm for other arms except p;
selects. Then similarly for player p;, she runs the elimi-
nation algorithms for arms of those not selected by player
P1,...,Pi—1. Then the regret for player p; is bounded by
O((i — 1)logT/A% + KlogT/A). Here O(K logT/A)
is derived from the number of explorations for sub-optimal
arms. O((i — 1)log T//A?) is obtained from the number of
times player pi,...,p;—1 explores the stable arm of p; and
thus she can not select its stable matched arm. It should be
noted that A is the minimum gap among all K arms and is
smaller than that in the lower bound analysis, which is the
minimum reward gap between sub-optimal arms and the sta-
ble matched arm. Thus there is still a gap on the dependence
of A.

Recently [Kong er al., 2024] provides the improved algo-
rithm for the decentralized general matching markets. To re-
move the dependence of K on the leading term, they use the
elimination algorithm to explore the sub-optimal arm, sim-
ilar to [Wang and Li, 2024]. Unlike identifying all rank-
ings among arms and running the full steps of GS algo-
rithms [Kong and Li, 2023; Zhang et al., 2022]. This work
proposes the adaptive online GS algorithm, which divides
each step of GS algorithm into exploration. At first, all
players run the elimination algorithm to identify their best
arms. Note that each player eliminates arms until the num-
ber of non-eliminated arms equals to the number of play-
ers, i.e., N. This design is to ensure all players can ex-
plore arms in a round-robin way without collisions. When
all players have identified their best arms, they run one step
of the GS algorithm. Those rejected players turn to explore
their second best arms. And those accepted players keep
selecting their matched arms. The next step of GS is per-
formed when those rejected players have identified their sec-
ond best arms. The algorithm finds the player-optimal stable
matching when full steps of GS have been performed. An
O(N?%1ogT/A? + K logT/A) player-optimal regret is ob-
tained. This work removes the dependence on K in the lead-
ing term for general markets.

Theorem 2. [Kong et al., 2024] Following the algorithm
proposed in [Kong et al., 2024], the player-optimal stable re-
gret for each player p; satisfies

Reg;(T) < O (N?log T/A* + Klog T/A)

where A is the minimum preference gap between arms that
are more preferred than the next of the player-optimal stable
arm among all players.

Note that there is still a gap between the problem
lower bound Q(Nlog7 /A% + KlogT/A) [Sankarara-
man et al., 2021] and the state-of-the-art upper bound
O(K logT/A?) [Kong and Li, 2023; Zhang et al., 2022],
O(N?logT/A? + KlogT/A) [Kong et al., 2024] in terms
of both market size and definition of A. It remains an open
question to close the gap for designing the optimal algorithm.

5 Other Variants

In this section, we introduce a line of works that study the
setting beyond the basic one-to-one matching markets with
one-sided unknown preference, which generalize the litera-
ture of bandit learning in matching markets.

5.1 Many-to-one Matching Market

In many real-world examples like school admissions, one side
participants (schools) are able to match with multiple partici-
pants on the other side (students). This motivates the follow-
ing extending setting of many-to-one matching markets.

[Wang er al., 2022] first study the problem of bandit learn-
ing in many-to-one matching markets, where each arm can
accept multiple players rather than a single player. Specifi-
cally, each arm k € [K] has a fixed capacity ¢, and it ac-
cept its most preferred top ci players at each round. This
preference structure is called the responsiveness. This set-
ting makes the system more complicated and players can be
matched with an arm even though other players also pro-
pose to it. They study the decentralized matching market and
propose the MOCA-UCB algorithm, which extends the CA-
UCB algorithm to the many-to-one setting [Liu ez al., 2021].
Similarly they obtain the O (exp(N*)N°K?log(T)/A?)
player-pessimal stable regret.

[Zhang and Fang, 2024a] extend the work of [Zhang er
al., 2022] to many-to-one setting with responsiveness prefer-
ence. By the structure of arms’ preferences, players are di-
vided into different levels. The choices of players with lower
levels do not influence those with higher levels. Then the
algorithm finds the player-optimal stable matching from the
highest level to the lowest. In the same level, each player
explores all arms in a round-robin way until they identify
their full rankings of all arms, then they run the GS algo-
rithm to find the stable matching. Through this algorithm,
they have achieved the player-optimal stable regret bound of
O (K log(T)/A?).

[Kong and Li, 2024] take an algorithm initially designed
for the one-to-one setting and expand it to the more general
many-to-one case. Through this expansion, they manage to
reach a near-optimal bound for player-optimal stable regret.
Nevertheless, single-player deviation can pose problems be-
cause of the requirements for collaboration. The primary
objective in this research is to enhance the regret bound in
many-to-one markets while maintaining incentive compati-
bility. To begin with, for the responsiveness setting, the adap-
tively explore-then-deferred-acceptance (AETDA) algorithm
is put forward. This algorithm enables the derivation of an up-
per bound for player-optimal stable regret and also proves its
incentive compatibility. It offers a polynomial player-optimal
guarantee in matching markets without the need to have prior
knowledge of A.

[Li er al., 2024] study the many-to-one matching market
with complementary preferences and quota constraints. Here
arms are divided into M types, and each type m includes K,
arms. Each player has fixed but unknown preferences over
each arm’s type, and at each time each player has a quota
constraint that each type’s arm has to be matched over a cer-
tain numbers, and the total matched number is also bounded.
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Real world examples include: firms seeking certain number
of workers with skills that complement their existing work-
force, sports teams forming teams with certain number of
players that have complementary roles. A centralized Multi-
agent Multi-type Thompson Sampling (MMTS) algorithm is
proposed and it achieves an O(+/T') Bayesian regret with high
probability.

5.2 Non-stationary Matching

Since participants’ preference might shift, there are some
studies focusing on non-stationary rewards, where the reward
distribution is not fixed and may vary over time.

The work of [Muthirayan er al., 2022] specifically ex-
amines learning when players’ preferences are time-varying
and unknown. They assume that the number of preference
changes is upper bounded by a constant L and this is known
beforehand. The algorithm design idea is that the algorithm
restart after each L~'/2T"'/2 rounds and the algorithm runs
centralized UCB at each phase. It is demonstrated that with
the proposed algorithm, each player gets a uniform sub-linear
regret of O(L'/2T"/2)(1 4 A~2). The article also discusses
the extensions of the algorithm to situations where the num-
ber of changes does not need to be known beforehand.

[Ghosh et al., 2022] focus on a different non-stationary
setting where at each time the reward change for an arm
does not exceed a small term §. It introduces the frame-
work of a decentralized two-sided matching market in non-
stationary (dynamic) environments under the serial dictator-
ship setting. The authors propose and analyze a decentral-
ized and asynchronous learning algorithm called Decentral-
ized Non-stationary Competing Bandits (DNCB). In this al-
gorithm, agents use successive elimination type learning al-
gorithms to learn their preferences over the arms. The com-
plexity of understanding the system comes from the asyn-
chronous action selection of competing bandits and the sit-
uation where lower ranked agents can only learn from a set
of arms not dominated by higher ranked agents, resulting in
“forced exploration”. By carefully defining complexity pa-
rameters, the paper characterizes this “forced exploration”
and achieves sub-linear (logarithmic) regret for DNCB. Ad-
ditionally, the theoretical findings are validated through ex-
periments.

5.3 Two-sided Unknown Preference

When considering the market where preferences of partici-
pants on two sides are both unknown and random, it is more
general than the basic one-sided unknown setting and needs
more careful technique balancing the exploration on both
sides.

[Pagare and Ghosh, 2023] propose a multi-phase explore-
then-commit type algorithm namely Epoch-based CA-ETC
(collision avoidance explore then commit) for this problem
that does not require any communication across agents (play-
ers and arms) and hence fully decentralized. They show that
the for the initial epoch length of T}y and subsequent epoch-
lengths of 2¢/7Ty (for the ¢-th epoch with v € (0,1) as an
input parameter to the algorithm), CA-ETC yields a player

optimal expected regret of O(TO(%)U Y+ To(T/Th)7)

for each player. Furthermore, we propose several other base-
lines for two-sided learning for matching markets.

[Zhang and Fang, 2024b] model the arm side, with a
reasonable “Rational Condition”, where their objective is to
maximize their individual rewards. Then, on the player side,
they introduce the Round-Robin ETC algorithm, incorporat-
ing various techniques to tackle challenges arising from un-
reliable feedback from arms and the absence of information
and communication. Through rigorous analysis, we demon-
strate that the optimal matching for the proposing side can be
achieved with high probability Their algorithm achieves an
O(log T) player-optimal stable regret.

5.4 Objectives Beyond Minimizing Regret

There is a line of works studying the objectives beyond min-
imizing regret. Specifically, they mainly study the sample
complexity of finding a stable matching.

[Hosseini et al., 2024] showcase crucial techniques within
the realm of learning preferences. These techniques are
centered around leveraging the structure of stable solutions.
Specifically, they made use of the known preferences of arms
in the arm-proposing variant of the Deferred Acceptance
(DA) algorithm. By doing so, and by eliminating arms at an
early stage, they were able to provably decrease the sample
complexity associated with finding stable matchings. More-
over, from an experimental perspective, this approach had
minimal influence on optimality, which was gauged by the
metric of regret.

[Athanasopoulos et al., 2025] focus on the centralized
case where, at each time step, an online platform matches
agents and gets a noisy evaluation of their preferences. They
introduce the concept of a probably correct optimal stable
matching, a special type of probably approximately correct
(PAC) solutions requiring the output matching to be optimal
with high probability. First, they analyze an algorithm that
uniformly samples all available agent pairs, similar to the
ETC strategy, demonstrating its ability to produce the opti-
mal stable matching with high probability and providing a
bound on its sample complexity. Next, they explore an ac-
tion elimination-based algorithm, which improves sample ef-
ficiency and reduces dependence on instance - specific pa-
rameters. Additionally, they enhance sample complexity by
modifying the stopping criterion, enabling the algorithm to
terminate when enough information is gathered.

6 Future Direction
6.1 Optimal Analysis for Matching Markets

There still exists a gap between the existing best upper bound
O(N%logT/A% + KlogT/A) when N? < K [Kong et
al., 2024], O(KlogT/A?) when N? > K [Kong and
Li, 2023; Zhang et al., 2022], and the problem lower
bound (max{N log T/A?, K log T/A}) [Sankararaman et
al., 2021]. Thus a natural remaining open question is to de-
sign an optimal algorithm achieves the best regret bound.

A possible approach for designing the optimal algorithm
is to refine the procedure of the adaptive Gale-Shapley al-
gorithm proposed by [Kong et al., 2024]. The key bottle-
neck to attain the O(N log T'/A?) regret is because at each
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step of GS, the number of collisions is only bounded by
O(NlogT/A?), and this multiplies the maximum number
of steps IV contributes to the final regret bound. To improve
the final regret bound, it is likely to modify the algorithm to
be more adaptive for reducing the bound of collision times at
each step.

6.2 Incentive Compatibility Analysis

Incentive compatibility is a key yet under-explored aspect
in matching markets with bandit learning. Agents in these
markets often have private information and self-interested
motives. To ensure bandit-based matching mechanisms are
incentive-compatible, agents must be motivated to truthfully
disclose their preferences and characteristics.

Most existing studies on bandit learning in matching mar-
kets prioritize matching efficiency over agents’ strategic be-
havior [Kong and Li, 2024]. Future research could delve into
how different bandit algorithms interact with incentive com-
patibility. This could involve analyzing agent incentives in
various matching market types using game-theoretic models.
Additionally, there’s a need to design mechanisms that are
both incentive compatible and computationally efficient, per-
haps by exploring approximate incentive compatibility con-
cepts. Empirical studies, whether in a lab or using real-world
data, are also essential to validate theoretical results and re-
fine these mechanisms for practical use.

6.3 Robustness Analysis Against Attack

In the context of bandit learning in matching markets, ro-
bustness against attack has emerged as a critical area that
demands in-depth exploration in future research. With the in-
creasing digitization and reliance on automated matching sys-
tems, these markets become vulnerable to various malicious
attacks that can disrupt the normal operation of bandit-based
algorithms and undermine the fairness and efficiency of the
matching process.

One of the primary future research directions is to compre-
hensively identify and categorize the potential attack models.
For example, in a matching market for online auctions, ma-
licious bidders could launch shill-bidding attacks. They cre-
ate fake identities to inflate the prices artificially, tricking the
bandit-learning algorithm into making sub-optimal matching
decisions. In a ride-sharing matching market, attackers might
manipulate location data to disrupt the efficient pairing of
drivers and passengers. By precisely defining these attack
models, researchers can then develop targeted defense mech-
anisms.

6.4 Other Possible Settings

There are several other possible settings in bandit learning for
matching markets that merit future research attention.

Dynamically Changing Market Structures. Most current
studies assume relatively static market structures in the con-
text of bandit learning for matching. However, in real-world
scenarios, markets are often dynamic. For example, new
participants may continuously enter the market, and existing
ones may leave. In a job-matching market, new companies
may be established, creating new job openings, while some

existing firms might downsize or go out of business. Future
research could explore how bandit learning algorithms can
adapt to such dynamic market structures. This may involve
developing algorithms that can quickly re-evaluate and ad-
just the matching strategy as the market composition changes.
One approach could be to use time-series analysis techniques
to predict the inflow and outflow of market participants and
then incorporate these predictions into the bandit-learning
framework.

Contextual Matching Markets. Contextual bandit for on-
line matching market holds great significance as it enables
more accurate and efficient matching in various real-world
scenarios, from e-commerce platforms connecting buyers
and sellers to ride-sharing services pairing passengers with
drivers, where the preference of a participant is related to its
contextual information. Specifically, each arm ay, is associ-
ated with a fixed context X, € R, where d is the number of
dimension. The preference of player p; over arm ay, is deter-
mined by a reward function R;(X}), such as the linear model
with R;(Xy) = HZT X}.. The learner aims to learn the reward
model of each player through multiple matchings. This model
can well describe how the player’s preference is determined
by various attributes of each arm.

7 Conclusion

The study of bandit learning in two-sided matching markets
has emerged as a rapidly evolving research area. This sur-
vey comprehensively reviews and systematically organizes
the abundant literature on bandit learning in matching mar-
kets. These works have shown great promise in improving the
efficiency of matching, whether it is in job-seeker-employer
match-ups, ride-sharing driver-passenger pairings, or online
dating platform matches. This survey covers the existing the-
oretical achievements and various related aspects.

There are still numerous avenues for future research. The
optimal algorithm design is not sufficiently explored and re-
mains open. Incentive compatibility has also been recog-
nized as a crucial factor, ensuring that market participants
are motivated to truthfully reveal their preferences is essential
for the proper functioning of bandit-based matching mecha-
nisms. Robustness analysis against attacks, is becoming in-
creasingly important in the face of potential malicious dis-
ruptions in digital matching markets. Additionally, the study
of bandit learning in dynamically changing market structures,
and contextual matching market structure, also hold great po-
tential for advancing the field. Overall, the future of ban-
dit learning in matching markets is bright, with the potential
to bring about more efficient and robust matching systems
across a wide range of industries.
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