Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to
Generation and Beyond

Kehan Guo!, Yili Shen!, Gisela Abigail Gonzalez-Montiel?, Yue Huang', Yujun Zhou',
Mihir Surve?, Zhichun Guo?, Payel Das?, Nitesh V. Chawla', Olaf Wiest?, Xiangliang Zhang'

'Department of Computer Science and Engineering, University of Notre Dame, IN, USA
?Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA
3Institute for Protein Design, University of Washington, WA, USA

4Trusted Al Department, IBM Thomas J. Watson Research Center, NY, USA

Abstract

The rapid advent of machine learning (ML) and ar-
tificial intelligence (Al) has catalyzed major trans-
formations in chemistry, yet the application of
these methods to spectroscopic and spectromet-
ric data—termed Spectroscopy Machine Learning
(SpectraML)—remains relatively underexplored.
Modern spectroscopic techniques (MS, NMR, IR,
Raman, UV-Vis) generate an ever-growing volume
of high-dimensional data, creating a pressing need
for automated and intelligent analysis beyond tra-
ditional expert-based workflows. In this survey,
we provide a unified review of SpectraML, system-
atically examining state-of-the-art approaches for
both forward tasks (molecule-to-spectrum predic-
tion) and inverse tasks (spectrum-to-molecule in-
ference). We trace the historical evolution of ML
in spectroscopy—from early pattern recognition to
the latest foundation models capable of advanced
reasoning—and offer a taxonomy of representa-
tive neural architectures, including graph-based and
transformer-based methods. Addressing key chal-
lenges such as data quality, multimodal integra-
tion, and computational scalability, we highlight
emerging directions like synthetic data generation,
large-scale pretraining, and few- or zero-shot learn-
ing. To foster reproducible research, we release an
open-source repository containing curated datasets
and code implementations. Our survey serves as a
roadmap for researchers, guiding advancements at
the intersection of spectroscopy and Al

1 Introduction

The rapid advancements in Artificial Intelligence (AI) and
Machine Learning (ML) are reshaping scientific disciplines
of chemistry, by streamlining tasks such as molecular prop-
erty prediction [Guo er al., 2021] and reaction modeling [Co-
ley et al., 2019]. Despite these breakthroughs, the applica-
tion of ML to spectroscopy—hereafter referred to as Spec-
troscopy Machine Learning (SpectraML) [Elias er al.,
2004; Ralbovsky and Lednev, 2020]—remains relatively un-
derexplored. Spectroscopic and spectrometric techniques,
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Figure 1: Timeline of ML progression and its application to spectro-
scopic studies.

which provide high-sensitivity insights into molecular struc-
ture, dynamics, and properties, are now generating large vol-
umes of data due to advances in high-throughput experiments
and automated acquisition. Consequently, traditional manual
analysis methods, reliant on expert interpretation and refer-
ence libraries [Alberts et al., 2024b; Zhu and Jonas, 2023],
are increasingly inadequate for handling the scale and com-
plexity of modern spectral datasets.

The growing interest in this field is reflected in the increas-
ing number of research papers that expand the scope of tasks
addressed by spectrum-based ML models [Gabriel et al.,
2024; Alberts et al., 2024b; Guo et al., 2024; Bushuiev et al.,
2024]. However, existing overviews often focus on a single
modality (e.g., UV alone or MS) [Beck et al., 2024] or lack
a clear framework for distinguishing forward (molecule-to-
spectrum) from inverse (spectrum-to-molecule) tasks [Srid-
haran et al., 2022a]. By contrast, our survey unifies five major
spectroscopic techniques—MS, NMR, IR, Raman, and UV-
Vis—within a single methodological framework. Moreover,
we highlight the rapid progression of spectroscopic analysis
driven by ML advances in generative modeling, few- or zero-
shot learning, and large-scale pretraining, and we provide an
open-source repository of datasets and code. By bridging
computational and experimental viewpoints, our work fills a
key gap in the literature and highlights new avenues for inter-
disciplinary collaboration in SpectraML.

The rapid advancements in ML and AI have been trans-
forming workflow automation in spectral analysis, as illus-
trated by the timeline in Fig. 1. Deep learning models, such
as convolutional neural networks (CNNs) [O’Shea, 2015]
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and recurrent neural networks (RNNs) [Schuster and Pali-
wal, 1997], have proven effective in tasks like peak detection,
deconvolution, and reaction monitoring. Additionally, trans-
fer learning and pre-trained models [Guo er al., 2024] enable
these algorithms to generalize across diverse spectra, thereby
reducing the need for extensive retraining. Emerging founda-
tion models [Bommasani et al., 2021] further extend the ca-
pabilities of SpectraML by offering advanced reasoning and
planning for complex tasks such as molecular structure eluci-
dation and reaction pathway prediction [Guo et al., 2024]. As
Al techniques continue to evolve, there is a critical need for
a structured discussion on positioning the different capabili-
ties of Al models across various spectroscopy tasks, as well
as underscoring key challenges, limitations, and future direc-
tions.

This survey addresses these needs with the following con-
tributions:

1. We offer a comprehensive overview of current
SpectraML techniques across five major spectro-
scopic modalities—MS, NMR, IR, Raman, and UV-
Vis—highlighting both methodological innovations and
practical applications. Unlike existing surveys that focus
on a single modality or overlook the distinction between
forward (molecule-to-spectrum) and inverse (spectrum-
to-molecule) tasks [Beck et al., 2024; Sridharan et al.,
2022al, our work provides a unified perspective and
frames these tasks within AI’s problem-solving role.

2. We present a unified roadmap that traces the evolu-
tion of ML in spectroscopy, from early pattern recogni-
tion and predictive analytics to advanced generative and
reasoning frameworks, thus situating current progress
within a broader historical context. It helps researchers
understand how foundational techniques have shaped
modern approaches and guides them in innovating fu-
ture methodologies in SpectraML.

3. We identify key challenges (e.g., data quality, multi-
modal integration, and computational scalability) and
emerging opportunities (e.g., foundation models, syn-
thetic data generation, few- or zero-shot learning, and
large-scale pretraining) in SpectraML. To facilitate fur-
ther research, we provide, and will maintain, an open-
source GitHub repository containing datasets and code.
This work thus serves as a valuable resource for re-
searchers and practitioners in this interdisciplinary field.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces spectral data representations and the def-
inition of fundamental Forward and Inverse Problems in
spectral analysis. Section 3 categorizes and summarize Spec-
traML approaches in solving forward and inverse problems.
In Section 4, we discuss major challenges and highlight
emerging directions such as foundation models, and syn-
thetic data generation. Section 5 concludes the work.

2 Background

2.1 Applications of Spectroscopy in Chemistry

Spectroscopy, the study of the interaction between matter and
electromagnetic radiation, produces data that resembles au-

dio signals in its representation—peaks, shifts, and patterns
that encode molecular information [Elias et al., 2004]. Spec-
trometry, on the other hand, focuses on measuring chemi-
cal interaction to gain insight into molecular structures and
properties [Ralbovsky and Lednev, 2020]. Common spectro-
scopic techniques include mass spectrometry (MS), infrared
(IR), Raman, ultraviolet/visible (UV-Vis), and nuclear mag-
netic resonance (NMR). Each of these techniques is akin to
a “lens” providing a different perspective of the molecular
world, and when combined, they reveal a fuller picture of
molecular structures.

* Mass Spectrometry (MS) allows for the determination
of the molecular mass and formula of a compound, as
well as some of its structural features by identifying the
fragments produced when the molecule breaks apart.

¢ Infrared (IR) and Raman spectra data allow the identi-
fication of the types of functional groups in a compound.

» UV-Vis spectra data provides information about com-
pounds that have conjugated double bonds.

* NMR spectra data provide information about atomic nu-
clei (e.g., the carbon-hydrogen framework of a com-
pound). Advanced techniques, 2D and 3D-NMR, fur-
ther enable the characterization of complex molecules
such as natural products, proteins, and nucleic acids.

The obtained spectra data are widely used across chem-
istry, biology, and related fields, akin to a “molecular micro-
scope” that enables researchers to explore the unseen. These
spectral data are often presented as plots or graphs that visu-
ally represent the relationship between intensity and a specific
variable, such as wavelength, wavenumber, or mass-to-charge
ratio (m/z), as demonstrated on the left part of Figure 2. Stud-
ies involving these data are generally divided into two main
categories:

o Forward Problem: predicting a spectrum based on
molecular structure information. While spectroscopy
devices can generate spectra from molecular samples,
solving the Forward Problem (structure-to-spectrum
problem) using Al models is highly valuable and offers
several key advantages. First, it reduces the need for
costly and time-consuming experimental measurements
by enabling rapid spectral predictions. Second, it en-
hances the understanding of fundamental relationships
between molecular structures and their spectral signa-
tures. Such structure-to-spectrum correlation is crucial
for scientists to know what molecule(s) are present for
drug discovery, biomarker research, natural product syn-
thesis, and other research areas [Mandelare et al., 2018].
Lastly, it expands applications beyond experimental lim-
its. Some molecules are difficult to analyze using stan-
dard spectroscopy due to low concentrations, unstable
intermediates, or extreme environmental conditions. Al
solutions enables insights into such challenging cases
where direct measurement is impractical.

e Inverse (Backward) Problem: deducing the molecular
structure based on experimentally obtained spectra, also
known as molecule elucidation, is a crucial task in life
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sciences, chemical industries, and other fields [Sridha-
ran et al., 2022a; Yao et al., 2023]. Resolving this
problem enables researchers to identify unknown com-
pounds, verify chemical compositions, and gain deeper
insights into molecular behavior, ultimately advancing
scientific discovery and industrial applications. How-
ever, molecular elucidation remains a time-consuming
and complex process that heavily relies on human exper-
tise. Identifying spectrum-to-structure correlation is par-
ticularly challenging, requiring analysts to distinguish
real peaks and accurately deduce their chemical mean-
ing. Manual interpretation is labor-intensive, has limited
scalability, and is also prone to misinterpretation due to
overlapping signals, sample impurities, and isomeriza-
tion issues. This is where Al can play a transformative
role, automating spectral interpretation, and accelerating
the resolution of inverse problems.

Note that the above definition of the forward/inverse problem
is in accordance with what is commonly referred to in the
community [Lu ez al., 2024]. However, the opposite defini-
tion exists in some contexts, e.g., in [Beck er al., 2024], where
the inverse problem focuses on predicting spectra, while the
forward problem refers to molecular deduction from given
spectra. This difference in terminology highlights the slightly
varying perspectives across disciplines and underscores the
need for clear definitions when discussing these concepts in
the context of spectroscopy and ML applications.

2.2 Roadmap of SpectraML

ML has revolutionized the way spectroscopic data is ana-
lyzed, offering new pathways to extract deeper insights, ac-
celerate workflows, and uncover patterns beyond human ca-
pability. Historically, the use of computational techniques
in spectroscopy was limited to basic pattern recognition and
property prediction tasks [Elias et al., 2004]. This changed
with the advent of deep learning and advanced ML frame-
works that have enabled transformative capabilities across the
entire spectrum analysis pipeline. For instance, CNNs excel
in tasks such as peak detection [O’Shea, 2015] and decon-
volution [Hu er al., 2024], akin to identifying features in an
image, while RNNs and transformers [Schuster and Paliwal,
19971 handle sequential spectral data, similar to interpreting
audio signals, making them suitable for reaction monitoring
and dynamic studies. For example, CASCADE [Guan et al.,
2021] accelerates the prediction of chemical shift in NMR
spectra by 6000 times comparing to the fastest DFT method,
enabling real-time NMR chemical shift predictions from sim-
ple molecular representations.

As spectroscopic datasets have grown in size and complex-
ity, ML has demonstrated exceptional scalability and adapt-
ability. The shift from early predictive models to modern
generative and reasoning frameworks, such as attention-
based transformers and foundation models, has redefined the
scope of spectral analysis. Generative models enable the
simulation of spectra based on molecular structures [Gold-
man et al., 2023], addressing the forward problem, while
reasoning-driven models tackle the inverse problem, predict-
ing molecular structures with enhanced accuracy [Alberts et

al., 2024a; Alberts et al., 2023]. More discussion regard-
ing these two types of probelms is presented in next sec-
tion. These developments have brought unprecedented preci-
sion and speed to applications ranging from molecular char-
acterization to reaction pathway prediction. For example,
IMPRESSION [Gerrard et al., 2020] predicts NMR parame-
ters with near-quantum chemical accuracy while accelerating
computational time from days to seconds.

3 SpectraML Methodologies Summary

In this section, we present a detailed discussion of the ma-
chine learning methodologies that address the twin chal-
lenges: the forward (molecule-to-spectrum) and inverse
(spectrum-to-molecule) problems. Our discussion is orga-
nized around four core components. We begin by examin-
ing the data representations and preprocessing strategies that
serve as the foundation for effective spectral modeling. We
then focus on the forward problem of predicting spectral sig-
natures from molecular structures, followed by a discussion
of the inverse problem of inferring molecular structures from
spectral data. Finally, we describe emerging unified frame-
works and cross-modal integration approaches that promise
to address both challenges simultaneously. A summary of the
discussed work is presented in Table 1.

3.1 Data Representations and Preprocessing

The quality of spectral analysis is fundamentally determined
by how both molecular and spectral data are represented and
preprocessed. In SpectraML, spectral data may be expressed
as vectors, sequences, or images, while molecular structures
are encoded using vector-based descriptors, simplified molec-
ular input line entry system (SMILES) strings, 2D graphs, or
3D coordinates. Such diverse representations are essential
for capturing the intricate details of molecular interactions.
However, the high-dimensional and heterogeneous nature of
spectral data, combined with challenges such as noise, base-
line drift, and instrument variability, demands robust prepro-
cessing pipelines. Early work demonstrated that conventional
normalization and alignment techniques were insufficient for
fully preserving the chemical information embedded in these
datasets. Recent studies, including those by [Gastegger et
al., 2017; Gerrard et al., 2020], have underscored the im-
portance of integrating domain-specific knowledge, such as
physics-informed normalization and tailored feature extrac-
tion into the preprocessing stage. More recent work, such
as [Alberts etr al., 2024a; Alberts et al., 2024b], is build-
ing a large-scale spectral dataset and harnessing the power of
transformer-based models to map the latent representations of
spectral data, thereby paving the way for robust and general-
izable spectral analysis frameworks. These advances ensure
that the learned representations are both resilient to exper-
imental artifacts and chemically meaningful, thereby estab-
lishing a strong foundation for addressing both forward and
inverse tasks.

3.2 Forward Problem: Molecule-to-Spectrum

The forward problem in SpectraML aims at predicting spec-
tral information directly from known molecular structures,
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Figure 2: (Top) Overview of SpectraML, translating between Spectrum Space and Molecule Space. (Middle and Bottom) Illustration of
key tasks in SpectraML, including their inputs, outputs, and the machine learning models used for mapping them, such as Random Forest,
Feed Forward Networks (FFN), Variational Autoencoders (VAE), Transformers, Graph Neural Networks (GNN), and Foundation Models.

serving as an efficient alternative to computationally expen-
sive quantum-chemical simulations and laborious experimen-
tal measurements. Forward-problem can also be extended to
extract critical spectral features and related chemical proper-
ties. Therefore, the input of these ML-empowered solutions
consists of molecules represented in different forms, such as
SMILES strings, molecular graphs, or three-dimensional co-
ordinates. The output can be either full spectra across dif-
ferent modalities (MS, NMR, IR, Raman, UV-Vis) or specific
spectral features and chemical properties relevant to the target
application. These ML approaches typically adopt an en-
coding—prediction framework, which predicts spectral fea-
tures or related chemical properties in forms of regression or
classification. In such architectures, the encoder transforms
the molecular structure into a latent feature space that cap-
tures its essential chemical characteristics. The subsequent
prediction stage then leverages this representation to predict
partial spectra or specific spectral properties, depending on
the target modality. While encoding and prediction are often
implemented and trained end-to-end within a single model,
without a strict separation (as demonstrated in example tasks
D and E in Fig. 2), we structure the following discussion of
related work based on the various forms of input and output
involved in these problems, as they directly influence the se-
lection and design of applicable machine learning models.

Input Encoding. As summarized in Table 1, the in-
put to the forward problem is often in the form of vector-
based molecular features/descriptors, 2D, or 3D molecular
graphs. This determines the choice of encoding, which is
typically implemented as an MLP for vector-based molecu-
lar features/descriptors and a GNN for 2D and 3D molecu-
lar graphs. While vector representations are straightforward
to handle, molecules represented as graphs require more so-
phisticated processing. Message-passing layers within GNNs
effectively capture the structural and relational information
between atoms and bonds. These graph-based encoders are
typically paired with regression or classification modules to
predict continuous properties, such as 'H and '*C chemi-

cal shifts [Guan et al., 2021; Kwon et al., 2020; Kang et al.,
2020; Jonas and Kuhn, 20191, or to learn spectral features like
excitation energies and spectral line shapes [McNaughton et
al., 2023; Chen et al., 2022; Singh et al., 2022]. Alternatively,
encoders may utilize direct coordinate-based features. For ex-
ample, physics-informed neural networks extract vibrational
properties directly from atomic coordinates—integrating ex-
perimental observations with quantum chemical insights—to
predict key quantities such as dipole moment derivatives and
polarizability tensors [Schiitt e al., 2021; Gastegger et al.,
2021; Chen et al., 2024; Sowa and Rossky, 2024].

Output Prediction. The “Task Type” and “Output” col-
umn in Table 1 for the forward problem indicate that the out-
put prediction is mostly in the form of regression. For exam-
ple in MS prediction, molecular substructures are mapped to
fragment m/z values and intensities. In NMR spectroscopy,
three-dimensional molecular graphs serve as inputs to predict
continuous *H and '3C chemical shifts, which in turn enables
the accurate prediction of coupling constants and supports
MAS-based spectral reconstructions [Cordova et al., 2023].
For IR, Raman, and UV spectroscopy, the prediction stage
typically employs regression or classification layers to gener-
ate vibrational properties. In particular, key quantities—such
as dipole moment derivatives and polarizability tensors—are
predicted to capture the essential physical characteristics of
the molecules [Schiitt et al., 2021; Gastegger et al., 2021,
Chen et al., 2024; Sowa and Rossky, 2024]. For ultra-
violet and electronic spectra, excitation energies and spec-
tral line shapes are predicted [McNaughton et al., 2023;
Chen et al., 2022; Singh et al., 2022]. The prediction could
also involve validating subformulas and predicting discrete
spectral features [Goldman er al., 2023; Zhu et al., 2020;
Young et al., 2024; Park et al., 2024; Zhu and Jonas, 2023;
Murphy et al., 2023; Goldman et al., 2024], with some ap-
proaches further extending the framework to perform joint
property prediction [Voronov er al., 2022]. The output can
also take the form of a sequence of spectral tokens [Wei et al.,
2019]. In this case, a generative model is employed to map a
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SMILES string to the full spectrum, enabling sequence-based
spectral prediction.

Extension of Forward Problems. Beyond simulat-
ing spectral profiles, these forward-modeling approaches
also support property-focused tasks: classification models
can reveal reaction behaviors in MS-based reactivity anal-
yses [Fine et al., 2020al, while hybrid ML-first-principles
methods utilize IR data to infer adsorption energies and bond
strengths [Du et al., 2023]. Additional efforts have extended
these frameworks to predict other physicochemical parame-
ters, such as logD values at various pH levels [Leniak et al.,
2024], thereby supporting broader applications in drug dis-
covery, catalyst design, and materials optimization.

3.3 Inverse Problem: Spectrum-to-Molecule

The inverse problem in spectral analysis aims at inferring a
molecular structure directly from its measured spectrum, pro-
viding a complementary approach to traditional structure elu-
cidation methods. In this task, the input consists of spec-
tral measurements that can vary widelyfrom one-dimensional
NMR signals and high-dimensional spectral vectors to image-
like two-dimensional matrices (e.g., from NMR or IR) and
sequential data from mass spectrometry (MS). The output is
the predicted molecular structure, commonly represented as
a molecular graph or an SMILES string. ML approaches
to the inverse problem typically adopt either an encod-
ing—decoding scheme, where the spectral data is transformed
into a latent representation and then decoded into a molecular
structure (e.g., task B in Fig. 2), or an encoding—prediction
framework, which directly predicts molecular substructures
or functional groups from the spectral features (e.g., task C
in Fig. 2). In such architectures, the encoder processes the
input spectra to capture the critical information necessary for
structure elucidation, and the subsequent decoder or classifier
reconstructs the corresponding molecular representation.
Input Encoding. As presented in the bottom part of Ta-
ble 1, the input to inverse modeling typically consists of
one-dimensional *H or '3C NMR spectra, which are sig-
nals along a single frequency axis, representing the chemi-
cal shift of the nuclei being observed, and often represented
as high-dimensional vectors. For example, [Hu et al., 2024]
employs a multitask, transformer-based model to encode 1D
NMR signals into a latent space, facilitating the reconstruc-
tion of full molecular structures and substructure arrays. Sim-
ilarly, [Huang et al., 2021] integrates convolutional neural
networks with beam search to process spectral inputs, pre-
dicting substructure probabilities and iteratively assembling
complete molecular graphs. In another approach, [Yao et al.,
2023] leverages a bidirectional, auto-regressive transformer
(BART) [Lewis, 2019] that is pre-trained on large-scale
molecular data and fine-tuned with '3C NMR constraints.
Additional methods, such as that of [Alberts et al., 2023],
tokenize NMR spectral features into sequences for encoding,
while [Sridharan et al., 2022b] combines Monte Carlo Tree
Search with graph convolutional networks to iteratively build
molecular graphs guided by spectral cues. These encoder de-
signs are crucial for capturing both local and global spectral
patterns that underpin accurate molecular reconstruction.
Output Decoding and Prediction. When the output of the

inverse problem is a molecular structure, the task becomes a
generative problem, where the decoder functions as a gener-
ator to reconstruct the molecular structure from spectral data,
either as a sequence of tokens representing SMILES strings or
by progressively constructing molecular graphs. For instance,
[Alberts et al., 2023] utilizes a transformer decoder to con-
vert tokenized NMR or IR spectra into SMILES strings, treat-
ing each spectral absorption value as a sequence element in a
translation-like process. Similarly, [Jonas, 2019] frames the
molecule reconstruction task as a Markov decision process
(MDP) and incrementally reconstructs the molecule through
a relation network. Moreover, additional constraints can be
incorporated to refine the generative process; for example,
[Sun et al., 2024] couples generative models with contrastive
retrieval to enhance candidate matching accuracy, [Zheng et
al., 2024] focuses on classifying seized substances from 'H
and '3C NMR data, and [Tian et al., 2024] verifies proposed
structures through joint analysis of image-like spectral data
and graph-based molecular features.

Alternatively, an encoding—prediction framework maps
the spectral representation to discrete structural elements,
such as molecular substructures or functional groups, without
generating an entire molecular structure. In this paradigm,
the model deduces how atoms and functional groups are ar-
ranged to produce the observed spectral features, a capability
that is particularly valuable for applications ranging from nat-
ural product identification to forensic analysis. For example,
in MS context, MEDUSA [Boiko et al., 2022] and CANO-
PUS [Diihrkop er al., 2020] incorporate classification and
ranking layers to discriminate between candidate metabolites
based on MS and MS/MS features, while CandyCrunch [Ur-
ban et al., 2024] predicts glycan topologies by analyzing tan-
dem MS data. In IR spectroscopy, CANDIY-spectrum [Fine
et al., 2020b] and CNN-based methods [Enders et al., 2021]
focus on identifying diagnostic functional groups from char-
acteristic absorption patterns. Similarly, transformer-based
networks for NMR leverage 'H and '3C spectra to predict
both key substructures and complete molecular formulas for
robust classification and reconstruction [Huang er al., 2021;
Hu et al., 2024; Alberts et al., 2023]. By directly extract-
ing these critical features, the encoding—prediction paradigm
offers an interpretable and efficient alternative to generative
approaches for structure elucidation.

Extension of Inverse Problems. Beyond full structure
elucidation, inverse SpectraML can be extended to recover
detailed substructural information and functional group clas-
sifications that are essential for rapid compound identifica-
tion and downstream analysis. For instance, sequence-to-
sequence models applied to MS/MS data—such as those
demonstrated in Casanovo [Yilmaz et al., 2022]—and hybrid
systems that combine substructure detection with full struc-
ture generation [Kim et al., 2023; Yao et al., 2023] further en-
hance compound identification when integrated with spectral
databases, as seen in CFLS [Sun et al., 2024]. These extended
approaches broaden the applicability of inverse SpectraML to
diverse fields, from natural product discovery and metabolite
screening to forensic investigations, thereby significantly re-
ducing the reliance on time-intensive manual verification.
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\ Forward Problem: Molecule-to-Spectrum Prediction

Paper
\ Task Type Input Output Model Dataset
Vector-Based Molecular Representations
[Binev e al., 2007] REG Molecular features Chem. shift, Coupling const. ASNN Custom
[Gastegger et al., 2017] REG 3D coordinates Simulated IR spectrum MLP Custom
[Gerrard et al., 2020] REG Coulomb matrix Chem. shift, Coupling const. KRR CSD subset
[Ye et al., 2020] REG Coulomb matrix IR properties MLP Custom
[Chen et al., 2022] REG Bispectrum components Vertical excitation energy LASSO Custom
[Lin et al., 2022] REG Geometric descriptors Chemical shift MLP Custom
[Sowa and Rossky, 2024] REG Geometric descriptors Polarizability tensor KRR Custom
[Ho Manh et al., 2024] REG Molecular features Vacuum UV spectrum Random Forest Custom
2D Graph-Based Molecular Representations
[Jonas and Kuhn, 2019] REG 2D graph Chemical shift GNN NMRshiftdb2
[Kwon et al., 2020] REG 2D graph Chemical shift GNN NMRshiftdb2
[Kang et al., 2020] REG 2D graph Chemical shift GNN NMRshiftdb2
[Zhu et al., 2020] REG 2D graph MS peaks vector GNN NIST17
[Young et al., 2024] REG 2D graph MS peaks vector Transformer NIST20
[Goldman et al., 2023] CLS, REG 2D graph Subformula classification GNN NIST20, NPLIB1
[Zhu and Jonas, 2023] REG 2D graph MS peaks vector GNN NIST17
[Murphy e al., 2023] CLS, REG 2D graph Subformula classification GNN NIST20
[Park et al., 2024] REG 2D graph MS peaks vector GNN NIST20
[Goldman et al., 2024] REG 2D graph MS peaks vector GNN NIST20
3D Molecular Representations
[Gastegger er al., 2021] REG 3D graph Multiple spectral properties GNN MD17
[Schiitt ez al., 2021] CLS 3D graph Peptide-spectrum matches GNN MD17, QM9
[Guan et al., 2021] REG 3D graph Chemical shift GNN NMRshiftdb2
[Singh er al., 2022] REG 3D graph Excitation spectrum GNN QM9
[Chen et al., 2024] REG 3D graph Energy, forces, dipole moments GNN Custom
SMILES Representations
[Wei et al., 2019] | GEN SMILES Seq (EI-MS) prediction MLP NIST17
P | Inverse Problem: Spectrum-to-Molecule Prediction
aper
‘ Task Type Input Output Model Dataset
NMR Spectral Representations
[Jonas, 2019] GEN Formula + NMR vector Molecule Graph GNN NMRshiftdb
[Sridharan et al., 2022b] GEN NMR Vector Molecule Graph GCN NMRshiftdb2
[Yilmaz et al., 2022] GEN MS Seq SMILES Seq Transformer DeepNovo
[Kim et al., 2023] CLS NMR image Molecule structure classification CNN Custom
[Yao er al., 2023] GEN NMR Seq SMILES Seq Transformer CReSS
[Alberts et al., 2023] GEN NMR sequence SMILES sequence Transformer Pistachio
[Hu et al., 2024] GEN NMR vector SMILES sequence Transformer SpectraBase
[Leniak er al., 2024] REG NMR vector LogD value SVR SpecFAI
[Yan et al., 2024] GEN Low-resolution NMR image High-resolution image GAN Custom
[Guo et al., 2024] GEN,REA IR, NMR, MS image SMILES sequence MLLM MolPuzzle
[Su et al., 2024] GEN,REA BitMap image Molecule Graph LLM Custom
Other Spectral Representation
[Wei et al., 2019] REG MS vector Intensity values MLP NIST2017
[Fine et al., 2020b] CLS IR/MS vector Functional group classification MLP CANDIY
[Fine et al., 2020a] CLS MS vector Reaction classification Decision Tree MoP
[Enders et al., 2021] CLS IR image Functional group classification CNN FTIRML
[Alberts et al., 2024al GEN, REA IR Seq SMILES Seq Transformer NIST2010

Table 1: Summary of ML approaches in spectral analysis categorized into Forward Problems (molecule-to-spectrum) and Inverse Problems
(spectrum-to-molecule). Studies are grouped by input representation. Task types are annotated regarding output: CLS (Classification), REG
(Regression), and GEN (Generation) REA (Reasoning). Papers in each section are ordered by year of publication.

3.4 Unified Frameworks and Cross-Modal
Integration

Recognizing that forward and inverse problems share com-
mon underlying chemical principles, recent research has be-
gun to develop unified frameworks capable of addressing
both tasks concurrently. Foundation models pre-trained on
large, heterogeneous spectral datasets are at the forefront of
this endeavor. These models leverage cross-domain learn-
ing to capture shared features across diverse modalities, such
as IR, NMR, MS, and Raman—thereby enabling few-shot
and zero-shot learning capabilities [Bommasani e al., 2021].
Concurrently, physics-informed generative models, includ-

ing diffusion models and GAN-based super-resolution tech-
niques, have been introduced to synthesize high-fidelity spec-
tra while respecting known chemical constraints [Cordova
et al., 2023]. Hybrid architectures that combine the rela-
tional modeling strength of GNNs with the sequence mod-
eling capabilities of transformers offer a particularly promis-
ing route toward integrated spectrum analysis [Young et al.,
2024]. Moreover, foundation models are steering the ad-
vancement of reasoning-driven spectrum analysis, partic-
ularly in complex inference tasks such as spectral decon-
volution, peak assignment, and spectral consistency valida-
tion [Guo et al., 2024; Su et al., 2024; Alberts et al., 2024b].
These models can reason about ambiguous spectra by lever-
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https://www.sisweb.com/software/ms/nist17.pdf
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aging prior chemical knowledge to infer plausible molecular
structures, resolve overlapping spectral features, and predict
missing spectral regions. By unifying forward and inverse
tasks within a single framework, these emerging approaches
not only alleviate issues of data scarcity through synthetic
data generation but also enhance model robustness and inter-
pretability. This integrated perspective is poised to accelerate
discovery in diverse domains such as drug development, ma-
terials science, and environmental monitoring.

4 Challenges and Opportunities

4.1 Data Quality, Scarcity, and Complexity

SpectraML faces several interrelated challenges arising from
the inherent nature of experimental spectral data and the limi-
tations of current ML approaches. First, the variability in data
quality is a significant obstacle. Experimental spectra are of-
ten compromised by noise, baseline drifts, and instrument-to-
instrument discrepancies, leading to inconsistencies in spec-
tral resolution and intensity. Such variability complicates
model training and can severely degrade the predictive per-
formance of ML algorithms—especially when preprocessing
pipelines are insufficiently robust. Moreover, the scarcity and
imbalance of high-quality, annotated spectral datasets, par-
ticularly for rare or complex compounds, further exacerbate
the issue. The limited availability of training data not only
hinders the generalization of models across diverse chemical
spaces but also increases the risk of overfitting, necessitating
strategies such as data augmentation and transfer learning.

In addition to data quality challenges, the intrinsic com-
plexity of spectral data presents a formidable hurdle. Spectral
measurements typically exhibit high dimensionality and over-
lapping peaks, making feature extraction a nontrivial task.
Current ML models often struggle to capture the nuanced,
high-dimensional patterns inherent in such data, which leads
to suboptimal performance in tasks like peak detection and
feature discrimination. Furthermore, many existing architec-
tures are not designed to fully leverage the domain knowledge
embedded in spectroscopic data, thereby limiting their ability
to exploit underlying chemical and physical principles.

A further challenge arises from the need to integrate data
from multiple spectroscopic techniques (e.g., IR, MS, and
NMR), each characterized by distinct scales, formats, and
noise properties. Developing effective fusion strategies to
reconcile these differences into a unified model is nontriv-
ial. Most current ML architectures are optimized for single-
modality inputs and often fail to capture the critical cross-
domain relationships needed for accurate spectral analysis.
Additionally, achieving model interpretability—so as to pro-
vide meaningful insights into the underlying chemical phe-
nomena—requires a careful balance between model com-
plexity and transparency. Addressing these challenges is cru-
cial for advancing the state of SpectraML and ensuring that
ML-driven approaches can fully harness the rich information
contained in spectral data.

4.2 Opportunities and Emerging Paradigms

Synthetic Data Generation and Physics-Informed Meth-
ods. To address challenges stemming from scarce and vari-
able spectral data, Al-based generative models—such as

large language models (LLMs) and diffusion models—have
emerged as effective tools for advanced data augmenta-
tion [Luo et al., 2023; Bushuiev et al., 2024]. These models
can learn complex, high-dimensional distributions from ex-
perimental spectra and subsequently generate synthetic data
that mirrors key structural patterns and nonlinear dependen-
cies [Alberts et al., 2024a; Alberts et al., 2024b]. Such syn-
thetic spectra can supplement limited training sets, improving
model robustness and generalization.

Incorporating physics-informed constraints—such as con-
servation laws, known intensity ratios, and chemical shift
rules—into the generative process further enhances the real-
ism and interpretability of the outputs. These priors guide the
model toward producing chemically valid spectra, offering
a compelling alternative to traditional simulation techniques
like DFT or molecular dynamics. This hybrid strategy not
only mitigates data scarcity but also reduces computational
cost, facilitating faster iteration in applications ranging from
materials science to pharmaceutical research.

Foundation Models: A New Paradigm for SpectraML.
Foundation models [Bommasani et al., 2021; Moor et al.,
2023], trained on large-scale, multimodal spectral datasets
(e.g., IR, NMR, MS, Raman), offer a unified framework for
spectral analysis. By leveraging cross-domain learning, they
capture both global chemical patterns and local spectral sig-
natures, supporting few-shot and zero-shot adaptation for di-
verse tasks such as peak prediction, spectral reconstruction,
and structure inference.

These models integrate domain-specific priors directly into
their architectures, enabling both forward and inverse rea-
soning. Their advanced inference capabilities allow them to
resolve ambiguous or overlapping spectral signals through
multi-step reasoning and modality fusion. Built-in mecha-
nisms for uncertainty quantification and error detection en-
hance model reliability and interpretability. Overall, founda-
tion models provide a flexible, data-efficient, and explainable
approach to tackling both conventional and novel challenges
in spectral learning.

5 Conclusion

The SpectraML establishes a crucial intersection between
machine learning and spectroscopy. In this work, we pro-
vide a comprehensive overview of SpectraML and present
a unified roadmap that traces methodologies across multiple
spectroscopic techniques and categorizes key advancements
in forward and inverse problems. To support future research,
we highlight emerging trends such as generative modeling
and foundation models and release an open-source repository.
This survey serves as a valuable resource for researchers in
both chemistry and Al, fostering interdisciplinary collabora-
tion and driving innovation in spectral analysis.
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