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Abstract

Generating high-fidelity talking heads that main-
tain stable head poses and achieve robust lip sync
remains a significant challenge. Although meth-
ods based on 3D Gaussian Splatting (3DGS) of-
fer a promising solution via point-based deforma-
tion, they suffer from inconsistent head dynamics
and mismatched mouth movements due to unstable
Gaussian initialization and incomplete speech fea-
tures. To overcome these limitations, we introduce
SyncGaussian, a 3DGS-based framework that en-
sures stable head poses, enhanced lip sync, and re-
alistic appearances with real-time rendering. Sync-
Gaussian employs a stable head Gaussian initial-
ization strategy to mitigate head jitter by optimiz-
ing commonly used rough head pose parameters.
To enhance lip sync, we propose a sync-enhanced
encoder that leverages audio-to-text and audio-to-
visual speech features. Guided by a tailored cosine
similarity loss function, the encoder integrates dis-
criminative speech features through a multi-level
sync adaptation mechanism, enabling the learning
of an adaptive speech feature space. Extensive ex-
periments demonstrate that SyncGaussian outper-
forms state-of-the-art methods in image quality, dy-
namic motion, and lip sync, with the potential for
real-time applications.

1 Introduction

Given a speaker and arbitrary speech, talking head genera-
tion aims to synthesize lifelike talking heads. It has diverse
applications such as digital assistants [Zhu et al., 2021], an-
imation movies [Zhong et al., 2023] and video editing [Ma
et al., 2023]. Despite significant efforts to generate high-
fidelity talking heads, ensuring stable head poses and accurate
mouth movements while achieving real-time rendering speed
remains a formidable challenge. This problem becomes even
more pronounced in cross-domain speech driven scenarios,
such as those involving different languages and genders.
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Figure 1: Our SyncGaussian outperforms NeRF and 3DGS methods
in synthesizing stable and synchronized talking heads. Across both
in-domain (self-reconstruction) and cross-domain (speech from dif-
ferent genders, languages, etc.) scenarios, our method demonstrates
significant improvements in lip sync and visual quality.

Traditional generative methods based on Generative Ad-
versarial Networks (GANs) [Wang er al., 2023] excel in
modeling mouth movements but struggle to maintain identity
consistency across frames. Recently, emerging approaches
based on Neural Radiance Fields (NeRF) [Peng et al., 2024;
Li et al., 2023; Shen et al., 2022] have succeeded in achieving
photorealistic rendering by directly modifying density and
color through implicit functions. Despite their ability to pro-
vide dynamic speech-lip synchronization and preserve facial
details, NeRF methods suffer from slow inference speed and
cannot accurately fit rapidly changing facial motions. More
recently, 3D Gaussian Splatting (3DGS) [Kerbl et al., 2023]
has been introduced for talking head generation, significantly
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improving rendering speed and adapting well to abrupt ap-
pearance changes. However, most 3DGS-based methods
[Chen er al., 2024a; Li er al., 2024] consider only audio-
to-text or audio-to-visual speech features. This incomplete
speech condition results in mismatched mouth movements,
inherently constraining the potential for achieving optimal lip
sync performance. Additionally, these methods typically em-
ploy initialization strategies based on sparse 3D Morphable
Models (3DMM) [Paysan et al., 2009] head pose parameters.
Relying on sparse parameters for head Gaussian initialization
leads to unstable head poses, ultimately compromising the
overall image quality.

In this paper, we introduce SyncGaussian, a real-time
3DGS-based talking head generation framework. SyncGaus-
sian addresses the challenge of unstable head poses with a
stable head Gaussian initialization strategy and proposes a
sync-enhanced encoder to enhance universal lip sync perfor-
mance. As shown in Figure 1, our method can generate real-
istic talking heads while ensuring robust lip sync across dif-
ferent speech-driven scenarios.

Specifically, in the stable head Gaussian initialization strat-
egy, we use head-motion and head-points trackers to extract
rough head pose parameters and dense facial keypoints. By
applying a joint adjustment strategy, we achieve stable head
pose parameters. Subsequently, 3DGS is applied to these pa-
rameters to initialize stable head Gaussian fields. To achieve
universal lip sync across diverse speech-driven scenarios, we
propose a sync-enhanced encoder that harnesses the advan-
tages of audio-to-text speech features from Hubert [Hsu et
al., 2021] and audio-to-visual speech features from Audio-
Visual Encoder (AVE) [Peng et al., 2024]. These features are
integrated into a sync adaption mechanism, facilitating the
learning of an adaptive speech feature space. Then, we im-
plement point-wise deformation utilizing Gaussian primitives
and condition sets to predict the positional displacements and
shapes of the talking head, thereby accurately capturing fa-
cial dynamics within complex motion fields. Finally, the de-
formed primitives are processed through the 3DGS rasterizer,
achieving high-fidelity rendering of the target talking heads.

The main contributions are as follows:

* We propose a sync-enhanced encoder that integrates
audio-to-text and audio-to-visual speech features. By
employing a sync adaptation mechanism, it learns a ro-
bust speech feature space to address the problem of in-
complete speech feature learning, enhancing lip sync in
various speech-driven scenarios.

¢ We introduce a stable head Gaussian initialization strat-
egy in Gaussian field, optimizing sparse head pose pa-
rameters to ensure smooth and stable head movements.

* Extensive experiments demonstrate that the proposed
SyncGaussian can render talking heads with stable head
poses in real-time while excelling in lip sync perfor-
mance. All key metrics—image quality, dynamic mo-
tions, and lip sync—surpass other SOTA methods.

2 Related Work

2.1 Audio-Driven Talking Head Generation

Talking head generation aims to map acoustic features to
time-aligned facial motions [Zhou et al., 2021; Zhang et
al., 2021; Chen et al., 2020], and it can learn interac-
tive information from multi-modal spaces [Wei er al., 2023;
Weietal.,2021a; Liu et al., 2024; Wei et al., 2020; Wei et al.,
2021b]. Extensive research has been conducted on 2D-based
methods [Du et al., 2023; Prajwal et al., 2020]. However,
due to the absence of an explicit 3D structure, these 2D-based
methods fall short in maintaining naturalness and consistency
when the head pose undergoes variations.

In contrast, NeRF-based frameworks [Guo et al., 2021;
Liu et al., 2022; Peng et al., 2024] are another promising di-
rection and have been widely explored in audio-driven talk-
ing head generation. Previous NeRF-based methods grap-
ple with the significant computational overhead inherent in
vanilla NeRF implementations. Utilizing audio as a driving
force, RAD-NeRF [Tang et al., 2022] and ER-NeRF [Li et
al., 2023] have achieved remarkable strides in both visual fi-
delity and operational efficiency. SyncTalk [Peng et al., 2024]
introduces an audio-visual encoder to bolster the generaliz-
ability of cross-domain audio inputs. However, while NeRF-
based methods deliver photorealism and multi-view consis-
tency, they struggle to smoothly represent facial motions, re-
sulting in distorted features due to the complexity of learning
discontinuous appearance changes. Compared to these meth-
ods, our SyncGaussian utilizes 3DGS to maintain accurate
head structures, simplifying the learning complexity of facial
motions through pure deformation representation.

2.2 3DGS-based Talking Head Generation

3D Gaussian Splatting (3DGS) [Kerbl ef al., 2023] presents
a direct, point-based representation for radiance fields. It
simplifies deformation by directly modifying a set of Gaus-
sian primitives, enabling efficient warping of the canonical
field. 3DGS introduces 3D Gaussians as a distinct discretiza-
tion scheme for scene representation, enabling differentiable
optimization of parameters via anisotropic splatting. Com-
pared to traditional volume rendering of implicit neural ra-
diance fields, 3DGS minimizes extraneous spatial computa-
tions and leverages a parallelized, visibility-centric render-
ing process. Some works have successfully employed 3DGS
in facial animation [Chen et al., 2024b], yielding promis-
ing results. In talking head generation, 3DGS has emerged
as a novel technology [Li er al., 2024; Chen et al., 2024a;
Cho et al., 2024]. These methods excel in both rendering
speed and synthesis quality.

However, due to the incomplete speech features and the
unstable Gaussian initialization strategy, these methods suf-
fer from head instability and limited lip sync performance. In
this paper, we introduce SyncGaussian, a framework that not
only maintains real-time rendering speed and synthesis qual-
ity but also effectively mitigates head jitters and significantly
enhances both in-domain and cross-domain lip sync accuracy.
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Figure 2: Overview of SyncGaussian. Given a reference video I}, and the speech S, SyncGaussian can extract sync-enhanced speech
feature a, expression feature e, and persistent Gaussian fields parameters 65 and #% . The parallel Tri-Plane Hash encoders and the MLPs
jointly predict the point-wise deformation with a and e. Finally, the 3DGS rasterizer renders the modified 3D Gaussian primitives into 2D
views I7,.. and I, from the given camera. These 2D images and the background Iy, are fused to create the full talking head Iy, .
Stage 1 involves stable head Gaussian initialization, Stage 2 encompasses the deformation process, and Stage 3 focuses on color fine-tuning.

3 Method

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [Kerbl et al., 2023] employs a
collection of 3D Gaussians to represent 3D information, com-
prising a unique set of distributions that capture spatial de-
tails effectively. Utilizing a collection of 3D Gaussian prim-
itives ¢ alongside camera model parameters tailored to ob-
serving view, it computes the color C' for each pixel in the
rendered image. A Gaussian primitive consists of a scaling
factor s € R3, a rotation quaternion ¢ € R*, a mean position
u € R3, an opacity value o € R, and a Z-dimensional color
feature f € RZ. Therefore, the i*"* Gaussian primitive G; can
be represented by 0; = {u;, s, qi, s, fi }. With the covari-
ance matrix »_, which can be decomposed into s and ¢, G; is
calculated as follows:

G (x) = e bom "L (@ — ), (1)

For each pixel x,, on the image, a 3DGS rasterizer is used to
gather NV Gaussians following the camera model to compute
the color C:

@)

Cley) =S ea [[(1—dy).

iEN j=1

where c is the decoded color, & refers to the projected opacity.
The opacity A € [0,1] of z,, is:

A=Y a [0 -a).

iEN  j=1

3

3.2 Sync-Enhanced Encoder

Existing methods based on NeRF or the emerging 3D Gaus-
sian Splatting (3DGS) consistently rely on pre-trained speech

extractors such as Audio-Visual Encoder (AVE) [Peng er
al., 2024], DeepSpeech [Amodei et al., 2016], Wav2Vec 2.0
[Baevski et al., 20201, or Hubert [Hsu et al., 2021].
Pre-trained on the audio-visual synchronization dataset
LRS2 [Afouras er al., 2018], AVE adeptly learns the feature
from audio to mouth movements. While it excels at learn-
ing rich audio-to-visual features, it notably lacks in captur-
ing audio-to-text features. This limitation significantly hin-
ders its ability to generalize across different speech-driven
scenarios. Audio-to-text speech extractors can learn gen-
eral speech features, such as linguistic and prosodic features
[Liu et al., 2023], which are closely related to mouth move-
ments. In Section 4.2, we demonstrate that among differ-
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Figure 3: The detailed structure of the Sync-Enhanced Encoder.
© is the subtraction operator, ® refers to the element-wise multipli-
cation. The sync-encoder consists of the Convld (C1D) layer, Lay-
erNorm (LN) layer, and LeakyRelu (LR) activation function. FC
represents the fully connected layer.

ent audio-to-text speech extractors, Hubert performs the best
in lip sync, which is consistent with the results of [Chen et
al., 2024a]. Therefore, as shown in Figure 3, we propose
a Sync-Enhanced Encoder that adaptively incorporates dis-
criminative speech features, enhancing the lip sync perfor-
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mance across different speech-driven scenarios.

Specifically, we first utilize frozen Hubert and AVE to
extract speech features with different distributions from the
same speech S. The learnable audio-to-text speech features,
denoted as a},,,, are obtained through a combination of one-
dimensional convolutional layers, the LeakyReLU activation
function, and fully connected layers. The learnable audio-
to-visual features, denoted as al,,., are obtained using the
LeakyReLU activation function and fully connected layers.
Then, in the sync adaption mechanism, a subtraction oper-
ator is applied to a},, and al,, to generate discriminative
features. These features are then fed into the sync-encoder,
which adapts its output to a’,, . using an element-wise multi-
plication operator. To effectively integrate the discriminative
feature while maintaining audio-visual consistency, this oper-
ation is performed sequentially three times. Finally, the adap-
tive speech feature space a is learned under the supervision
of a cosine similarity loss Lyp:

Lan =1 —cos (a7 a(we) , 4)

where a and a4, are processed by o’ and al,, through the
Match-ATT in Figure 2. Match-ATT [Guo et al., 2021; Shen
et al., 2022; Tang et al., 2022] is used to ensure the output

dimensions align with the spatial coordinates.

3.3 Stable Head Gaussian Initialization

Previous 3DGS-based methods directly use 3DMM models to
estimate head poses. However, due to the complexity of head
dynamics, learning deformations directly from these sparse
parameters often results in head jitter. In Figure 2, we com-
bine the head-motion tracker and head-points tracker to gen-
erate stable head poses following [Peng et al., 2024], a tech-
nique utilized in NeRF. Based on this, we use vanilla 3D
Gaussian Splatting (3DGS) to initialize a stable head Gaus-
sian field.

To initially estimate the head pose, we iteratively deter-
mine the optimal focal length within a predefined range, re-
quiring ¢ iterations. For each focal length candidate foc;, we
re-initialize the rotation and translation values. The optimal
focal length foc,p: is obtained by minimizing the error be-
tween the landmarks of the reference video and the projected
landmarks extracted by 3DMM, using mean squared error as
the optimization criterion. Once foc,y: is determined, the
head-motion tracker refines the rotation and translation pa-
rameters across all frames to achieve closer alignment be-
tween the projected and actual landmarks. To enhance the
accuracy of head pose parameters, we use the head-points
tracker based on an optical flow estimation model for track-
ing facial keypoints. After acquiring the facial motion optical
flow, we apply the Laplacian filter to identify the keypoints
with the most pronounced flow variations. Subsequently, we
meticulously track the motion trajectories of these identified
keypoints within the flow sequence, ensuring a precise cap-
ture of their dynamic behavior.

Given the facial keypoints and head pose, we refine their
accuracy through a two-stage optimization approach adapted
from [Guo et al., 2021]. In the first stage, we optimize the
position of randomly initialized 3D coordinates by minimiz-
ing the Lo loss function between projected keypoints and

tracked keypoints. In the second stage, we refine the 3D key-
points and jointly optimize the associated head pose param-
eters. The algorithm adjusts the spatial coordinates, rotation
angles, and translations to minimize the alignment error using
the other Ly loss function. Finally, the generated head pose is
smooth and stable, making it suitable for 3DGS to initialize
the stable Gaussian fields 6% and 6.

3.4 3DGS for Talking Head Generation

We utilize stable head Gaussian fields in conjunction with
grid-based motion fields to achieve deformations within the
Gaussian radiance field, effectively portraying diverse head
motions in 3D space. As shown in Figure 2, the canonical pa-
rameters ¢ = {0F,0 } can preserve the persistent Gaus-
sian primitive. The coarse mean field 6 is initialized through
3DGS using stable head pose parameters. Since Gaussian
primitives lack a regional position encoding for a fully ex-
plicit spatial structure, we adopt the efficient tri-plane hash
encoder H = {H FogM } and MLPs for position encod-
ing. Given the input center y;, the motion field predicts a
point-wise deformation 6; = {67",6}} for each primitive,
representing the motion without being influenced by color or
opacity changes. J; can be calculated by:

6; = MLP (H () & C), (5)

where @ is concatenation and C'is the condition feature. Ulti-
mately, the deformed Gaussian primitives are generated from
face and mouth motion fields, utilizing the 3DGS rasterizer
to render the talking head.

To overcome the gradient vanishing issue during the learn-
ing of deformations, which arises when the target primitive
position is too far from the predicted results, we adopt an in-
cremental sampling strategy from [Li er al., 2024]. Based
on the detected action units and landmarks, we utilize m to
quantify how much each facial motion deviates from its orig-
inal or expected state. During the k*" training iteration, we
leverage a sliding window to select a vital training frame at
position j. The motion metric, m;, adheres to a predefined
condition, m; € [B; + k x T, B, + k x T, where B is the
initial lower bound of the sliding window, B, is the upper
bound, and T refers to the step length.

Due to the granularity problem caused by the motion in-
consistency between the face and the inside mouth in the grid-
based motion fields, similar to [Li et al., 2024], we use two
branches, i.e., face branch and mouth branch, to predict the
deformation respectively. These two branches are obtained
using semantic masks from the BiSeNet [Yu et al., 2018]
parser and EasyPortrait [Kvanchiani ef al., 2023]. In the face
branch, we incorporate a region attention mechanism [Li et
al., 2023] within the grid-based motion fields to enhance the
learning process for conditional deformation. This process is
guided by the speech condition a and the upper-face expres-
sion condition e. In the mouth branch, we only predict the
translation A\y; of the i primitive using the speech condi-
tion a. This simplified design is due to the relatively simple
motion patterns of the mouth, which are primarily correlated
with speech. The rendered face, mouth, and the background
are fused to generate the talking head. Therefore, the talking
head color C},qq of each pixel x,, can be represented as:
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Methods Image Quality Dynamic Motion Lip Sync
PSNR{ LPIPS| SSIM?T | LMDJ| AUE-(L/U)/J | Sync-C?t Sync-E |

Ground Truth N/A 0.000 1.000 0.000 0.000/0.000 8.192 6.307
Wav2Lip [Prajwal et al., 2020] 33.60 0.0661 0.903 3.089 0.718/- 9.429 5.245
VideoReTalking [Cheng et al., 2022] 31.48 0.0546 0.816 3.765 0.764/- 6.930 7.025
TalkLip [Wang et al., 2023] 33.16 0.0697 0.904 2.929 0.529/- 4.482 8.217
ER-NeRF [Li er al., 2023] 30.69 0.0617 0.856 3.039 0.762/1.021 5.720 8.295
SyncTalk [Peng ef al., 2024] 34.95 0.0312 0.903 2.667 0.567/0.234 7.130 7.134
TalkingGaussian [Li et al., 2024] 33.52 0.0267 0.901 2712 0.626/0.277 5.363 8.452
Ours 35.21 0.0204 0.910 2.499 0.458/0.189 7.446 6.787

Table 1: Quantitative results of the in-domain speech driven setting. The best and second-best methods are in bold and underline.

Chead (Tp) = Crace (Tp) X Aface (Tp) +
Cmouth (xp) (1 - Aface (gjp)) ) (6)

where C'yqce is the predicted face color, Ay, refers to the
opacity, and C', .+, represents the predicted mouth color.

3.5 Training Objectives

The same as the basic 3DGS optimization strategies, we train
our model in three stages. The first two stages are applied to
the face and mouth branches respectively, and the last stage
is dedicated to the fused talking head.

In the initialization stage, we employ a pixel-wise L; loss
function along with a D-SSIM term to quantify the error be-
tween the rendered image I, which is generated using the
parameters 6, and the corresponding masked ground-truth
image I,,4s for each individual branch:

LC = Ll (IC, Imask) + )\1LD7$'SU\I (IC, Imask) . (7)

In the deformation stage, we use the deformed parameters
as the input for the 3DGS rasterizer to render the output /p:

Lp =Li(Ip, Imask) + MLp—ssiv (Ip, Imask) + )\thzg)-

Ultimately, a color fine-tuning stage is undertaken to opti-
mize the talking head. We calculate the reconstruction loss
between the fused image I7, ., and the ground-truth video
frame I,iwad with pixel-wise L; loss, D-SSIM, and LPIPS
terms:

Ly =14 (I}C;ead, I}iwad) + /\1LD—SSIM (I}(I)eada I;;Lea,d)
+ XsLrprps (Ifeads Thead) s (9)

where A = {A1, A2, A3} is the weighting factors for different
loss functions. Here, A\1= 0.2, A\ = 0.5, and A3 = 0.5. Dur-
ing color optimization, we only update the color parameter f
within the set of parameters 6¢, while suspending the densi-
fication strategy employed by 3DGS to ensure stability and
precision in the color adjustment process.

4 Experiment

4.1 Experimental Settings

Dataset. To make a fair comparison, we collect four video
sequences from [Li et al., 2024; Ye et al., 2023; Peng et al.,

Audio A Audio B
Sync-C 1t Sync-E | | Sync-C T Sync-E |
VideoReTalking | 7.264 7.394 7.480 7.652

Methods

ER-NeRF 4.111 9.906 4.260 10.062
SyncTalk 7.480 7.319 7.486 7.367
TalkingGaussian | 5.097 8.928 5.764 9.107
Ours 7.898 6.702 7.871 7.044

Table 2: Results of the cross-domain speech driven setting. The
best and second-best methods are in bold and underline.

2024], including English and French. These videos consist
of one female portrait May, and three male portraits Obama,
Lieu, Macron. The average length of these video clips is
approximately 6,500 frames in 25 FPS. Three videos May,
Macron, Lieu are resized to 512x512, while Obama is re-
sized to 450x450.

Comparison Baselines. We compare our SyncGaussian
with NeRF-based methods, including ER-NeRF [Li er al.,
2023], SyncTalk [Peng e al., 2024], and GAN-based meth-
ods, such as Wav2Lip [Prajwal et al., 2020], VideoReTalking
[Cheng et al., 2022], and TalkLip [Wang et al., 2023], as well
as a 3DGS-based method, TalkingGaussian [Li et al., 2024].
The radiation field-based methods are person-specific and the
GAN-based methods are person-generic.

Methods Chinese Japanese Italian
SyncTalk 4.992 6.897 6.329
TalkingGaussian 3.967 5.439 5.675
Ours 7.221 7.430 7.642

Table 3: Exploration of cross-language settings. We report Sync-
C (higher is better) to show the lip sync accuracy. The best and
second-best methods are in bold and underline.

Implementation Details. We use PyTorch to train our
model, and take Adam and AdamW as optimizers. For a spe-
cific portrait, we train face and mouth branches for 60,000
iterations, then jointly fine-tune 15,000 iterations. All exper-
iments are performed on a NVIDIA RTX A6000 GPU. The
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Figure 4: Qualitative comparison under in-domain speech driven setting. Please zoom in for better visualization.

average inference speed is 105 FPS and the overall training
time is around 0.6 hours.

4.2 Quantitative Evaluation

Evaluation Metric. To comprehensively evaluate the per-
formance of our method, we employ three distinct sets of
evaluation metrics: (1) PSNR, LPIPS [Zhang et al., 2018],
and SSIM [Wang et al., 2004] for image quality; (2) LMD
[Chen er al., 2018], upper-face action unit error (AUE-U) and
lower-face action unit error (AUE-L) extracted by OpenFace
[Baltrugaitis ef al., 2016] for dynamic motion; (3) The confi-
dence score (Sync-C) and error distance (Sync-E) of SyncNet
[Chung and Zisserman, 2017] for lip sync accuracy.

Speech Extractors Sync-C t Sync-E |
DeepSpeech 5.612 8.452
Wav2Vec 2.0 5.776 8.129
Hubert 6.080 7.926

Table 4: Exploring different audio-to-text speech extractors. The
best results are in bold.

Comparison Settings. Our quantitative comparison con-
tains two settings, the in-domain speech driven setting and
the cross-domain speech driven setting. In the first setting, we
divide each of the four videos into training (%) and test (75)
sets, employing the audio, expression, and pose sequences
from the unseen test set to autonomously reconstruct the talk-
ing head. In the second setting, we take the audio clips A and
B from two other videos [Li et al., 2024] to drive the model
May trained in the first setting and evaluate the lip sync ac-
curacy. Given that both Audio A and B originate from un-
seen videos featuring male voices, the evaluation results, no-
tably for May with a contrasting gender, effectively demon-
strate the generalization capability. Considering that Audio
A and B match the training language of May, we collect Chi-

nese, Japanese, and Italian speech to evaluate SyncGaussian
in more challenging cross-domain scenarios.

Methods Image Quality | Motion Quality | Lip Sync
VideoReTalking 2.83 3.65 2.99
ER-NeRF 3.26 3.49 1.97
SyncTalk 4.22 4.10 4.31
TalkingGaussian 4.19 3.98 3.97
Ours 4.49 4.14 4.52

Table 5: User study. The best results are in bold.

Evaluation Results. In Table 1, we show the results un-
der the in-domain speech driven setting. GAN-based meth-
ods only restores the lower half of the face, we do not re-
port AUE-U. By utilizing deformation-based motion repre-
sentation and introducing a stable head Gaussian initialization
strategy, we surpass all other GAN, NeRF, and 3DGS-based
methods in terms of image quality and dynamic motion. As
for lip sync accuracy, our SyncGaussian outperforms most
methods. Wav2Lip excels in lip sync, but its inability to re-
tain individual speaking styles results in poor dynamic mo-
tion and image quality. Compared to the latest NeRF method
SyncTalk and 3DGS method TalkingGaussian, we have taken
the lead in all aspects. Although our method does not lead
by a large margin compared to SyncTalk, in terms of talk-
ing head rendering speed, our method is approximately 2.19
times faster (105 FPS/48 FPS).

The cross-domain speech driven setting results are shown
in Table 2 and Table 3. It can be seen that our method presents
the best lip sync. This demonstrates that with the assistance
of sync-enhanced encoder, SyncGaussian is able to overcome
the limitation of specific person data and effectively adapt to
cross-domain speech-driven scenarios. SyncTalk does show
some advantages, but its neglect of audio-to-text speech fea-
ture obviously lowers its effectiveness. Additionally, in Ta-
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ble 4, we compare different audio-to-text speech extractors
and observe that Hubert consistently performs the best. This
observation underscores its selection for the sync-enhanced
encoder.

Methods PSNR 1 | LMD | | Sync-C 1
w/o stable initialization | 33.66 2.508 6.955
W/0 Ggype 35.07 2.597 6.080
W/0 apy 35.13 2.546 7.222
w/o sync adaption 35.06 2.547 6.974
w/o Lgp, 35.19 2.514 7.270
SyncGaussian 35.21 2.499 7.446

Table 6: Ablation study of our contributions under the in-domain
speech driven setting. The best are in bold.

4.3 Qualitative Evaluation

Evaluation Results. In Figure 4, we show a comparison
between our method and other methods to intuitively evalu-
ate generative quality. It can be seen that Wav2Lip, Video-
ReTalking and TalkLip have problems such as blurring, loss
of identity, and distorted lips. This is due to the limitations of
GAN and the trade-offs they made to obtain one or few-shot
capabilities. Compared with ER-NeRF, our method can accu-
rately control the eye expressions and present clearer mouth
shapes. Compared to SyncTalk and TalkingGaussian, we are
able to generate better mouth details and achieve superior per-
formance in lip sync.

In Figure 5, we visualize different talking heads to facil-
itate a more intuitive comparison. It can be observed that
compared to SyncTalk and TalkingGaussian, the advantages
of our method are primarily manifested in: (1) more complete
mouth details, compared to the missing teeth highlighted in
the red box; (2) fuller lip shapes, as exemplified by the in-
sufficiently opened lips in the green box; (3) clearer mouth
structures, including the blurred mouth and incomplete teeth
in the yellow box; and (4) more accurate mouth movements,
as demonstrated by the incorrectly opened mouth in the pur-
ple box, which our method corrects.

These advantages demonstrate that our method signifi-
cantly enhances the accuracy, detail preservation, and lip sync
performance of speech-driven talking head generation.

User Study. In Table 5, we design a user study based on
Mean Opinion Score (MOS) to provide a more comprehen-
sive evaluation of the proposed method. We use a total of
20 videos generated by 5 methods. We invite 10 attendees
to rank 5 methods, using a scale where 5 represents the best
and 1 represents the worst. It can be seen that SyncGaussian
performs best on all aspects, this result is consistent with both
quantitative and qualitative experimental results.

4.4 Ablation Study

In Table 6, we conduct an ablation study in in-domain speech
driven setting to prove the effectiveness of our contributions.
We select PSNR, LMD and Sync-C for evaluation and report
the average results of the four subjects.
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Figure 5: Qualitative results on different talking heads. Please
zoom in for better visualization.

When the stable head Gaussian initialization is removed,
the PSNR drops significantly, with a large decline in Sync-
C. This indicates that this strategy can effectively stabilize
head movements, thereby improving visual quality and ben-
efiting lip sync. Using only ay, (obtained by feeding a},,
into Match-ATT), i.e., without a,., to train the model results
in poor performance of Sync-C and LMD, indicating that the
audio-to-visual speech features is capable of extracting accu-
rate mouth movement features. Without using a,,, the over-
all performance is enhanced compared to without a,,.. Ad-
ditionally, w/o L, achieves a comprehensive improvement
in performance over the former, suggesting that the Hubert
features and L, can bolster the model performance and gen-
eralization capabilities. In addition, we directly subtract two
kinds of speech features and input them into the grid-based
motion field. It can be found that although the a,. is in-
cluded, the performance of the model on lip sync is signifi-
cantly dropped. This indicates that the sync adaption mech-
anism can effectively integrate audio-to-text speech features
into the distribution of audio-visual consistency.

5 Conclusion

In this paper, we have introduced SyncGaussian, a 3DGS-
based framework for realistic talking head synthesis with uni-
versal lip sync and stable head poses. With a stable head
Gaussian initialization strategy, a sync-enhanced encoder,
and a tailored cosine similarity loss, our method can over-
come the head jitter problem and show robust lip sync in
both cross-domain and in-domain speech driven scenarios.
Through comprehensive quantitative and qualitative experi-
ments, SyncGaussian has demonstrated superior performance
in generating stable and precisely synchronized talking heads,
surpassing existing methods.
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