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Abstract

Global aging necessitates tele-monitoring systems
to provide real-time tracking and timely assistance
for older adults living independently. While perva-
sive wireless devices (e.g., CSI, IMU, UWB) en-
able cost-effective, non-intrusive monitoring, exist-
ing systems lack flexibility, limiting their adapt-
ability to different environments. In this work,
we posit that the motion dynamics of human
movement are invariant across sensing modali-
ties, inspiring the design of HARMONY—a privacy-
preserving, sensor-agnostic system that supports
multi-modal inputs and diverse tele-monitoring
tasks. HARMONY incorporates Modality-agnostic
Data Processing to uniformly encrypt multi-
modal signals and Task-specific Activity Recog-
nition for seamless tasks adaptation. A novel
Encrypted-processing Engine then significantly ac-
celerates computations on encrypted data by opti-
mizing matrix and convolution operations. Evalua-
tions across five different sensing modalities show
that HARMONY consistently achieves high accu-
racy while delivering 3.5 × to 130 × speedups
over state-of-the-art baselines. Our results demon-
strate that HARMONY is a practical, scalable,
and privacy-centric prototype for next-generation
remote healthcare.

1 Introduction
Global aging is accelerating, with the over-65 population ex-
pected to double by 2050 [Bloom and Luca, 2016; Yang et
al., 2024]. This surge poses critical challenges for health-
care systems, particularly in supporting older adults who live
alone and are at elevated risk of falls and emergencies [Schütz
et al., 2022]. Although traditional caregiver-dependent prac-
tices offer personalized support, they do not scale well to

∗Corresponding Author: Shuxin Zhong.

meet growing demands. Consequently, researchers are ex-
ploring pervasive wireless sensing (e.g., CSI, IMU, UWB)
as a cost-effective, unobtrusive means of continuously mon-
itoring elder behavior [Wang et al., 2016]. These sensors
promise real-time tracking, preserving independence and en-
hancing patient-centered care, while offering a scalable solu-
tion toward the next generation of remote healthcare [Liu et
al., 2016].

Recent research has made significant strides in tele-
monitoring [Fernandes et al., 2024]. For example, Li et
al. combine smartphone accelerometers and microphones to
track daily activities and assess medication efficacy [Li et al.,
2023]. Zhang et al. introduce RF signals for long-term heart
rate variability assessment [Zhang et al., 2024]. Ouyang et
al. fuse camera, mmWave radar, and microphone data to pre-
dict Alzheimer’s progression [Ouyang et al., 2024]. How-
ever, they fail to treat multi-modal signals as flexible, inter-
changeable inputs and support seamless integration of differ-
ent tasks, which reduces their adaptability to various settings.

To address these limitations, we posit that human move-
ment can be universally characterized by velocity, displace-
ment, and trajectory—independent of the sensing modality.
Building on this principle, we propose a unified multi-modal
system that encodes these fundamental motion dynamics,
thereby enabling consistent and scalable solutions for tasks
such as fall detection and behavior recognition [Xu et al.,
2024]. Nevertheless, collecting sensitive motion data (e.g.,
facial features and gait patterns) raises substantial privacy
concerns, including risks of identity theft and unauthorized
surveillance [Ouyang et al., 2021; Jiang et al., 2024].

To this end, we introduce HARMONY, a privacy-preserving
and sensor-agnostic tele-MONItoring system designed to
support diverse beHAhavior Recognition tasks. Building
upon Homomorphic Encryption (HE) [Zhang et al., 2021],
HARMONY executes all computations on encrypted data, en-
suring robust privacy. To alleviate HE’s high computational
overhead, we introduce a novel Encrypted-processing En-
gine that optimizes matrix and convolution operations via
structured computations and alignment-aggregation strate-
gies, significantly reducing intermediate costs. Seamless inte-
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gration of this engine with Modality-agnostic Data Process-
ing and Task-specific Activity Recognition unifies varied sens-
ing modalities and tasks, paving the way for secure, scalable
deployment in real-world healthcare environments. The key
contributions are summarized as follows:
• To the best of our knowledge, we introduce HARMONY, the

first tele-monitoring system that unifies accessibility, adapt-
ability, and robust privacy guarantees—offering a prototype
for next-generation elder care.

• Technically, HARMONY contains: i) a Modality-aware Data
Filtering component that ensures data reliability through
heterogeneous filtering mechanisms; ii) a Modality-
agnostic Data Processing component that transforms
multi-modal sensor inputs into a consistent polynomial rep-
resentation for uniform, secure processing; iii) a Task-
specific Activity Recognition component that adapts seam-
lessly across various tasks (e.g., behavior recognition or fall
detection); and iv) a Encrypted-processing Engine serves
as the core acceleration component, enabling efficient com-
putations directly on encrypted data.

• We implement and evaluate HARMONY using five sens-
ing modalities (e.g., CSI, IMU, UWB) in realistic tele-
monitoring scenarios. Results show that HARMONY main-
tains high accuracy while achieving 3.5 × to 130 ×
speedups over state-of-the-art privacy-preserving baselines,
demonstrating its feasibility for practical, large-scale tele-
monitoring deployments.

2 Related Work
The section reviews existing research on tele-monitoring sys-
tems and privacy-preserving techniques.

2.1 Tele-monitoring systems
Existing tele-monitoring systems have utilized both single-
and multi-sensor setups to capture behavior-related signals.
Single-modality solutions—for example, RF-based monitor-
ing of heart rate variability [Zhang et al., 2024] or acous-
tic respiration analysis [Song et al., 2020]—excel at spe-
cific tasks but offer limited coverage. In contrast, multi-
sensor systems expand capabilities by fusing diverse data
streams: Li et al. combine smartphone accelerometers and
microphones for gait and medication monitoring [Li et al.,
2023], while Ouyang et al. merge camera, mmWave radar,
and audio for Alzheimer’s staging [Ouyang et al., 2024]. Fur-
ther, some systems integrate RGB cameras, IMUs, and be-
havioral logs to detect high-risk activities [Fernandes et al.,
2024], or unify multiple sensor streams with electronic health
records to mitigate missing modalities [Zhang et al., 2022;
Xu et al., 2024]. Despite these advancements, two crucial
gaps remain. First, multi-modal sensors are often treated
as fixed, limiting flexibility across different living scenarios
(e.g., WiFi in bedrooms vs. cameras in living rooms). Sec-
ond, most solutions are designed to address specific tasks in
isolation, rather than supporting a broader range of activities.

2.2 Privacy-Preserving Techniques
As tele-monitoring solutions scale, privacy has become a
cornerstone concern [Juvekar et al., 2018; Yang et al.,

2023b]. Early strategies mitigated risks by collecting only
non-sensitive signals (e.g., PDVocal’s focus on breathing
sounds [Zhang et al., 2019]) or by injecting noise via differ-
ential privacy (DP) to mask sensitive information [?]. While
federated learning helps by decentralizing data [Ouyang et
al., 2024], it remains vulnerable to inference attacks and gra-
dient leakage. HE provides an alternative by enabling com-
putations on encrypted data [Chien et al., 2023], albeit at the
cost of substantial computational overhead.

3 Real-time Tele-monitoring in Elderly Care
This section introduces the real-time tracking scenario in el-
derly care, identifies its challenges and social impacts, and
subsequently provides a formal problem formulation.

3.1 Challenges and Social Impact
The global population is aging rapidly, with the percentage
of individuals over 65 expected to double by 2050 [Bloom
and Luca, 2016]. This demographic shift exerts substantial
pressure on healthcare systems, particularly for older adults
living independently who require around-the-clock monitor-
ing due to elevated risks of falls or sudden health deteriora-
tions [Schütz et al., 2022]. Traditional care practices that rely
on professional caregivers or costly infrastructures struggle
to meet these demands at scale. In response, pervasive wire-
less sensing (e.g., CSI, IMU) has emerged as a cost-effective,
continuous, and non-intrusive tracking solution [Enshaeifar
et al., 2020; Wu et al., 2024]. However, existing systems
often suffer from rigid sensor-input configurations, narrow
task specificity, and insufficient privacy safeguards—factors
that limit their applicability in diverse real-world scenarios.
Our work addresses these limitations by proposing a privacy-
preserving, sensor-agnostic system capable of supporting
multiple behavior-recognition tasks in tele-monitoring con-
texts. This design introduces a scalable, user-centric proto-
type for next-generation remote healthcare, enhancing both
autonomy and safety for older adults.

3.2 Problem Formulation
We formalize the sensor-agnostic tele-monitoring task as
learning a unified classification function, Fθ, capable of pro-
cessing signals from various sensor modalities to identify be-
haviors across multiple tasks. Let xc(i) represent the input
signal from a specific modality c(i) ∈ C, where C is the set
of all possible sensor types (e.g., WiFi, IMU, Camera). Simi-
larly, let yt(i) denote the label associated with the recognition
task t(i) ∈ T , where T encompasses various tasks (e.g., ges-
ture recognition, activity monitoring). Formally:

yt(i) = Fθ(xc(i); θ), (1)

where θ denotes the learnable parameters of F .

4 Methodology
We present HARMONY, a privacy-preserving, sensor-agnostic
tele-monitoring system for diverse behavior recognition
tasks, designed to enhance safety and independence in elderly
care (see Figure 1). HARMONY comprises four components:
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Modality-aware Data 
Filtering (Sec. 4.1)

Band-Pass Filtering

ROI Extraction

Low-Pass Filtering

Wavelet Denoising

Modality-agnostic Data 
Processing (Sec.4.2)

Task-specific Activity 
Recognition (Sec.4.3)

Encrypted Matrix Processing

𝑥!! 𝑥!" 𝑥!# 𝑥!$ 𝐼" 𝐼#

Adaptive Modality Masking

Secure Polynomial Encoder

Encrypted Convolution Processing

Routing Network

Expert K

Privacy-Preserving Support (Sec. 4.4)

⋯
Task TTask 1 ⋯

Expert 1

𝑋′

𝑃(𝑋′)

𝑃(𝑋′)

Figure 1: Overview of the HARMONY system. It consists of four main components: (1) Modality-aware Data Filtering, (2) Modality-agnostic
Data Processing, and (3) Task-specific Activity Recognition. Additionally, Encrypted-processing Engine serves as the core acceleration
component that enables efficient computations directly on encrypted data.

• Modality-aware Data Filtering (Sec. 4.1) applies het-
erogeneous techniques to filter environmental and device-
induced noise, thereby improving data reliability.

• Modality-agnostic Data Processing (Sec. 4.2) uses a flex-
ible masking mechanism to preprocess multi-modal sig-
nals, adapting dynamically to varying inputs. It then en-
codes plain-text signals into structured polynomial repre-
sentations via HE, ensuring secure computation.

• Task-specific Activity Recognition (Sec. 4.3) implements
a MoE paradigm to dynamically route inputs to specialized
expert modules for task-specific analysis.

• Encrypted-processing Engine (Sec. 4.4)
forms HARMONY’s foundation, introducing efficient
matrix and convolution operations on encrypted data to
facilitate pracical deployment.

4.1 Modality-aware Data Filtering
Modality-aware Data Filtering customizes de-noising strate-
gies based on the unique properties of each signal, effec-
tively mitigating noise caused by the environment and de-
vices. Specifically, band-pass filtering confines Inertial Mea-
surement Unit (IMU) signals to a designated frequency band,
preserving meaningful motion data [Cesareo et al., 2018];
low-pass filtering removes high-frequency noise from Ultra-
Wideband (UWB) signals [Ma and Yeo, 2010]; wavelet de-
noising decomposes Channel State Information (CSI) signals
into distinct frequency components to isolate relevant pat-
terns [Wang et al., 2014]; and Region of Interest (ROI) de-
tection filters out non-essential background elements, retain-
ing only critical regions for further analysis [Li et al., 2017].
Formally, this process is represented as:

xf
c(i) = Fc(i)(xc(i), ϕc(i)), c(i) ∈ C (2)

where xc(i) is the i-th signals collected from sensor modality
c(i), xf

c(i) is the filtered output, Fc(i) is the sensor-specific
filtering function, and ϕc(i) are its parameters.

4.2 Modality-agnostic Data Processing
Modality-agnostic Data Processing incorporates an Adap-
tive Modality Masking mechanism for flexible processing of

multi-modal signals and a Secure Polynomial Encoder to en-
code plain-text signals to structured polynomial representa-
tions, ensuring secure transportation and computation.

Adaptive Modality Masking
To enable adaptive processing of multi-modal data, we first
unify the filtered modality signals xf

c(i) from sensors C into a

single representation, denoted as X = [xf
c(i)], where c(i) ∈

C. For task-specific selection of modalities, we introduce a
masking mechanism M = [mc(i)], where each mc(i) corre-
sponds to the signal xc(i). Here, mc(i) is a scalar that de-
termines the inclusion of xf

c(i) in the computation: mc(i) = 1

means the modality is active, while mc(i) = 0 excludes it. For
instance, if we use CSI for fall detection [Wang et al., 2016],
the mask mc(i) for CSI is set to 1, ensuring its contribution.
Formally, the masked signals are calculated as:

X ′ = X ⊙M, (3)

where ⊙ denotes element-wise multiplication. This mecha-
nism allows HARMONY to flexibly adapt to diverse real-world
scenarios with varying device constraints.

Secure Polynomial Encoder
To preserve data confidentiality throughout processing, we
adopt HE [Zhang et al., 2021; Yang et al., 2023b], which
encodes plain-text signals into a structured polynomial repre-
sentation. For masked time-series signals X ′ = [x′

1, . . . , x
′
n],

it generates:

P (X ′) = x′
1 + x′

2z + ...+ x′
nz

n−1, (4)

with n as the signal length and z is the polynomial base.
This representation is directly fed into Task-specific Activity
Recognition for encrypted feature extraction.

4.3 Task-specific Activity Recognition
To adaptively handle various tasks, we adopt a Mixture of
Experts (MoE) paradigm [Xu et al., 2024]. With this, a rout-
ing network R(·) directs input signals to specialized expert
modules designed for task-specific analysis. Concretely, for a
given signal i from sensor modality c(i) associated with task
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t(i), R(·) computes assignment weights τ(t(i),k) over K ex-
perts using task-specific indicators It(i) and modality-specific
indicators Ic(i):

τ(t(i),k) = R(P (X ′), It(i), Ic(i)),where
K∑

k=1

τ(t(i),k) = 1.

(5)
Each expert k then processes the feature representation
P (X ′) through its designated network to produce an output
Fk(P (X ′)). The detailed computation processes and net-
work design are discussed in Sec. 4.4. Finally, the inference
for i-th signal is obtained by aggregating the expert outputs
weighted by their respective assignment scores:

yi =
K∑

k=1

τ(t(i),k) · Fk(P (X ′)). (6)

Model Optimization. We adopt a classification setup and
optimize HARMONY using the Cross Entropy (CE) loss:

LCE = − 1

N

N∑
i=1

|Mt(i)|∑
j=1

y(i,j)log(ŷ(i,j)), (7)

where |Mt(i)| is the number of categories for task t.

4.4 Encrypted-processing Engine
Real-time systems demand highly efficient processing. We
employ fully connected networks (FCNs) for time-series
data and convolutional neural networks (CNNs) for im-
ages. However, performing fundamental operations—such
as matrix-vector multiplication in FCNs and convolution in
CNNs—directly on encrypted signals P (X ′) is computation-
ally expensive. To address this challenge, we propose En-
crypted Matrix Processing and Encrypted Convolution Pro-
cessing. These components leverage structured computation
and alignment-aggregation strategies to optimize matrix and
convolution operations on encrypted data, significantly re-
ducing computational overhead.

Encrypted Matrix Processing
We first introduce an efficient matrix-vector multiplication
between a plain-text weight matrix W and an encrypted in-
put vector X̃ to reduce computational overhead. The process
is illustrated in Figure 2 and consists of four key steps:

• Matrix Decomposition and Encoding (Step 1). The plain-
text weight matrix W ∈ R(fo,fi) is decomposed row-wise
into fo vectors w0, w1, wf0−1 using diagonal encoding.
This encoding rearranges each row into a structured format
that enables element-wise multiplication with the encrypted
input vector X̃i, avoiding intermediate data shifts and com-
putational bottlenecks.

• Element-wise Multiplication (Step 2). Each encoded row
wj is multiplied element-wise with X̃i, resulting in inter-
mediate encrypted vectors Ỹi. These intermediate results
represent partial dot products for each row.

• Rotation for Alignment (Step 3). The intermediate vectors
Ỹi undergo a series of rotations to align corresponding el-
ements across ciphertexts, ensuring that terms contributing
to the same dot product are properly positioned. This step
enables efficient summation in the encrypted domain.

• Summation (Step 4). Finally, the rotated terms within
each ciphertext are summed to compute the dot product
for each row of W , producing the output vector Ũi =

[u0
i , u

1
i , . . . , u

fo
i ]T . For example:

u0 = w00x0 + w11x1 + w22x2 + w33x3,

u1 = w10x0 + w01x1 + w12x2 + w03x3.
(8)

Strengths. By leveraging structured computations and rota-
tion operations, our methods significantly minimize reliance
on expensive permutation operations, enabling scalable and
efficient matrix-vector multiplication for encrypted data.

Encrypted Convolution Processing
We then introduce an efficient method for convolution com-
putation between a plain-text convolutional kernel K = [kij ]

and an encrypted input image X̃ , which is represented as a
polynomial using Eq. 4. The encrypted image is represented
as P (X ′) ∈ R(l1,l2) and the kernel matrix K ∈ R(l3,l4)

encodes learnable parameters, capturing spatial-temporal de-
pendencies. The procedure involves four steps:

• Sliding Window Transformation. The encrypted input
P (X ′) is divided into overlapping patches based on the ker-
nel dimensions. Each patch corresponds to a sub-matrix of
the input, and these patches are rearranged into rows of a
new transformed matrix, denoted as X̃ .

• Kernel Expansion. The kernel K is broadcasted to match
the size of X̃ , ensuring each kernel element kij aligns with
the corresponding features in X̃ .

• Element-wise Multiplication. The transformed matrix X̃ is
element-wise multiplied with the expanded kernel K, cap-
turing features interactions. The resulting matrix is denoted
as M = X̃ ·K.

• Aggregation. The output is computed as Y = M+b, where
b is the bias term added to the aggregated result.

To meet the time constraints of real-world deployments, the
output is not passed to a second convolutional layer, as sug-
gested in [Brutzkus et al., 2019]. Instead, it is directly fed into
Encrypted Matrix Processing for further feature extraction.

Complexity Analysis
Table 1 compares the computational complexity of
the Naive,Diagonal, and HARMONY (Ours) methods, fo-
cusing on the number of Rot, SCMult, and Add operations.
Among these, Rot operations are the most computationally
expensive due to their exponential growth in the Naive
method with respect to the output dimension m [Zhang et al.,
2021]. The Diagonal method mitigates this issue by strategi-
cally arranging matrix elements, but its efficiency degrades
when the input dimension n increases linearly. To overcome
these limitations, HARMONY employs Encrypted-processing
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Figure 2: Illustration of encrypted matrix processing with structured computation and rotation operations.
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Table 1: Complexity comparison of matrix processing

Engine that minimizes the most time-consuming Rot oper-
ations. To adapt to arbitrary input and output, we consider
the matrix-vector computation for both the input and output
stages. Furthermore, as N grows sufficiently large, the
inequality 2mn′

N − 1 + log2
N
2m < n − 1 is more likely to

hold, ensuring that HARMONY achieves significantly lower
computational costs compared to baseline methods.

5 Experiment
This section evaluates the effectiveness of HARMONY by ad-
dressing four key research questions:
• RQ1: How accurately and cost-effectively does HARMONY

recognize various activities? (Sec. 5.2)
• RQ2: How efficient are the HE operations

within HARMONY? (Sec. 5.3)
• RQ3: How do cryptographic parameter settings affect the

performance of HARMONY? (Sec. 5.4)
• R4: How effective is HARMONY when deployed in real-

world scenarios? (Sec. 5.5)

5.1 Evaluation Settings
Datasets
We evaluated HARMONY using 5 datasets collected from dif-
ferent sensor modalities (UWB, IMU, Depth Camera, WiFi,
and Camera). These datasets cover diverse human activ-
ity recognition tasks, including fall detection [Ouyang et al.,
2021; Yang et al., 2023a]. Below is a brief description:
• UWB signals was collected in the parking lot, corridor, and

room using two Decawave DWM1000 UWB nodes placed
3 meters apart and sampled at 5 Hz. Eight participants con-
tributed 663 data records, with scenarios both involving and
not involving a person walking between the nodes.

• IMU captured three walking-related activities (corridor
walking, upstairs, downstairs) in two buildings. Seven par-
ticipants contributed to 1,369 data records. Each frame,
sampled at 50,Hz, includes 9-axis data. Using a 2-second
window, every recording is a 900-dimensional vector.

• Depth Camera recorded five hand gestures (good, ok, vic-
tory, stop, fist) using a PicoZense DCAM710 depth-sensing
camera under outdoor, dark, and indoor conditions. Nine
participants contributed to 7,422 data records.

• WiFi (CSI) detected six human gestures (box, circle, clean,
fall, run, walk) using the Atheros CSI tool. Twenty partici-
pants contributed 1,200 data records.

• Camera (RGB) captured three human activities (stand,
walk, fall) from 20 participants, totaling 1,000 data records.

Metrics
We focus on designing a unified system capable of simul-
taneously processing signals from different sensor modali-
ties, prioritizing the efficiency of privacy-preserving compu-
tation over task-specific performance. To evaluate the per-
formance of HARMONY, we use two metrics: Accuracy and
Latency (ms). Accuracy measures the proportion of correct
predictions, providing a general assessment of HARMONY’s
effectiveness in performing the intended tasks. Latency
quantifies the time required to complete specific computa-
tional processes, reflecting HARMONY’s efficiency in privacy-
preserving operations.

Baseline Methods
To evaluate HARMONY, we compare it with two categories of
baselines: federated learning-based remote monitoring sys-
tems, and HE-based privacy-preserving computation meth-
ods, which ensure data privacy through encryption.

• ClusterFL [Ouyang et al., 2021] is designed to monitor
different activities with different sensors, addressing pri-
vacy concerns through distributed learning techniques.

• Plain-text computes directly on signals, achieving high ef-
ficiency but remaining vulnerable to attacks.

• Naive [Brutzkus et al., 2019] computes on ciphertexts by
applying basic additions and multiplication relying on fre-
quent bootstrapping to refresh ciphertexts.
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UWB IMU Depth CSI RGB
ClusterFL 89.1% 90.5% 71.8% 99.7% 90.0%
Plain-text 94.7% 97.6% 95.9% 98.8% 90.0%

Naive 94.6% 97.6% 95.8% 98.8% 90.0%
Diagonal 94.6% 97.6% 95.8% 98.7% 90.0%
HARMONY 94.7% 97.6% 95.9% 98.8% 90.0%

Table 2: Performance comparison of accuracy across different
datasets. The best results are underlined.

UWB

IMU

CSIRGB

Depth
1
2
3
4
5
6

Naive
Diagonal
Ours

Figure 3: Latency comparison across different methods (log10-
scaled). Lower values indicate higher computational efficiency.

• Diagonal [Zhang et al., 2021] limits computations to the
diagonal, which reduces interactions and simplifies the
complexity of homomorphic operations.

Implementation Details
We configured HARMONY with the following parameters: the
model was set with 5 tasks (T ) and 5 experts (K), using a
learning rate of 5 × 10−5 optimized by Adam. For FHE, the
operations were implemented using the SEAL library, with
cryptographic parameters configured to a multiplicative depth
of 10, a scaling factor bit of 40, an HE slot number of 4096,
and a security level of 128 bits. The hardware setup included
an Intel i7-7700 CPU (32 GB memory) with an NVIDIA
Tesla 4096 GPU for server-side computations and a Jetson
Orin for edge-side operations.

5.2 Overall Performance
Table 2 compares the recognition accuracy of HARMONY with
four baseline methods across all datasets. Specifically, we
evaluate HARMONY against ClusterFL [Ouyang et al., 2021],
a federated learning-based system for remote monitoring that
ensures privacy by leveraging edge computing. Although
ClusterFL effectively addresses privacy, its performance is
slightly lower than HARMONY due to the separate processing
of each task. We also benchmark HARMONY against Plain-
text (no encryption), Naive[Brutzkus et al., 2019], and Diago-
nal [Zhang et al., 2021], which are two homomorphic encryp-
tion (HE)-based techniques, using the same architecture. The
results show that HARMONY achieves competitive accuracy,
with values of 95.9% for Depth, 94.7% for UWB, 97.6% for
IMU, 98.8% for CSI, and 90.0% for RGB. Notably, the small
error (0.01) reflects the precision loss due to HE. In terms of
latency, as shown in Figure 3, Plain-text incurs minimal la-
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Figure 4: Efficiency analysis for UWB modalities.
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Figure 5: Efficiency analysis for IMU modalities.

tency (ranging from 0.3 ms for UWB to 7.5 ms for CSI), so
it is excluded from the plot. HARMONY demonstrates signifi-
cant reductions in computational time, achieving speedups of
3.5× to 130× for more computation-heavy tasks. The varia-
tion in improvements is due to different data complexity and
dimensionality for each signal type. These results underline
HARMONY superior efficiency without sacrificing accuracy.

5.3 Effectiveness of Encrypted-processing Engine
To evaluate the effectiveness of Encrypted-processing En-
gine, the core component of HARMONY, we compare the
number of operations—Addition (Add), Rotation (Rot), and
Scalar Multiplication (SCMulti)-with Naive and Diagonal
across five sensing modalities. The number of operations
directly impacts efficiency, with rotation being particularly
resource-intensive due to its high complexity and significant
effect on performance. To evaluate efficiency, we compare
the number of operations for two methods (Naive and Di-
agonal) across five sensing modalities, as shown in from
Figures 5 (a) to 9(a). The results demonstrate that while
Diagonal reduces operations compared to Naive, HARMONY
achieves a substantial reduction in operations compared to
Diagonal, demonstrating its effectiveness in optimizing the
most resource-intensive tasks while maintaining strong over-
all performance. Specifically, the number of Rot operations
is reduced by 1.2× to 7.7× compared to Naive. Although
our method involves slightly more Add operations than the
Diagonal method, the overall impact on computational cost
is negligible due to the relatively low complexity of addition
operations.

5.4 Sensitivity Analysis
To thoroughly evaluate the performance and applicability
of HARMONY under different encryption parameters, we an-
alyze the impact of different HE slot numbers (N ) (from 213

to 215) on three methods (Naive, Diagonal, and HARMONY)
across five sensing modalities. The analysis considers two
key aspects: communication overhead and execution time.
Using N < 213 is not feasible as it fails to meet modern
cryptographic security standards. For communication over-
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Figure 6: Efficiency analysis for Depth modalities.
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Figure 7: Efficiency analysis for CSI modalities.

head, it increases significantly as N grows, ranging from 0.75
× 1024 to 15 × 1024 and 3 × 1024 kilobytes. Regarding
execution time, from Figures 5 (b) to 9(b) shows that the
Naive and Diagonal methods experience dramatic increases
with larger N , while our method maintains relatively stable
performance, demonstrating the efficiency of the optimiza-
tions introduced in Encrypted-processing Engine. Consider-
ing that our scenario does not demand exceptionally stringent
security requirements and prioritizes real-time response and
low latency, we select N = 213. This choice ensures suffi-
cient capacity for encapsulating encrypted information while
maintaining high efficiency.

5.5 Real-world Deployment

To evaluate the feasibility of HARMONY in real-world scenar-
ios, we conducted deployment tests in both indoor and out-
door environments. The evaluation metrics included accu-
racy and latency across different processes, as summarized in
Table 3. For behavior recognition, we deployed the system
in an apartment and tested it with 5 participants using WiFi,
IMU, and UWB devices. HARMONY achieved an accuracy
of 90.0% with a latency of 1.9 seconds. For gesture recog-
nition, the system was deployed in both indoor and outdoor
settings and evaluated with another 5 participants. HARMONY
achieved an accuracy of 91.0% with a latency of 1.8 seconds.
These results demonstrate that HARMONY performs behavior
and gesture recognition effectively, achieving high accuracy
and low latency across diverse real-world conditions.

Encrypt. Infer. Decrypt. Delay Accuracy
Behavior 958 ms 678 ms 6 ms 1.9 s 90.0%
Gesture 778 ms 87 ms 6 ms 1.8 s 91.0%

Table 3: Latency breakdown (encryption, inference, decryption, and
overall delay) and accuracy for two tasks—fall detection and gesture
recognition—during real-world deployment.
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Figure 8: Efficiency analysis for RGB modalities.

6 Discussion
6.1 Insights and Lessons Learned
Through the design, implementation, and real-world deploy-
ment of HARMONY, we derived the following key insights:
• Universal semantic representations empower cross-

modal recognition. Real-world environments often in-
volve dynamically changing sensor availability, making
adaptability a critical requirement. Leveraging funda-
mental motion dynamics—velocity, displacement, and tra-
jectory—as universal semantic representations, HARMONY
enables a sensor-agnostic system capable of cross-modal
recognition. As demonstrated in Table 2, HARMONY out-
perform better than ClusterFL, which process each modal-
ity independently.

• Structured computation and data reuse optimize en-
crypted data processing. Performing computations on
encrypted data is typically resource-intensive due to high
computational overhead. To address it, we designed a struc-
tured computation strategy that combines matrix or vector
partitioning with rotation-based data reuse. As illustrated in
from Figures 5 to 9, this approach reduces redundant oper-
ations and minimizes computational complexity, resulting
in speedups ranging from 3.5× to 130×.

6.2 Limitations and Future Work
HARMONY is a privacy-preserving and sensor-agnostic tele-
monitoring system designed to support diverse recognition
tasks in dynamically changing environments, positioning it
as a prototype for next-generation remote healthcare systems.
However, the current focus is primarily on general monitor-
ing and high-level pattern recognition (e.g., gestures or be-
haviors), lacking the capability to analyze fine-grained phys-
iological signals essential for healthcare applications, such
as heart rate variability or respiratory patterns. Expanding
HARMONY to incorporate these detailed physiological fea-
tures represents a promising direction for future development.

7 Conclusion
We present HARMONY, a privacy-preserving, sensor-agnostic
system for remote healthcare monitoring. HARMONYfeatures
four components that ensure data reliability, encode multi-
modal signals uniformly, adapt to various tasks, and optimize
encrypted data operations. Our experiments demonstrate high
accuracy across five sensing modalities while achieving 3.5×
to 130× speedups over state-of-the-art privacy-preserving
baselines. These results highlight HARMONY’s potential to
deliver continuous, unobtrusive monitoring—advancing ac-
cessible and patient-centered remote healthcare.
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