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Abstract

Synthesizing motion-rich and temporally consis-
tent videos remains a challenge in artificial in-
telligence, especially when dealing with extended
durations. Existing text-to-video (T2V) models
commonly employ spatial cross-attention for text
control, equivalently guiding different frame gen-
erations without frame-specific textual guidance.
Thus, the model’s capacity to comprehend the
temporal logic conveyed in prompts and generate
videos with coherent motion is restricted. To tackle
this limitation, we introduce FancyVideo, an in-
novative video generator that improves the exist-
ing text-control mechanism with the well-designed
Cross-frame Textual Guidance Module (CTGM).
Specifically, CTGM incorporates the Temporal In-
formation Injector (TII) and Temporal Affinity Re-
finer (TAR) at the beginning and end of cross-
attention, respectively, to achieve frame-specific
textual guidance. Firstly, TII injects frame-specific
information from latent features into text condi-
tions, thereby obtaining cross-frame textual con-
ditions. Then, TAR refines the correlation matrix
between cross-frame textual conditions and latent
features along the time dimension. Extensive ex-
periments comprising both quantitative and qual-
itative evaluations demonstrate the effectiveness
of FancyVideo. Our approach achieves state-of-
the-art T2V generation results on the EvalCrafter
benchmark and facilitates the synthesis of dynamic
and consistent videos. Note that the T2V process
of FancyVideo essentially involves a text-to-image
step followed by T+I2V. This means it also sup-
ports the generation of videos from user images,
i.e., the image-to-video (I2V) task. A significant
number of experiments have shown that its perfor-
mance is also outstanding.

‡ Corresponding authors.

1 Introduction
With the advancement of the diffusion model, the text-to-
image (T2I) generative models [Blattmann et al., 2023b;
Ho et al., 2022; Luo et al., 2023; Ma et al., 2024; Liu et
al., 2025] can produce high-resolution and photo-realistic im-
ages by complex text prompts, resulting in various applica-
tions. Currently, many studies [Wang et al., 2024; Guo et
al., 2023a] explore the text-to-video (T2V) generative model
due to the great success of T2I models. However, build-
ing a powerful T2V model remains challenging as it requires
maintaining temporal consistency while generating coherent
motions simultaneously. Moreover, due to limited mem-
ory, most diffusion-based T2V models [Wang et al., 2024;
Guo et al., 2023a; Zhang et al., 2024a; Guo et al., 2023b;
Chen et al., 2023; Menapace et al., 2024] can only produce
fewer than 16 frames of video per sampling without extra as-
sistance (i.e., super-resolution).

The existing T2V models [Zhang et al., 2024a; Guo et al.,
2023b; Chen et al., 2023; Menapace et al., 2024] typically
employ spatial cross-attention between text conditions and
latent features for achieving text control generation. How-
ever, as shown in Fig. 2(I), this manner shares the same text
condition across different frames, thus lacking the specific
textual guidance tailored to each frame. Consequently, these
T2V models struggle to comprehend the temporal logic of
text prompts and produce videos with coherent motion. Tak-
ing AnimateDiff [Guo et al., 2023b] as an example, in Fig.
1, we exhibit its generated video and visualize the [verb]-
focused region (which is closely associated with the video
motion) based on the attention map from the cross-attention
module. Ideally, these regions should transition smoothly
over time and align with the semantics of motion instruc-
tions. However, as observed in the upper right of the figure,
the [verb]-focused region remains nearly identical across dif-
ferent frames due to the consistent textual guidance between
frames. Meanwhile, the video exhibits poor motion in the
upper left of the figure.

Furthermore, we perform a similar visual analysis for the
longer video (e.g., 64 frames) generation and find that this
problem is more prominent, as illustrated in the lower part
of Fig. 1. Therefore, we believe this approach hampers the
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Prompt1: “Impressionist style, a yellow rubber duck floating on the wave on the sunset.”

Prompt2: “Slow motion steam rises from a hot cup of coffee.”

A
n
im

at
eD

if
f

F
an

cy
V
id
eo

A
n
im

at
eD

if
f

F
an

cy
V
id
eo

t=15t=10t=5t=0

t=15t=10t=5t=0
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The attention maps of [verb]Synthesized videos

t=63t=49t=42t=35 t=56

t=28t=14t=7t=0 t=21

t=63t=49t=42t=35 t=56

Slight change based on timeline and verb semantics.

Noticeable change based on timeline and verb semantics.

Figure 1: The generated videos and the attention maps of [verb] belong to FancyVideo and AnimateDiff. We present the 16-frame video
(top) and longer 64-frame video (bottom). Due to the inadequate time-specific textual guidance in the AnimateDiff, the [verb] focused region
remains almost constant, resulting in a lack of motion in the video. In contrast, FancyVideo effectively alleviates this issue through cross-
frame textual guidance. The [verb] focused region changes based on the timeline and semantics, thereby generating motion-rich videos.

advancement of video dynamics and consistency and is sub-
optimal for video generation tasks based on text prompts.

To this end, we present a novel T2V model named
FancyVideo, capable of comprehending complex spatial-
temporal relationships within text prompts. By employing a
cross-frame textual guidance strategy, FancyVideo can gener-
ate more dynamic and plausible videos in a sampling process.
Specifically, to boost the model’s capacity for understand-
ing spatial-temporal information in text prompts, we optimize
the spatial cross-attention through the proposed Cross-frame
Textual Guidance Module (CTGM), comprising a Tempo-
ral Information Injector (TII) and Temporal Affinity Refiner
(TAR). As illustrated in Fig. 2(II), TII injects temporal in-
formation from latent features into text conditions, building
cross-frame textual conditions. Then, TAR refines the affinity
between frame-specific text embedding and video along time
dimension, adjusting the temporal logic of textual guidance.
Through the cooperative interaction between TII and TAR,
FancyVideo fully captures the motion logic embedded within
images and text. Consequently, its motion token-focused area

shifts logically with frames, as illustrated in the lower right
part of Fig. 1. This characteristic enables FancyVideo to pro-
duce dynamic videos, as displayed in the lower left part of
the figure. Experiments demonstrate that FancyVideo suc-
cessfully generates dynamic and consistent videos, achieving
the SOTA results on the EvalCrafter [Liu et al., 2023] bench-
mark and the competitive performance on UCF-101 [Soomro
et al., 2012] and MSR-VTT [Xu et al., 2016]. Additionally,
FancyVideo supports generating videos from user-input im-
ages, i.e., the image-to-video task. We have also conducted
extensive experiments to demonstrate the superiority of our
method.

Contributions. 1) We introduce FancyVideo, the pioneer-
ing endeavor as far as our knowledge extends, delving into
cross-frame textual guidance for the T2V task. This approach
offers a fresh perspective to enhance current text-control
methodologies. 2) We propose the Cross-frame Textual Guid-
ance Module (CTGM), which constructs cross-frame textual
conditions and subsequently guides the modeling of latent
features with robust temporal plausibility. It can effectively
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Figure 2: The structure of spatial cross-attention and CTGM.

enhance the motion and consistency of video. 3) We demon-
strate that incorporating cross-frame textual guidance repre-
sents an effective approach for achieving high-quality video
generation. Our experiments showcase that this approach at-
tains state-of-the-art results on both quantitative and qualita-
tive evaluations.

2 Related Work
Text to Video Generation. Generative models like GANs
[Wang et al., 2020; Munoz et al., 2021; Gur et al., 2020],
auto-regressive models [Wang et al., 2019; Yan et al., 2021],
and implicit neural representations [De Luigi et al., 2023]
have been explored for video generation. Recently, diffu-
sion models [Rombach et al., 2022; Zhang et al., 2024b;
Zhang et al., 2024c] have advanced text-to-image quality.
Stable Diffusion [Rombach et al., 2022] uses a VAE [Kingma
and Welling, 2013] latent space to reduce cost [Jiang et al.,
2023]. T2V models [Wu et al., 2023a] add temporal lay-
ers to T2I models but often lack frame-to-frame consistency.
We propose cross-frame textual guidance to improve tempo-
ral coherence.

Image-conditioned Video Generation. To bridge the gap
between text and video, recent work leverages images for
clearer video generation. SVD [Blattmann et al., 2023a]
treats images as noisy latent inputs, while MoonShot [Zhang
et al., 2024a] improves semantic consistency using a CLIP
encoder. Though effective, these I2V methods rely on in-
put images. Hierarchical approaches [Zeng et al., 2023;
Chen et al., 2023] use images as keyframes to extend video
length with fewer constraints. These methods, though I2V-
capable, are essentially T2V. FancyVideo adopts a hierarchi-
cal design with cross-frame textual guidance, enabling more
frames per iteration and faster inference.

3 Method
3.1 Preliminaries
Latent Diffusion Models. LDMs [Sohl-Dickstein et al.,
2015; Ho et al., 2020] enhance efficiency by running dif-
fusion in the VAE-compressed latent space [Kingma and
Welling, 2013] instead of pixel space. The forward process

adds Gaussian noise (ϵ ∼ N (0, I)) to the latent code z, yield-
ing:

zt =
√
ᾱtz+

√
1− ᾱtϵ, (1)

where ᾱt denotes a noise scheduler with timestep t. For the
inverse process, it trains a denoising model (fθ) with the ob-
jective:

Ez∼p(z),ϵ∼N (0,I),t

[
∥y − fθ(zt, c, t)∥2

]
, (2)

where c represents the condition and target y can be noise ϵ,
denoising input z or v-prediction (v =

√
ᾱtϵ −

√
1− ᾱtz)

in [Salimans and Ho, 2022]. In this paper, we adopt the v-
prediction as the supervision.
Zero terminal-SNR Noise Schedule. Previous studies pro-
posed zero terminal SNR [Lin et al., 2024] to handle the
signal-to-noise ratio (SNR) difference between the testing
and training phase, which hinders the generation quality. At
training, due to the residual signal left by the noise scheduler,
the SNR is still not zero at the terminal timestep T . However,
the sampler lacks realistic data when sampling from random
gaussian noise during the test, resulting in a zero SNR. This
train-test discrepancy is unreasonable and an obstacle to gen-
erating high-quality videos. Therefore, following the [Lin et
al., 2024; Girdhar et al., 2023], we scale up the noise sched-
ule and set ᾱT = 0 to fix this problem.

3.2 Model Architecture
Fig. 3 illustrates the overall architecture of FancyVideo. The
model is structured as a pseudo-3D UNet, which integrates
frozen spatial blocks, sourced from a text-to-image model,
along with Cross-frame Textual Guidance Modules (CTGM)
and temporal attention blocks. The model takes three fea-
tures as input: noisy latent Zn ∈ Rf×h×w×c, where h and
w indicate the height and width of the latent, f signifies the
number of frames, and c denotes the channels of the latent;
mask indicator M ∈ Rf×h×w×1, with elements set to 1 for
the first frame and 0 for all other frames; image indicator
I ∈ Rf×h×w×c, with initial image as the first frame and 0
for all other frames. The denoising input Z is formed by con-
catenating Zn, M and I along the channel dimension, repre-
sented as Z = [Zn;M; I] ∈ Rf×h×w×(2c+1). Within each
spatial block, we first incorporate prior knowledge of the mo-
tion score as embeddings. In each subsequent cross-attention
layer, CTGM is employed to capture the intricate dynamics
described in the text prompts. Afterward, we apply temporal
attention blocks to enhance the temporal relationships across
various patches.

Motion Embedding
To achieve more controllable video generation in terms of
motion amplitude, we introduce motion score information
calculated by the RAFT [Teed and Deng, 2020] alongside
the timestep information. Specifically, we calculate a motion
score for the training samples in the dataset within a range
of 0.1 to 10. The score are then encoded into motion fea-
tures through a motion embedding layer. By controlling the
motion score, we can generate videos with stronger motion.
However, simply adjusting the score may lead to unrealistic
motion. We use CTGM to prevent these issues.
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Figure 3: The overall architecture of our method. FancyVideo is a T+I2V model that concatenates noise latent, mask indicator, and image in-
dicator as input. We insert our Cross-frame Textual Guidance Module (CTGM) into each spatial block. CTGM consists of three components:
Temporal Information Injector, Temporal Affinity Refiner, and Temporal Feature Booster. These components are inserted at the beginning,
middle, and end of cross-attention, respectively.

Cross-frame Textual Guidance Module
CTGM advances the existing text control method through two
sub-modules: Temporal Information Injector (TII) and Tem-
poral Affinity Refiner (TAR) as depicted in Fig. 3(III). Before
engaging in cross-attention, TII initially extracts temporal la-
tent feature Zt and then incorporates temporal information
into text embedding Trep based on Zt, obtaining cross-frame
textual condition Tz . Subsequently, TAR refines the affinity
between Zt and Tz along the time axis, enhancing the tempo-
ral coherence of textual guidance. The computation process
of the CTGM can be formalized as:

Zt, Tz = TII(Z, Trep), (3)

Zref = Softmax(
TAR(WqZt,WkTz)√

dk
Wv(Tz), (4)

where Wq , Wk, and Wv represent the linear layers for query,
key, and value in original cross-attention, respectively. The
hyper-parameter dk is acquired from the query dimensions.
TII(·, ·) and TAR(·) denotes the functions of TII and TAR. In
the end, we get refined noisy latent feature Zref . A detailed
description of these three modules is provided as follows.

Temporal Information Injector. In previous work [Guo et
al., 2023b; Girdhar et al., 2023], the text embedding Trep
is repeated equally f times, resulting in Trep ∈ Rf×n×c,
n denoting the length of the embedding vector. We inject
temporal information into the embedding before performing

spatial cross-attention, thereby enabling distinct focal points
on the text within different frames. In Temporal Information
Injector (TII), we initially reshape the noisy latent Z from
Rf×h×w×c to R(hw)×f×c and apply temporal self-attention
to acquire Zt. Then, we conduct spatial cross-attention, us-
ing the repeated text embedding Trep as queries and the noisy
latent Zt ∈ Rf×(hw)×c as both keys and values, resulting in
the text embedding Tz with frame-specific temporal informa-
tion. The formalization of the TII module can be expressed
as follows:

Zt, Tz = TII(Z, Trep)
= SelfAttnt(Z),

CrossAttns(SelfAttnt(Z), Trep)
(5)

where SelfAttnt denotes temporal self-attention and
CrossAttns denotes spatial cross-attention. Through TII, we
obtain the noisy latent Zt with temporal information and the
latent-aligned text embedding Tz .

Temporal Affinity Refiner. To dynamically allocate atten-
tion to text embedding across different frames, we design the
Temporal Affinity Refiner (TAR) to refine the attention map
of spatial cross-attention. In spatial cross-attention, the noisy
latent serves as the query, while the text embedding serves as
both the key and value. The attention map A ∈ Rf×(hw)×n,
compute as A = (WqZt)(WkTz)T /

√
dk, reflects the affinity

between the text and patches. Then, TAR applies temporal
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self-attention to the attention map A ∈ R(hw)×f×n, obtain-
ing the refined attention map Aref , which can be represented
as:

Aref = TAR(A) = SelfAttnt(A) (6)
With the TAR, Aref establishes a more logical temporal con-
nection in the affinity matrix. It can perform more dynamic
action while ensuring no additional video distortion occurs.
Finally, the cross-attention process is completed with the re-
fined attention map as Zref = Softmax(Aref )(WvTz).

4 Experiments
In the quantitative experiments, FancyVideo utilizes the T2I
base model to generate images as the first frame. In the qual-
itative experiments, for aesthetic purposes and to remove wa-
termarks, an external model is used to generate a beautiful
first frame.

4.1 Qualitative Evaluation
We choose AnimateDiff [Guo et al., 2023b], DynamiCrafter
[Xing et al., 2023], and two commercialized products, Pika
[PikaLabs, 2024] and Gen2 [Runway, 2024], for a composite
qualitative analysis. It is worth noting that in the quantitative
experiments, the first frame of FancyVideo is generated by
SDXL to achieve a more aesthetically pleasing result and to
minimize the appearance of watermark (although subsequent
frames may still exhibit it).

As shown in Fig. 4, our approach exhibits superior perfor-
mance, outperforming previous methods regarding temporal
consistency and motion richness. In contrast, AnimateDiff,
DynamiCrafter, and Gen2 generate videos with less motion.
Pika struggles to produce object-consistent and high-quality
video frames. Remarkably, our method can accurately un-
derstand the motion instructions in the text prompt (e.g., ”A
teddy bear walking ... beautiful sunset.” and ”A teddy bear
running ... City.” case).

4.2 Quantitative Evaluation
For a comprehensive comparison with the SOTA methods,
we adopt three popular benchmarks (e.g., EvalCrafter [Liu
et al., 2023], UCF-101 [Soomro et al., 2012], and MSR-
VTT [Xu et al., 2016] ) and human evaluation to evaluate
the quality of video generation. Among them, EvalCrafter
is a relatively comprehensive benchmark for video gener-
ation currently. UCF-101 and MSR-VTT are benchmarks
commonly used in previous methods [Girdhar et al., 2023;
Zhang et al., 2023]. Meanwhile, human evaluation can com-
pensate for the inaccuracies in existing text-conditioned video
generation evaluation systems.
EvalCrafter Benchmark. EvalCrafter [Liu et al., 2023]
quantitatively evaluates the quality of text-to-video genera-
tion from four aspects (including Video Quality, Text-video
Alignment, Motion Quality, and Temporal Consistency).
Each dimension contains multiple subcategories of indicators
shown in the Table. 1. As discussed in community [Liu and
Cun, 2024], the authors acknowledge that the original man-
ner of calculating the comprehensive metric was inappropri-
ate. For a more intuitive comparison, we introduce a com-

prehensive metric for every aspect by considering each sub-
indicators numerical scale and positive-negative attributes.

In detail, we compare the performance of the previous
video generation SOTA methods (e.g., Pika [PikaLabs, 2024],
Gen2 [Runway, 2024], Show-1 [Zhang et al., 2023], Lumiere
[Bar-Tal et al., 2024], DynamiCrafter [Xing et al., 2023], and
AnimateDiff [Guo et al., 2023b]) and exhibit in Table. 1.
Our method demonstrates outstanding performance beyond
existing methods at the Video Quality and Text-video Align-
ment aspect. Although Show-1 has the best Motion Quality
(81.56), its Video Quality is poor (only 85.08). That indicates
that it cannot generate high-quality videos with reasonable
motion. However, our method has the second highest Motion
Quality (72.99) and the best Video Quality (177.72), achiev-
ing the trade-off between quality and motion. The above re-
sults indicate the superiority of FancyVideo and its ability to
generate temporal-consistent and motion-accurate video.

UCF-101 & MSR-VTT. Following the prior work [Zhang
et al., 2023], we evaluate the zero-shot generation perfor-
mance on UCF-101 [Soomro et al., 2012] and MSR-VTT
[Xu et al., 2016] as shown in Table. 2. We use Fréchet Video
Distance (FVD) [Unterthiner et al., 2019], Inception Score
(IS) [Wu et al., 2021], Fréchet Inception Distance (FID)
[Heusel et al., 2017], and CLIP similarity (CLIPSIM) as eval-
uation metrics and compared some current SOTA methods.
FancyVideo achieves competitive results, particularly ex-
celling in IS and CLIPSIM with scores of 43.66 and 0.3076,
respectively. Besides, previous studies [Ho et al., 2022;
Girdhar et al., 2023; Wu et al., 2023b] have pointed out that
these metrics do not accurately reflect human perception and
are affected by the gap between the distribution of training
and test data and the image’s low-level detail.

Human Evaluation. Inspired by EvalCrafter [Liu et al.,
2023], we introduce a multi-candidate ranking protocol with
four aspects: video quality, text-video alignment, motion
quality, and temporal consistency. In this protocol, partici-
pants rank the results of multiple candidate models for each
aspect. Each candidate model receives a score based on its
ranking. For instance, if there are N candidate models ranked
by video quality, the first model gets N−1 points, the second
gets N − 2 points, and so on, with the last model receiving
0 points. Adhering to this protocol, we selected 108 samples
from the EvalCrafter validation set and gathered judgments
from 100 individuals. As depicted in Fig. 5, our method
significantly outperforms text-to-video conversion methods,
including AnimateDiff [Guo et al., 2023b], Pika [PikaLabs,
2024], and Gen2 [Runway, 2024], across all four aspects.
FancyVideo demonstrates exceptional motion quality while
preserving superior text-video consistency. Additionally, we
conducted a similar comparison of four image-to-video meth-
ods, including DynamiCrafter [Xing et al., 2023], Pika, and
Gen2, as shown in Fig. 5.

4.3 Ablation Studies
In this section, we conduct extensive experiments and exhibit
detailed visual comparisons on the EvalCrafter benchmark
[Liu et al., 2023] to thoroughly explore the effect of critical
designs in CTGM. The ablation includes three key modules
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Figure 4: Qualititive analysis. We compare the video generation results from AnimateDiff [Guo et al., 2023b], DynamiCrafter [Xing et al.,
2023], Pika [PikaLabs, 2024], Gen-2 [Runway, 2024], and our FancyVideo.
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Dimensions Metrics Pika Gen2 Show-1 Lumiere DynamiCrafter AnimateDiff FancyVideo

VQAA(↑) 59.09 59.44 23.19 40.06 74.56 65.94 85.78
Video VQAT(↑) 64.96 76.51 44.24 32.93 59.48 52.02 74.56

Quality IS(↑) 14.81 14.53 17.65 17.64 18.37 16.54 17.38
Comprehensive(↑) 138.86 150.48 85.08 90.63 152.41 134.50 177.72
CLIP-Score(↑) 20.46 20.53 20.66 20.36 20.80 19.70 20.85
BLIP-BLEU(↑) 21.14 22.24 23.24 22.54 20.93 20.67 21.33
SD-Score(↑) 68.57 68.58 68.42 67.93 67.87 66.13 68.14

Text-Video Detection-Score(↑) 58.99 64.05 58.63 50.01 64.04 51.19 66.66
Alignment Color-Score(↑) 34.35 37.56 48.55 38.72 45.65 42.39 51.09

Count-Score(↑) 51.46 53.31 44.31 44.18 53.53 22.40 59.19
OCR Score(↓) 84.31 75.00 58.97 71.32 60.29 45.21 64.85
Celebrity ID Score(↓) 45.31 41.25 37.93 44.56 26.35 42.26 25.76
Comprehensive(↑) 325.35 350.02 366.91 327.86 386.18 335.01 396.65
Action Score(↑) 71.81 62.53 81.56 72.12 72.22 61.94 72.99

Motion Motion AC-Score(→) 44 44 50 42 46 32 52
Quality Flow-Score(→) 0.50 0.70 2.07 6.99 0.96 2.403 1.7413

Comprehensive(↑) 71.81 62.53 81.56 72.12 72.22 61.94 72.99
CLIP-Temp(↑) 99.97 99.94 99.77 99.74 99.75 99.85 99.84

Temporal Warping Error(↓) 0.0006 0.0008 0.0067 0.0162 0.0054 0.0177 0.0051
Consistency Face Consistency(↑) 99.62 99.06 99.32 98.94 99.34 99.63 99.31

Comprehensive(↑) 199.59 199.00 199.09 198.68 199.09 199.48 199.15

Table 1: Quantitative evaluation on the EvalCrafter. The best and second performing metrics are highlighted in bold and underline. Compre-
hensive denotes the composite metrics for these dimensions.

Method Data UCF-101 MSR-VTT

FVD(↓) IS(↑) FID(↓) FVD(↓) CLIPSIM (↑)

Emu Video 34M 606.20 42.70 - - -
AnimateDiff 10M 584.85 37.01 61.24 628.57 0.2881

DynamiCrafter 10M 404.50 41.97 32.35 219.31 0.2659
Show-1 10M 394.46 35.42 - 538.00 0.3072
Lumiere 10M 332.49 37.54 - 550.00 0.2939

FancyVideo 10M 412.64 43.66 47.01 333.52 0.3076

Table 2: Quantitative evaluation on the UCF-101 [Soomro et al.,
2012] and MSR-VTT [Xu et al., 2016] .The best and second per-
forming metrics are highlighted in bold and underline respectively.
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Figure 5: Human Evaluation Comparison. FancyVideo stands out
significantly compared to other text-to-video and image-to-video
generators in terms of Motion Quality and Temporal Consistency.

TAR TII Video Text-Video Motion Temporal
Quality Alignment Quality Consistency
163.15 361.92 66.99 198.83

✓ 172.44 379.40 71.24 199.08
✓ 173.82 380.24 71.84 199.04

✓ ✓ 177.72 396.65 72.99 199.15

Table 3: Ablation studies on the core component of FancyVideo

(TII and TAR), each boosting video quality. As shown in Ta-
ble 3, TAR significantly improves both metrics, highlighting
the importance of temporal attention refinement. Adding TII
further enhances performance by refining latent features and
enabling frame-level text control.

5 Conclusion

In this work, we present a novel video-generation method
named FancyVideo, which optimizes common text con-
trol mechanisms (e.g., spatial cross-attention) from the
cross-frame textual guidance. It improves cross-attention
with a well-designed Cross-frame Textual Guidance Module
(CTGM), implementing the temporal-specific textual condi-
tion guidance for video generation. A comprehensive qual-
itative and quantitative analysis shows it can produce more
dynamic and consistent videos. This characteristic becomes
more noticeable as the number of frames increases. Our
method achieves state-of-the-art results on the EvalCrafter
benchmark and human evaluations.
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