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Abstract
Immersive video serves as a key component of eX-
tended Reality (XR) that aims to create and in-
teract with simulated virtual or hybrid environ-
ments. Such a technology allows users to expe-
rience immersive sensations that transcend time
and space, and meanwhile continuously providing
training data for emerging technologies like Em-
bodied AI. Thanks to the advancements in captur-
ing, computing, and display, recent years have wit-
nessed many excellent works for XR and related
hardware or software systems. However, chal-
lenges like high creation cost, lack of immersion,
and limited scalability hinder the practical applica-
tion of immersive video services. Whilst recently
emerged Generative Artificial Intelligence (GenAI)
provides us with new insights in tackling existing
challenges. In this paper, we conduct a compre-
hensive survey into the recent advances and future
opportunities on how GenAI can benefit immer-
sive video services. By introducing a systematic
taxonomy, we meticulously classify the pertinent
techniques and applications into three well-defined
categories aligned with the pipeline of immersive
video service: content creation, network delivery,
and client-side display. This categorization enables
a structured exploration of the diverse roles on how
GenAI can benefit immersive video service, pro-
viding a framework for a more comprehensive un-
derstanding and evaluation of these technologies.
To the best of our knowledge, this work is the first
systematic survey of GenAI in XR settings, laying
a foundation for future research in this interdisci-
plinary domain.

1 Introduction
Immersive video is a core component of eXtended Reality
(XR), which encompasses technologies like panoramic video
(360° video) and volumetric video. These technologies aim to
create an immersive environment that allows users to create,
explore, or interact in a way that transcends traditional video
experience. For panoramic videos, by offering the sphere-
shape panoramic frame, users are allowed to freely switch

their viewport in three degrees (yaw, pitch, and roll). Volu-
metric videos further promote the user experience to up to six
degrees of freedom (6-DoF), allowing users to switch their
viewport while changing their position in the virtual space
they are immersed in. With applications spanning across en-
tertainment, education, remote collaboration, and healthcare,
immersive video reveals the potential to transform the way
we interact with the virtual world.

Despite the rapid advancement in capturing, transmission,
and display technologies, several key challenges continue to
hinder the widespread adoption and effectiveness of immer-
sive videos. Unlike traditional video capture technologies,
which are nearing perfection, immersive video creation faces
significant hurdles, primarily due to the high costs, asso-
ciated with the specialized hardware and software require-
ments, limiting the accessibility of immersive content cre-
ation. Additionally, the inherently large data size of immer-
sive videos, particularly volumetric video, poses significant
challenges for network transmission. Current network limita-
tions often create bottlenecks, impeding the seamless delivery
of online immersive video services. On the client side, ren-
dering immersive content demands substantial computational
resources, leading to high latency and reduced display qual-
ity, especially for users with less powerful hardware. These
challenges collectively constrain the overall user experience
and limit the scalability of immersive video applications.

Generative Artificial Intelligence (GenAI) has emerged as
a transformative technology that leverages generative mod-
els to create, modify, and optimize content, including texts,
images, videos, and other media. With its rapid progress, it
has shown significant promise in various fields, ranging from
content generation to real-time optimization and decision-
making. Such features also bring new insights in tackling
the existing challenges spanning across diverse fields. In the
context of immersive video, GenAI plays a pivotal role in
overcoming several challenges. For content creation, it can
drastically reduce production costs by automating the gener-
ation of high-quality video content, such as 3D models, tex-
tures, and entire virtual environments. This not only lowers
the need for expensive hardware and manual workflows but
also democratizes immersive video creation, making it more
accessible to creators in various sectors. In terms of network
delivery, GenAI enhances the compression and encoding of
immersive video data, optimizing storage and enabling faster
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transmission. By intelligently predicting and reconstructing
video frames, GenAI reduces data size, alleviates network
congestion, and improves scalability. Lastly, for client-side
display, GenAI optimizes rendering techniques by applying
super-resolution and neural rendering techniques. This im-
proves visual quality and reduces the computational load on
devices, providing smoother experiences across a wide range
of devices, from mobile phones to high-end VR headsets.

In this paper, we conduct a comprehensive investigation
into current advances and future opportunities of GenAI on
how it can contribute to immersive video services. To facil-
itate a deeper understanding, we introduce a taxonomy that
aligns with the immersive video service pipeline, offering a
structured framework for exploring GenAI’s potential contri-
butions across content creation, network delivery, and client-
side display. To the best of our knowledge, this is the first
systematic survey of GenAI in immersive video contexts, es-
tablishing a foundation for future research in this interdisci-
plinary field.

2 Related Work & Motivation
Though many works have explored the service pipelines of
immersive video, particularly in areas such as content cre-
ation, network delivery, and client-side display, few have
addressed the intersection of GenAI with immersive video
technologies. Currently, there are dozens of survey papers
[Yaqoob et al., 2020; Jin et al., 2023a; Viola and Cesar, 2023;
Jin et al., 2024b] focusing on immersive video, covering top-
ics like video encoding, real-time rendering, and VR/AR con-
tent delivery. However, none have comprehensively explored
how GenAI can be leveraged to address the unique chal-
lenges within the immersive video pipeline. The integration
of GenAI with immersive video systems presents new oppor-
tunities to tackle long-standing issues such as high production
costs, large data sizes, and rendering inefficiencies. Given
the rapid advancements in both fields, there is a clear gap in
the literature when it comes to understanding how GenAI can
reshape the future of immersive video services. This paper
aims to fill this gap by providing a comprehensive survey of
the current state of GenAI applications in immersive video,
highlighting the promising intersections between these tech-
nologies and their potential to revolutionize immersive media
experiences.

3 Taxonomy
The immersive video service pipeline can be divided into
three key stages: Content Creation, Network Delivery, and
Client-side Display. Each stage plays a crucial role in deliv-
ering high-quality immersive video experiences, and GenAI
can significantly enhance these stages. This section provides
a detailed taxonomy of how GenAI can contribute to each
stage of the immersive video pipeline.

3.1 Content Creation
Content creation for immersive video services encompasses
two interconnected processes: Enhanced Content Captur-
ing, which refines real-world data acquisition, and Genera-
tive Content Creation, which synthesizes immersive content

from textual or sparse inputs. Together, these processes en-
sure high-quality, adaptable, and scalable content tailored for
immersive services like panoramic and volumetric video.

Enhanced Content Capture
This section focuses on advancing real-world data acquisition
through AI-driven methods. Multi-modal sensor fusion, such
as combining RGB, LiDAR, and depth data, helps reduce
alignment errors and enhances the accuracy of dynamic scene
reconstructions. Data enhancement techniques, including dif-
fusion models, play a crucial role in denoising and complet-
ing incomplete 3D objects, preserving geometric details, and
improving overall data quality. Additionally, methods like
GAN-based super-resolution enhance immersive content cre-
ated with low-quality data, significantly boosting visual fi-
delity and realism.

Generative Content Creation
GenAI techniques empower creators to generate immersive
content from minimal inputs. Methods such as Neural Ra-
diance Fields (NeRF) [Mildenhall et al., 2021] enable the
creation of photorealistic 3D scenes from 2D images, while
diffusion-based approaches enhance 3D object and scene
generation for volumetric video applications. Recent ad-
vancements in text-to-3D generation allow for the creation
of detailed 3D models from textual descriptions, pushing the
boundaries of creativity in virtual environments and interac-
tive storytelling. These innovations streamline content gener-
ation, making it faster and more accessible for creators.

3.2 Network Delivery
Network delivery in immersive video services focuses on ef-
ficiently transmitting large-scale, high-quality content, such
as volumetric video, over networks. This stage addresses two
critical challenges: GenAI-assisted Transmission Optimiza-
tion, which enhances compression and reduces data sizes, and
Semantic-based Transmission, which prioritizes critical con-
tent to optimize bandwidth usage.

GenAI-assisted Transmission Optimization
GenAI improves the transmission of immersive video con-
tent by optimizing compression algorithms and reducing data
sizes while maintaining content quality. Traditional video
compression methods often struggle with the complexity of
immersive videos, especially for volumetric content. GenAI-
driven approaches, such as neural-based compression, ad-
dress these limitations by using neural representations to
compress data efficiently.

Semantic-based Transmission
Semantic-based transmission optimizes bandwidth usage by
identifying and prioritizing critical regions of immersive
video content. Certain segments, such as the viewer’s fo-
cal area, are more important than peripheral regions, particu-
larly in formats like panoramic video. Traditional transmis-
sion methods treat all parts of the video equally, which can
lead to inefficient bandwidth use. While semantic transmis-
sion techniques extract semantic information to ensure higher
fidelity transmission for key features while compressing less
important regions more aggressively.
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Figure 1: Overview of the Immersive Video Service Pipeline with GenAI Enhancements: This figure illustrates the three main stages of
the immersive video service pipeline: Content Creation focuses on enhancing data acquisition and enabling generative content creation.
Transmission optimizes data size and prioritizes important content using GenAI-assisted compression and semantic-based transmission.
Display improves visual quality and rendering efficiency using super-resolution and neural rendering techniques.

3.3 Client-side Display
Client-side display for immersive video services focuses on
rendering and presenting high-quality, responsive content to
the user. This process involves two key aspects: Super-
Resolution (SR) for Display, which enhances the quality of
both 3D and 2D immersive video, and Neural Rendering,
which optimizes the efficiency and realism of rendering pro-
cesses for real-time immersive experiences.

Super-Resolution (SR) for Display
Super-resolution (SR) enhances the resolution and visual fi-
delity of immersive video content, in both volumetric and
panoramic formats. 3D super-resolution techniques enhance
3D models like point clouds and meshes, refining spatial res-
olution and providing finer geometry details. In the case
of panoramic videos, 2D super-resolution techniques are ap-
plied post-rendering to improve the clarity and detail of
low-resolution frames. Advanced methods like temporal-
consistent diffusion models ensure stability across video se-
quences, preserving consistency and enhancing the overall
viewing experience.

Neural Rendering
Neural rendering leverages deep learning models to simu-
late and render 3D scenes more efficiently than traditional
methods. By utilizing techniques like NeRF and Video Oc-
tree (VOctree) structures, neural rendering enables interac-
tive, real-time rendering of volumetric video content. This
approach enhances the rendering process by reducing mem-
ory overhead and computational load, allowing for photore-
alistic and editable 3D content. Additionally, hybrid frame-
works that combine neural rendering with rasterization pro-

vide seamless integration for VR headsets, offering users an
immersive experience with optimized real-time performance.

4 Recent Advances
Following the immersive video service pipeline outlined in
Section 3, this section reviews recent advances in GenAI
across the three key stages: content creation, network deliv-
ery, and client-side display. We first explore how GenAI is
transforming content creation through efficient data acquisi-
tion and synthetic data generation. Innovations like NeRF
and text-to-3D generation enable the creation of immersive
content from minimal inputs. In network delivery, advance-
ments in neural representations improve data transmission ef-
ficiency while semantic-aware compression optimizes band-
width usage. Finally, we examine breakthroughs in client-
side display, including neural-enhanced super-resolution and
real-time neural rendering, which elevate visual fidelity and
streamline the rendering process. By investigating the ad-
vances along the service pipeline, we highlight how GenAI
addresses the unique challenges of immersive video services
while uncovering the opportunities for future innovation.

4.1 Content Creation
Immersive video content creation serves as the foundation of
the entire service pipeline. Traditionally, this process involves
capturing video content from the real world using complex
device setups, such as calibrated camera arrays. However,
with the advent of GenAI technologies, the paradigm of im-
mersive content creation has undergone a significant shift. In-
stead of relying solely on real-world capture, GenAI enables
the direct generation of immersive content from simple inputs
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or prompts, revolutionizing the way we produce and interact
with immersive media.

Enhanced Content Capturing
Capturing immersive video data from the real world has long
been the cornerstone of traditional immersive video creation.
However, this process often faces significant challenges, in-
cluding high acquisition costs, sensor limitations, and data
scarcity. Recent advancements in GenAI have revolutionized
the way immersive video data is acquired, offering transfor-
mative improvements in quality, efficiency, and scalability.
By leveraging cutting-edge AI techniques, such as diffusion
models, transformers, and generative adversarial networks
(GANs), GenAI enables more robust and cost-effective so-
lutions for real-world data capturing.

In this part, we explore how GenAI enhances the acqui-
sition of immersive video data through two key approaches:
sensor fusion and data enhancement. These advancements
not only address the limitations of traditional methods but
also pave the way for new possibilities in immersive video
creation.
Sensor Fusion across multiple modalities has always been
one of the key challenges in immersive video capturing,
particularly for volumetric video, which integrates diverse
modalities such as RGB, depth, and spatial audio. Unlike tra-
ditional 2D media, volumetric video demands precise align-
ment and synchronization of heterogeneous data streams to
reconstruct continuous high-fidelity 3D scenes. Traditional
fusion methods, such as geometric calibration or handcrafted
feature matching, often struggle with misalignment, noise
amplification, and computational inefficiency, especially for
dynamic scenes or unstructured environments.

Recent advances in GenAI have introduced new solutions
to the aforementioned challenges. For instance, in LiDAR4D
[Zheng et al., 2024], a dynamic neural field framework is
proposed for space-time LiDAR synthesis, combining Li-
DAR point clouds with RGB video frames to reconstruct 4D
(3D+time) scenes. This framework leverages a spatiotempo-
ral neural field to model dynamic objects and environments,
addressing the challenges of temporal consistency and multi-
modal fusion in point cloud-based immersive video creation.
Additionally, recent advancements in image fusion, such as
the work by [Zhang et al., 2025] on natural language-guided
infrared and visible image fusion, leverage CLIP to guide the
fusion process using natural language expressions. By inte-
grating CLIP with a low-redundancy feature fusion network,
such a method has shown great promise in improving the
quality of fused images by reducing redundant features and
enhancing focus on critical information.
Data Enhancement is critical to refining raw data captured
from sensors. Leveraging GenAI technologies like GANs and
diffusion models, the quality and fidelity of the raw data could
be improved.

One of the most common challenges in real-world captur-
ing is noise in depth data, often caused by environmental in-
terferences such as surface reflection or absorption. While
diffusion models have shown significant potential in denois-
ing 3D point clouds, one of the most common data formats,
recent advancements have further enhanced this capability.

A notable development is P2P-Bridge [Vogel et al., 2024],
which introduces a novel framework that adapts Diffusion
Schrödinger bridges to point clouds. Unlike traditional meth-
ods that predict point-wise displacements based on point fea-
tures or learned noise distributions, P2P-Bridge learns an op-
timal transport plan between paired point clouds.

Building on this, another significant advancement is the
Point Cloud Upsampling Diffusion Model (PUDM) [Qu et
al., 2024], which targets point cloud upsampling while simul-
taneously addressing denoising. PUDM treats sparse point
clouds as conditions and iteratively learns the transforma-
tion relationship between sparse and dense point clouds. The
model uses a denoising diffusion probabilistic approach, en-
hancing the quality of point clouds by removing noise and
filling in missing details. Moreover, PUDM employs a dual
mapping paradigm to improve feature discernment, learn-
ing complex geometric details in the point cloud without the
need for additional upsampling modules. PUDM not only
enhances point cloud quality but also enables high-quality
arbitrary-scale upsampling during inference, marking a sig-
nificant leap forward in point cloud refinement for immersive
applications.

Another real-world capturing challenge is the presence of
gaps or missing data due to occlusions and sensor limita-
tions, which significantly degrade the reconstruction quality.
One recent approach SDS-Complete [Kasten et al., 2024] no-
tably employs pretrained text-to-image diffusion models to
guide the completion of missing parts of point clouds. SDS-
Complete leverages semantic guidance provided by textural
descriptions of objects, enabling it to generate missing sur-
faces while aligning with the known point cloud and the se-
mantics of the object. By leveraging test-time optimization,
SDS-Complete ensures that the generated points align with
both the original point cloud and the global object charac-
teristics, maintaining both overall geometrical accuracy and
realism of the reconstructed 3D scene.

Generative Content Creation
GenAI has opened up innovative ways to create immersive
video content, especially from sparse or minimal input data.
By utilizing advanced generative models, GenAI can gener-
ate high-quality 3D content and dynamic scenes that offer
an immersive experience, often from simple inputs such as
images, sketches, or even texts. Below, we explore two key
approaches that have seen significant advancements: Text-to-
3D Generation and Image-to-3D Generation.

Text-to-3D generation converts textual descriptions into
3D content. Advances in models like Text2Mesh [Michel
et al., 2022] allows users to generate 3D scenes and objects
from simple text prompts, enabling creators to build immer-
sive environments without extensive 3D design skills. How-
ever, traditional solutions often suffer from slow convergence,
missing details, or inaccurate 3D geometry. While one no-
table progress lies in DreamTime [Huang et al., 2024], which
solves these problems by improving the optimization process
through diffusion-guided sampling. By utilizing diffusion-
guided sampling, DreamTime better aligns the 3D optimiza-
tion process, resulting in faster generation of more realistic,
detailed 3D scenes.
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Building upon the previous advancements in text-to-3D
generation, another work GVGEN [He et al., 2024] innovates
the 3D content generation by employing a structured volu-
metric representation GaussianVolume, which organizes 3D
Gaussian points into a fixed-volume structure. This organiza-
tion allows for the capture of intricate texture details within a
volume composed of a fixed number of Gaussians. To op-
timize this representation, GVGEN introduces the ‘Candi-
date Pool Strategy’, a unique pruning and densifying method
that enhances detail fidelity through selective optimization.
Furthermore, GVGEN utilizes a coarse-to-fine generation
pipeline, which first constructs a basic geometric structure
and then predicts complete Gaussian attributes, enabling the
model to generate instances with detailed 3D geometry. This
approach simplifies the generation process and empowers the
model to produce more accurate and realistic 3D structures.

Image-to-3D Generation involves converting 2D images
into 3D models, enabling the creation of immersive environ-
ments from single or multiple images. Recent advancements
have significantly improved the quality and efficiency of this
process. A notable progress is PC2 [Melas-Kyriazi et al.,
2023], which reconstructs 3D shapes from a single RGB im-
age using a conditional denoising diffusion process. This ap-
proach begins with a set of 3D points sampled from a Gaus-
sian distribution and iteratively refines them to match the ob-
ject’s shape. The key innovation is projection conditioning,
where local image features are projected onto the partially
denoised point cloud at each diffusion step. This technique
enables the generation of high-resolution, sparse geometries
that align well with the input image, and it can also predict
point colors after shape reconstruction. Due to the proba-
bilistic nature of the diffusion process, the method can gen-
erate multiple plausible 3D shapes from a single image. This
approach has shown significant improvements over previous
methods, particularly in handling complex real-world data.

4.2 Network Delivery
Efficient data transmission is essential for smooth immersive
video experiences, especially when dealing with emerging
large-scale, high-quality content such as volumetric video.
The fundamental challenge lies in the sheer size of the
data generated by immersive content, which can include
3D models, neural representation models, or high-resolution
panoramic video streams. As immersive content evolves and
becomes more complex, the need for optimized transmission
strategies becomes increasingly critical to ensure a seamless
user experience.

GenAI-assisted Transmission Optimization
GenAI’s rapid progress provides new solutions to optimize
the data transmission pipeline for immersive video content.
One of the primary ideas is through neural-enhanced com-
pression techniques [Ma et al., 2020; Jin et al., 2025b]. Tra-
ditional video compression algorithms, such as H.265 [Pas-
tuszak and Abramowski, 2015] or VP9 [Bienik et al., 2016],
often struggle to maintain high quality while reducing file
size, especially with the complex, multi-dimensional data of
immersive videos. By integrating GenAI into the transmis-
sion process, the compression performance can be signifi-

cantly improved. A recent achievement by [Shi et al., 2024]
proposes an end-to-end pipeline for compressing volumetric
video using neural-based representations. This approach en-
codes the differences between consecutive NeRFs, thus effec-
tively capturing dynamic aspects of the scene and reducing
data sizes while preserving key content details. Additionally,
HiNeRV [Kwan et al., 2023], proposes an implicit neural rep-
resentation (INR) approach that integrates lightweight layers
and hierarchical positional encodings. Unlike existing meth-
ods, HiNeRV combines depth-wise convolutional, MLP, and
interpolation layers into a unified architecture, enabling si-
multaneous encoding of videos at both frame and patch lev-
els for enhanced flexibility and efficiency. A tailored codec
and training pipeline incorporating pruning and quantization
further optimize performance retention during lossy compres-
sion.

These advancements showcase GenAI’s transformative po-
tential for immersive video delivery. By refining compression
algorithms to prioritize dynamic scene elements and reduce
redundancy, GenAI enables efficient transmission of high-
quality content over existing networks. This eliminates the
need for infrastructure overhauls while accelerating stream-
ing speeds and enhancing user experiences, particularly for
bandwidth-intensive formats like volumetric video. Such
neural-driven methods ensure scalable, high-fidelity delivery
of immersive media.

Semantic-based Transmission
Semantic-based transmission focuses on optimizing the trans-
mission pipeline by identifying and prioritizing important
regions of immersive video content, reducing redundancy
and thus avoiding unnecessary bandwidth consumption. In
immersive video services, certain segments, such as the
viewer’s focus area, are more critical than others as proved
by [Hu et al., 2023a; Hu et al., 2023b]. Traditional trans-
mission methods like [Qian et al., 2019; Jin et al., 2023b;
Liu et al., 2023] treat all parts of the video equally, which can
lead to inefficient bandwidth use, especially in content like
panoramic or volumetric videos where peripheral areas are
less important.

A recent approach by [Xie et al., 2024] leverages seman-
tic communication (SemCom) techniques to enhance the ef-
ficiency of transmitting 3D point cloud data. This method
extracts both local and global semantic information from the
point clouds, enabling the transmission to focus on the most
important features. The local semantic encoder extracts de-
tailed information from specific regions of the point cloud,
while the global semantic encoder captures the overall struc-
ture, ensuring both local detail and global context are pre-
served. By applying these techniques, the system ensures that
critical data is transmitted with higher fidelity, while less sig-
nificant regions can be more aggressively compressed, reduc-
ing overall data size without compromising quality.

For more challenging live streaming scenarios, LiveVV is
proposed [Hu et al., 2025b] to address the challenges of live
volumetric video streaming by using scene segmentation and
adaptive transmission. The system identifies dynamic con-
tent within the scene, prioritizing it for higher fidelity trans-
mission, while less critical static elements are compressed

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

more aggressively to reduce bandwidth usage. Additionally,
Volumetric Video Adaptive Bitrate Streaming (VABR) is em-
ployed to dynamically adjust the streaming quality based on
real-time network conditions, ensuring a smooth user experi-
ence.

4.3 Client-side Display
The display stage of immersive video content is pivotal to en-
suring that the final output is both visually compelling and
responsive. GenAI’s ability to improve quality and opti-
mize rendering has been transformative, addressing the com-
putational challenges of rendering and delivering immersive
video, especially in real-time. This section will explore the
key ways in which GenAI is enhancing the display pipeline
of immersive video services.

Super-Resolution (SR) for Display
GenAI models have made significant strides in applying
super-resolution (SR) techniques to immersive video, im-
proving the resolution and realism, especially to volumet-
ric content, which typically requires higher computational
resources for rendering at real-time speeds. In the context
of volumetric video, 3D super-resolution is used to enhance
point clouds and 3D meshes. Volumetric video often relies
on lower-resolution 3D representations due to the high band-
width consumption and computational cost of rendering. Ap-
plying 3D SR techniques improves these representations by
increasing the spatial resolution of point clouds or mesh de-
tails, providing finer geometry details.

For instance, the study GaussianSR [Yu et al., 2024] is
proposed to leverage 2D diffusion priors learned from large-
scale image data to enhance 3D super-resolution. By distill-
ing 2D knowledge into 3D representations using Score Distil-
lation Sampling (SDS), GaussianSR improves the resolution
of 3D Gaussian primitives, leading to higher-quality synthe-
sized views. This approach demonstrates the potential of inte-
grating 2D diffusion priors into 3D SR for volumetric video,
offering a pathway to enhance visual fidelity in immersive
video services.

Panoramic video is another immersive video paradigm that
comes with less degree-of-freedom. 2D SR techniques are
often applied post-rendering to enhance the display quality
of frames with low resolution. Leveraging the advances of
GenAI methods, immersive video services can significantly
enhance the quality of panoramic content, ensuring a clearer
and more detailed viewing experience for users.

For instance, [Hu et al., 2025a] introduce a method that
represents each pixel as a continuous Gaussian field, allow-
ing for the refinement and upsampling of encoded features
through 2D Gaussian Splatting (2D-GS). This approach en-
hances the representation ability by establishing long-range
dependencies and dynamically assigning Gaussian kernels to
pixels, resulting in high-fidelity super-resolution with fewer
parameters than existing methods.

Additionally, [Zhou et al., 2024b] introduce a text-guided
latent diffusion framework for video upscaling. This frame-
work ensures temporal coherence through two key mech-
anisms: locally, it integrates temporal layers into U-Net
and VAE-Decoder, maintaining consistency within short se-

quences; globally, it introduces a flow-guided recurrent la-
tent propagation module to enhance overall video stability by
propagating and fusing latent representations across entire se-
quences. This approach allows for flexible control over the
balance between restoration and generation, enabling a trade-
off between fidelity and quality.

By employing SR techniques in both 3D and 2D domains,
immersive video services can deliver high-resolution content
with lower costs, improving the overall display quality of vol-
umetric and panoramic video while minimizing the demands
on system resources.

Neural Rendering
Neural rendering is an emerging technique that uses deep
learning models to simulate the process of rendering 3D
scenes more efficiently. Unlike traditional rendering meth-
ods, which rely on physically accurate simulations of light
and materials, neural rendering uses neural networks to gen-
erate realistic images based on learned patterns and approxi-
mations.

A novel work, NeuVV [Zhang et al., 2022b], proposes a
new approach to volumetric video rendering using NeRF, en-
abling immersive, interactive 3D video experiences. By in-
corporating factorization techniques like hyper-spherical har-
monics (HH) decomposition and learnable basis represen-
tations, NeuVV enhances rendering efficiency and reduces
memory overhead, crucial for real-time performance. A key
innovation is its use of a Video Octree structure, which al-
lows dynamic manipulation of video content—such as repo-
sitioning 3D performances and adjusting textures—at interac-
tive speeds. This is paired with a hybrid neural-rasterization
framework that integrates seamlessly with VR headsets, fa-
cilitating high-quality, real-time volumetric video rendering.
NeuVV’s ability to deliver photorealistic, editable content
makes it highly relevant for the future of immersive media
applications like virtual and augmented reality.

Another notable work, YuZu [Zhang et al., 2022a], in-
troduces a system for volumetric video streaming that opti-
mizes both visual quality and bandwidth efficiency through
adaptive 3D super-resolution. Unlike traditional volumet-
ric streaming systems, which require transmitting dense 3D
point clouds or meshes at high bandwidths, YuZu employs
a novel split-rendering framework that offloads SR tasks to
edge servers. By streaming low-resolution 3D content and
applying lightweight 3D SR models at the client side, YuZu
reduces bandwidth usage by 4.1× while maintaining percep-
tual quality comparable to native high-resolution streams.

A key innovation is the first QoE model for volumetric
streaming, which quantifies user-perceived quality based on
spatial resolution, temporal consistency, and rendering la-
tency. This model enables YuZu to dynamically adapt SR
parameters (e.g., spatial and temporal upsampling rates) in
response to network fluctuations, achieving 23% higher QoE
than static approaches. The system also introduces line-rate
SR processing, leveraging GPU-CPU co-design to achieve
real-time performance (60 FPS) on commodity hardware.
Evaluations on volumetric datasets like 8i Voxelized Light
Fields [Krivokuća et al., 2018] demonstrate YuZu’s ability to
reduce client-side rendering latency by 35% while preserving
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visual fidelity, making it a scalable solution for immersive
applications such as VR and telepresence [Jin et al., 2025a;
Duan et al., 2025; Jin et al., 2024a].

5 Challenges & Opportunities
This section will identify the challenges of GenAI-based
immersive services, including scalability, latency demand,
bandwidth bottleneck, and privacy concerns while exploring
the potential opportunities to tackle these challenges.

5.1 Scalability
Scalability is a critical factor in the widespread application of
immersive services. The capability to scale these applications
efficiently across different networks, user devices, and envi-
ronments is of great importance to ensure a seamless expe-
rience and accommodate the growing demand. In particular,
scalability challenges include handling changing user num-
bers and loads, increasing data complexity and service de-
mands, and maintaining performance across diverse hardware
and network conditions. Scalability allows users to expand
their immersive service demands without facing bottlenecks
in performance or accessibility [Zink et al., 2019], which is
a very common request for gaming, enterprise collaboration,
healthcare, or education. Meanwhile, it also has higher re-
quirements for related GenAI techniques, indicating that the
algorithms must have great scalability. For instance, the AI
model should be able to handle changing amounts of inputs
and generate desired content with acceptable latency.

5.2 Latency Demand
Immersive videos have stringent requirements for ultra-low
latency connections, which rely on real-time data transmis-
sion and immediate feedback to create realistic and seamless
environments. High latency can result in noticeable lag, mo-
tion sickness, and a diminished sense of presence [Chang et
al., 2020], making the reduction of latency a crucial chal-
lenge for developers and network providers. Meanwhile, de-
spite the great potential of GenAI techniques in immersive
services, they may lead to extra latency for the overall pro-
cess. For example, existing studies by [Zhou et al., 2024a]
have explored the broad application of large language mod-
els (LLMs) in image and video processing, but LLMs may
significantly increase the latency due to the huge number of
parameters. The progress of 5G and beyond networks is a
significant step toward achieving ultra-low latency in immer-
sive applications [Hazarika and Rahmati, 2023], enhancing
the real-time capabilities of immersive systems. Future ad-
vancements in network technology, such as 6G, mmWave,
and Terahertz communications, are expected to further reduce
latency and unlock new possibilities for immersive applica-
tions.

5.3 Bandwidth Bottleneck
Immersive video services rely on high-bandwidth connec-
tions to deliver high-quality and reliable user experiences.
Specifically, immersive applications usually require real-time
transmissions of high-resolution 3D graphics, spatial audio,

and interactive elements in the immersive environment. Un-
like traditional video streaming, immersive content must dy-
namically adjust to user movements and interactions, requir-
ing significantly more bandwidth. Additionally, many im-
mersive applications will offload processing requests to cloud
servers due to computational resource constraints on local de-
vices [Wu et al., 2024]. Such task offloading will also in-
crease network traffic and require extra bandwidth. Without
sufficient bandwidth, users may encounter lag, buffering, and
degraded video quality, degrading the quality of experience
in immersive environments. Despite the satisfactory perfor-
mance of GenAI-based techniques, they also require more
computational resources, which indicates more requests for
computational task offloading, e.g., offloading content gener-
ation tasks to cloud servers or edge nodes [Gül et al., 2020].
To this end, multiple bandwidth optimization techniques have
been proposed, including adaptive streaming, compression
algorithms, network prioritization, edge caching, etc.

5.4 Privacy Concern
Privacy is a critical concern in the application of immersive
video services [Jin et al., 2024c]. For instance, the devices
that provide immersive services can collect user behavioral
patterns and personalized avatars can be used to steal per-
sonal financial information illegally. In addition, based on
the data collected during immersive services, one can make
inferences about the users regarding their location, occupa-
tions, interests, and behavior [Jin et al., 2022]. The privacy
concern may increase when GenAI technologies are involved,
in which more detailed user data is collected for content cre-
ation and display, including body signals, facial features, and
emotional responses. In particular, AI models usually require
vast amounts of data for training and customization, which
often includes sensitive personal information. This data can
expose users to privacy risks, including identity theft and data
breaches. Furthermore, companies may collect user inputs
and interactions to refine their models without explicit con-
sent, raising concerns about data ownership and transparency.
GenAI also enables the creation of synthetic media in im-
mersive video services, such as deepfakes [Mirsky and Lee,
2021] and AI-generated text [Sadasivan et al., 2023]. These
can be used to impersonate individuals, manipulate opinions,
or spread false information. This problem may be alleviated
by robust privacy measures such as strong encryption, access
controls, and continuous security audits.
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[Krivokuća et al., 2018] Maja Krivokuća, Philip A. Chou,
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