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Abstract
Palms are ecologically and economically indicators
of tropical forest health, biodiversity, and human
impact that support local economies and global for-
est product supply chains. While palm detection in
plantations is well-studied, efforts to map naturally
occurring palms in dense forests remain limited by
overlapping crowns, uneven shading, and heteroge-
neous landscapes. We develop PRISM (Processing,
Inference, Segmentation, and Mapping), a flexible
pipeline for detecting and localizing palms in dense
tropical forests using large orthomosaic images.
Orthomosaics are created from thousands of aerial
images and spanning several to hundreds of giga-
bytes. Our contributions are threefold. First, we
construct a large UAV-derived orthomosaic dataset
collected across 21 ecologically diverse sites in
western Ecuador, annotated with 8,830 bounding
boxes and 5,026 palm center points. Second, we
evaluate multiple state-of-the-art object detectors
based on efficiency and performance, integrating
zero-shot SAM 2 as the segmentation backbone,
and refining the results for precise geographic map-
ping. Third, we apply calibration methods to align
confidence scores with IoU and explore saliency
maps for feature explainability. Though optimized
for palms, PRISM is adaptable for identifying other
natural objects, such as eastern white pines. Fu-
ture work will explore transfer learning for lower-
resolution datasets (0.5–1m). Data and code can be
found at github.com/Zippppo/PRISM.

1 Introduction
Palms (family Arecaceae) are vital to tropical ecosystems,
serving as essential resources for pollinators and frugivores
and influencing the evolution of dependent fauna [Eiserhardt
et al., 2011; Zambrana et al., 2007]. Beyond their ecolog-
ical roles, palms are deeply integrated in the livelihoods of
rural and indigenous communities, providing food, construc-
tion materials, fuel, and medicine while supporting sustain-

Figure 1: Palm Distribution Comparison. The first three images
from previous studies [2021; 2022] feature evenly spaced palms or
clear backgrounds, while the last represents our case with natural
spacing, occlusions, and complex backgrounds in tropical forests.

able non-timber forest product markets. Particularly in re-
gions like the Amazon, palms support subsistence practices
and enhance resilience to socio-economic and environmental
changes, reflecting the intricate links between biodiversity,
human well-being, and sustainability [Pitman et al., 2014;
Malhi et al., 2014; van der Hoek et al., 2019; Terborgh,
1986]. While their distinctive star-shaped crowns make palms
well-suited for automated mapping [Sutherland et al., 2013;
Wagner et al., 2020], the absence of scalable, precise tools to
monitor these species across vast forests limits timely conser-
vation efforts and support for dependent communities.

Orthomosaic images are a valuable tool in remote sens-
ing, with applications across various fields such as con-
struction site monitoring, agricultural planning, environmen-
tal impact assessments, property development, and survey-
ing, where accurate spatial data is essential [Kucharczyk and
Hugenholtz, 2021]. These images are created by stitching to-
gether hundreds or thousands of geolocated aerial frames into
spatially coherent maps, enabling consistent analysis across
landscapes. By providing a top-down view of large geograph-
ical areas, orthomosaics allow for precise measurement and
detailed analysis of land features. Unlike standard aerial im-
agery, which contains perspective distortions, orthomosaics
offer an in-scale representation of the ground. Low-flying
drones enable efficient data collection without the need for
extensive ground surveying [Olson and Anderson, 2021].

However, orthomosaics are not error-free and can be chal-
lenging to process. They often contain noise, artifacts, and
stitching errors due to limited camera perspectives, variable
lighting, wind-induced movement, and dynamic cloud cover
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during image acquisition [Zhang et al., 2023b]. Additionally,
resolution loss is a frequent byproduct of the stitching pro-
cess. Typically stored in GeoTIFF format, orthomosaics can
be exceptionally large, particularly in biodiversity conserva-
tion, forest health, and sustainable management applications,
where a single file may range from 1 to 200 GB. As a result,
image analysis must be performed in small patches that fit
within the memory constraints of processing hardware.

Object-based detection techniques, widely used in remote
sensing, are well-established in computer vision. However,
detecting and localizing naturally occurring objects in ortho-
mosaics is inherently challenging [Tagle Casapia et al., 2019;
Cui et al., 2024; Qin et al., 2021; Jintasuttisak et al., 2022].
Unlike structured plantations, where trees are arranged in grid
patterns with ample spacing (see Figure 1), palms in tropi-
cal forests grow irregularly, often obscured by dense vegeta-
tion that distorts key diagnostic features. The distribution of
palm species is highly imbalanced, with only a few dominant
species present in sufficient abundance to train reliable detec-
tion models [Li et al., 2016; Freudenberg et al., 2019]. UAV-
based imagery also introduces substantial lighting variability,
as shadows from thick canopies and shifting sun angles create
significant fluctuations in brightness and contrast across de-
tection targets, further complicating model training and eval-
uation [Gibril et al., 2021]. These challenges are amplified by
the lack of high-quality labeled datasets, whose creation of-
ten requires extensive fieldwork and expert annotation [Mus-
carella et al., 2020; Hidalgo Pizango et al., 2022].

Lastly, manipulation of geographical information data re-
quires domain expertise that is not readily available to
computational scientists. A flexible pipeline that can pro-
cess spatially referenced survey imagery and provide pre-
cise geographic target coordinates would support valuable
downstream applications, leveraging state-of-the-art machine
learning methods. These applications include monitoring
palm abundance and distribution over time and across vast
areas, and developing adaptive and modular survey methods.
Additionally, balancing accuracy with interpretability and
calibration is essential for trustworthy ecological decision-
making [Selvaraju et al., 2017; Kuzucu et al., 2025]. This
study therefore introduces a novel end-to-end pipeline that
addresses a major need in environmental monitoring, is com-
putationally efficient and reliable, and can support variable-
resource processing in field applications.

Our work presents the following main contributions:

1. We construct and provide the PAlm Localization in
Multi-Scale (PALMS) dataset. PALMS contains data
from extensive fieldwork across 21 sites in western
Ecuador, spanning a rainfall gradient from the Choco’s
wettest forests to the dry edge of the Sechura desert,
which captures corresponding gradients in palm species
composition and canopy characteristics. For training, we
annotated 1,500 image patches from 2 sites with 8,830
bounding boxes. For validation, we manually marked
5,026 palm crown centers from 4 reserves to direct com-
pare detected georeferenced centers with ground truth.

2. We develop the PRISM pipeline, a unified and modular
pipeline for natural object detection, segmentation, and

counting. PRISM integrates object detection with zero-
shot segmentation to generate georeferenced palm coor-
dinates. The modular design allows easy interchange of
detection/segmentation models, while calibration analy-
sis and saliency maps enhance trustworthiness and inter-
pretability for ecological applications.

3. We apply PRISM to the PALMS dataset and validate
generalization across four reserves with diverse en-
vironmental characteristics and species compositions.
PRISM accurately localizes palm centers with strong
ground-truth alignment. Benchmarking results show
high inference efficiency across diverse hardware set-
tings, supporting large-scale ecological monitoring.

2 Related Work
2.1 Palm Detection and Localization
Advancements in UAV technology, image stitching, and ma-
chine learning have driven significant progress in palm de-
tection, segmentation, and localization from orthomosaic im-
agery. However, most studies have focused on commercially
valuable species, such as oil and date palms, given their
economic importance [Li et al., 2016; Gibril et al., 2021;
Zheng et al., 2021; Jintasuttisak et al., 2022; Putra and Wi-
jayanto, 2023]. For instance, Li et al. used CNNs with a slid-
ing window for oil palm counting in Malaysia, while Gibril
et al. developed a U-Net variant for enhanced date palm seg-
mentation in UAE. Zheng et al. proposed a Faster R-CNN
variant with refined feature extraction and a hybrid class-
balanced loss to monitor individual oil palm growth. More
recently, YOLO-based approaches have been adopted: Jin-
tasuttisak et al. applied YOLOv5 for detecting date palms
from UAV imagery over UAE farmlands, while Putra and Wi-
jayanto employed YOLOv3 to detect and count oil palm trees
for sustainable agricultural monitoring in Indonesia.

In contrast, the detection and localization of naturally oc-
curring palms in tropical forests is largely underexplored.
Tagle Casapia et al. pioneered palm crown identification us-
ing random forest, showing machine learning’s potential for
individual palm counting. Ferreira et al. applied a fully con-
volutional neural network with morphological operations to
refine palm species segmentation. Wagner et al. used U-Nets
and high-resolution multispectral imagery from the GeoEye
satellite to map canopy palms over a large region in Amazon.

2.2 Object Detection and Zero-Shot Segmentation
Object detection, a core computer vision task, identifies and
localizes objects via bounding boxes [Zou et al., 2023] and
underpins advanced applications such as image segmentation
and object tracking [Wang et al., 2022; Ma et al., 2024; Li et
al., 2024]. The field is dominated by methods using You Only
Look Once (YOLO) and Detection Transformer (DETR).

The YOLO family frames detection as a regression task
balancing speed and accuracy, with overlapping predictions
typically resolved via non-maximum suppression (NMS).
YOLOv8 [2023] improves feature fusion and adopts an
adopts anchor-free detection head optimized for accuracy and
speed. YOLOv9 [2024b] introduces programmable gradient
information and the generalized efficient layer aggregation
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Figure 2: Geographic Locations of Study Sites. The left panel shows
a map of Ecuador with red stars marking the study regions. The right
panels zoom in on 21 study areas within four ecological sites.

network to address information loss. YOLOv10 [2024a] re-
moves NMS through consistent dual assignments in training
and one-to-one inference matching, coupled with a refined
CSPNet backbone and a lightweight head to reduce compu-
tational cost. YOLO11 [2024] further enhances performance
with a refined CSP bottleneck, hybrid attention, and adaptive
anchors with extended IoU loss.

DETR [2020] directly predicts object sets using learned
queries, bypassing the need for post-processing such as NMS.
DINO [2022] enhances DETR with contrastive denoising and
hybrid query initialization, while DDQ-DETR [2023c] intro-
duces dense query assignment for improved one-to-one infer-
ence matching. RT-DETR [2024] optimizes DETR for real-
time use via a hybrid encoder and multi-scale feature fusion.

Segment Anything Models (SAMs) are advanced segmen-
tation models capable of segmenting any object in images
using prompts such as points, boxes, or text [2023; 2024;
2023a]. Trained on the SA-1B (1 billion masks, 11 mil-
lion images), SAM enables zero-shot inference and often sur-
passes fine-tuned methods in accuracy and efficiency [2023].
Its architecture features a ViT for image encoding, a prompt
encoder to process input prompts, and a mask decoder that
fuses features from both to generate segmentation masks.
SAM 2 [2024], trained on the SA-V dataset (50.9k videos,
642.6k masks), enhances video segmentation and object
tracking by refining multi-scale feature extraction. Mobile
SAM [2023a] optimizes SAM for mobile use by simplifying
the image encoder and using decoupled distillation, enhanc-
ing speed without compromising segmentation quality.

3 PALMS Dataset
In this section, we introduce the PALMS (PAlm Localization
in Multi-Scale) dataset. The following paragraphs detail the
study sites, data collection, and manual labeling process.

Study Sites. Data in this study (See Figure 2) come from
western Ecuador’s Choco tropical forest, including Fun-
dación para la Conservación de los Andes Tropicales Re-

serve and adjacent Reserva Ecológica Mache-Chindul park
(FCAT; 00◦23’28” N, 79◦41’05” W), Jama-Coaque Ecolog-
ical Reserve (00◦06’57” S, 80◦07’29” W), Canande Reserve
(0◦31’34” N 79◦12’47” W), and Tesoro Escondido Reserve
(0◦33’16” N 79◦10’31” W). FCAT is a high diversity hu-
mid tropical forest at elevation ∼500m, receiving ∼3000
mm yr−1 precipitation with persistent fog during drier pe-
riod. Jama-Coaque ranges from the boundary of the trop-
ical moist deciduous/tropical moist evergreen forest at the
lower elevations (∼1000 mm precipitation yr−1, ∼250 m
asl) to fog-inundated wet evergreen forests above 580m to
800m. Canande (350–500 m elevation) and Tesoro Escon-
dido (∼200 m elevation) are lowland everwet Choco forests,
both receiving 4000–5000 mm yr−1 precipitation with no
month experiencing drought stress or precipitation below 100
mm. These forests host several palm species with exposed
canopy crowns, including the economically important Iri-
artea deltoidea, Socratea exorrhiza, and Oenocarpus bataua,
with lesser amounts of Attalea colenda and Astrocaryum
standleyanum, and species composition varying across study
sites [Browne and Karubian, 2016; Lueder et al., 2022].
Data Collection. We collected UAV imagery in two stages,
capturing 8,845 photos across 21 areas spanning 1,995
hectares, with a ground sampling distance under 6 cm. In
June 2022, the first stage covered 95 hectares and produced
387 photos, while the second stage in February 2023 sur-
veyed 1,900 hectares and captured 8,458 photos. Both mis-
sions used a DJI Phantom 4 RTK drone equipped with a 1”
CMOS sensor and GS RTK for mission planning. The first
mission flew at 90 meters above ground level with 70% side-
lap and 80% frontlap, while the second operated at 150 me-
ters. The collected images were processed for subsequent
analysis. To enable landscape-level forest analysis, we cre-
ated orthomosaics and conducted post-processing steps using
Agisoft Metashape 2.0, including noise removal, edge trim-
ming, and the generation of digital surface and terrain models.
Manual Labels. To enable fine-tuned palm detection and
zero-shot segmentation, we curated a dataset of 1,500 im-
ages (800×800 pixels) from two FCAT reserve sites, captur-
ing varied quality and palm density typical of natural forests.
Manual annotation of palm crowns and isolated leaves faced
challenges from vegetation overlap and orthomosaic distor-
tions. Three trained experts initially labeled bounding boxes,
followed by iterative refinement using a YOLOv8 detector
trained on these annotations to identify and correct labeling
errors or omissions. For landscape-scale validation, a trained
expert annotated 5,026 georeferenced palm centers on four
orthomosaics using ArcGIS Pro 3.3.1, with predicted coordi-
nates from PRISM to refine annotations. This hybrid human-
model workflow addressed the inherent complexity of label-
ing in natural forest environments, ensuring robust annota-
tions for both detection and geospatial validation.

4 PRISM Pipeline
PRISM (Processing, Inference, Segmentation, and Mapping)
is an end-to-end pipeline that process orthomosaic images to
generate georeferenced palm coordinates alongside bounding
boxes and segmentation masks for visualization. Fine-tuned
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Figure 3: PRISM Pipeline Overview. The detection model, trained on the PALMS dataset, processes orthomosaic slices to generate confidence
scores and bounding boxes. These bounding boxes are refined and serve as prompts, along with the sliced input images, for zero-shot
segmentation. The bounding boxes and confidence scores are further utilized for saliency map generation and calibration analysis.

on the PALMS dataset, PRISM addresses challenges specific
to dense rainforest environments, such as irregular palm dis-
tributions and overlapping crowns. By integrating fine-tuned
detection models with zero-shot segmentation, PRISM en-
sures adaptability to a wide range of environmental tasks.
Figure 3 illustrates the PRISM pipeline, with the details of
each model component discussed in the following sections.
Detection Model. We selected YOLOv10 [2024a] for its
speed and performance. YOLOv10 introduces a consistent
dual assignment strategy for NMS-free training, which com-
bines one-to-many and one-to-one label assignments for en-
riched supervision while eliminating post-processing NMS.
This approach uses a unified matching metric:

m(α, β) = s · pα · IoU(b̂, b)β ,

where p is the classification score, b̂ and b are the predicted
and ground truth (GT) bounding boxes, and s is the spatial
prior, with α and β balancing classification and IoU. Archi-
tecturally, YOLOv10 adopts an efficiency-accuracy-oriented
design, integrating lightweight classification heads, spatial-
channel decoupled downsampling, rank-guided block de-
sign, and advanced features such as large-kernel convolutions
and partial self-attention, achieving robust performance with
faster inference and fewer parameters. Trained on PALMS
dataset, the model processes orthomosaic patches to output
bounding boxes and confidence scores for further processing.
Segmentation Model. We chose SAM 2 [2024] for zero-
shot segmentation due to its superior segmentation quality
and improved speed compared to its predecessor. SAM 2
uses a hierarchical image encoder for multi-scale feature ex-
traction and an optimized architecture that reduces computa-
tional overhead while maintaining high precision. Its efficient
prompt encoding and memory attention mechanism enable
rapid mask refinement during inference. During inference,
bounding boxes from the detection model undergo NMS to
remove duplicates, as patches are cropped from the orthomo-
saic with a stride. The remaining bounding boxes and their
surrounding image regions serve as input prompts for SAM 2
to generate segmentation masks. Final outputs include visual-
ized bounding boxes and masks, alongside georeferenced co-
ordinates derived from NMS-cleaned bounding box centers,
which are subsequently used to quantify counting accuracy.

Calibration. Calibration ensures model trustworthiness by
aligning predicted confidences with empirical IoU, critical for
ecological monitoring where overconfident errors can mis-
lead conservation decisions. We evaluate four calibration
methods to improve palm detection reliability [2025]: (1)
Linear regression (LR) fits a linear logit-probability map-
ping; (2) Isotonic regression (IR) fits a monotonic function:
minŷ1,ŷ2,...,ŷn

∑n
i=1(yi− ŷi)

2, subject to ŷi ≤ ŷj , ∀i < j; (3)
Temperature scaling (TS) divides logits by a learned temper-
ature T before sigmoid; (4) Platt scaling (PS) applies logistic
regression to map logits to calibrated probabilities.
Interpretability via Saliency Maps. Grad-CAM [2017]
enhances interpretability by highlighting regions most influ-
ential to palm predictions. For a class score y, it computes
gradients of y with respect to feature maps Ak, yielding
weights αk = 1

Z

∑
i,j

∂y
∂Ak

ij

, where Z is the number of spa-

tial positions. The heatmap: Lmap = ReLU
(∑

k αkA
k
)

is
then generated to highlight regions influencing predictions,
such as palm crown or leaf patterns. These visualizations help
ecologists assess whether predictions rely on meaningful cues
like crown shapes rather than irrelevant artifacts.

5 Experimental Results
This section evaluates the proposed pipeline across various
tasks and study sites. We numerically compare the detection
performance and computational efficiency of different mod-
els, and visually compare the results of different zero-shot
segmentation models. Calibration metrics are examined to
measure model trustworthiness by analyzing performance be-
fore and after calibration. Saliency maps are analyzed to trace
attention shifts during inference. Next, we apply PRISM to
orthomosaics with distribution shift to examine the counting
performance in practical scenarios. Finally, real-time simula-
tions are conducted to assess the detection and segmentation
speed, as well as the computational demands across devices.

5.1 Experimental Setting
The detection models were trained on PALMS dataset that
split into 80% for training, 10% for validation, and 10% for
testing. Data splitting was randomly performed five times
to ensure robust evaluation, with training and testing data
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Figure 4: Comparison of Palm Detection Performance. Several models are compared in detecting palms, including small, occluded, and
boundary-adjacent cases. All models perform well on large palms, even in occluded scenarios. DETR-based models excel at detecting small
palms, while YOLO-based models perform better for partially visible palms on boundaries.

Model GFLOPS ↓ Params (M) ↓ FPS ↑ Precision ↑ Recall ↑ AP50 ↑ AP75 ↑ mAP ↑
DINO 1920.3 218.2 18.98± 0.95 0.7629± 0.0177 0.8494± 0.0071 0.8169± 0.0166 0.5455± 0.0150 0.5102± 0.0101
DDQ 1232.6 218.6 19.18± 0.96 0.7825± 0.0124 0.8566± 0.0123 0.8541± 0.0129 0.6354± 0.0137 0.5736± 0.0130

RT-DETR 222.5 65.5 151.49± 0.70 0.8869± 0.0230 0.7598± 0.0310 0.8416± 0.0181 0.6198± 0.0181 0.5769± 0.0145
YOLOv8 226.7 61.6 174.92± 0.86 0.8729± 0.0165 0.7997± 0.0203 0.8667± 0.0141 0.6777± 0.0137 0.6148± 0.0128
YOLOv9 169.5 53.2 114.96± 0.30 0.8763± 0.0176 0.7976± 0.0209 0.8741± 0.0109 0.6762± 0.0146 0.6162± 0.0122
YOLOv10 169.8 31.6 177.04± 1.14 0.8716± 0.0121 0.7968± 0.0089 0.8626± 0.0129 0.6794± 0.0112 0.6173± 0.0090
YOLO11 194.4 56.8 170.40± 0.95 0.8721± 0.0095 0.7896± 0.0127 0.8684± 0.0108 0.6677± 0.0180 0.6115± 0.0109

Table 1: Comparative Analysis of Computational Efficiency and Detection Accuracy Among Models for PRISM. The table presents average
performance metrics with standard deviations obtained from five random sampling experiments. FPS values were measured on an NVIDIA
RTX 4090 24 GB GPU. Bold values indicate the best performance for each metric.

Figure 5: Zero-shot segmentation of SAM variants under distribu-
tion shifts. Rows correspond to SAM variants, while columns repre-
sent four distinct reserves. The box prompts were derived from the
detection model trained on geographically distinct data.

drawn from different ecological sites, and validation data
mixed from the two sites. YOLO variants and RT-DETR
were trained for 100 epochs, while DINO and DDQ used 30
epochs. Data augmentations, including hue, saturation, and
brightness adjustments, along with rotations, scaling, transla-
tions, and flips, were employed in training. For inference on
landscape orthomosaics, a stride of 400 was used to ensure
complete coverage, and NMS was applied to eliminate dupli-
cate predictions. Training was conducted on an RTX 4090
GPU, and testing was performed on multiple hardware plat-
forms: RTX 3060 Laptop, RTX 4090 and H800 GPUs.

Detection was evaluated using precision, recall, AP50,
AP75, and mAP. Consistency was assessed by reporting the
standard deviation of these metrics across five random ex-
periments. Computational efficiency was evaluated using
GFLOPS and parameter counts (Params) to measure model
complexity, and FPS to assess inference speed, illustrating

their suitability for real-world applications.
We evaluated the calibration performance of detectors by

LaECE0 =
J∑

j=1

Dj |pj − IoUj |
D

,LaACE0 =
D∑
i=1

|pi − IoUi|
D

,

where J = 25 denotes the number of confidence bins, D and
Dj represent the total detections and detections in bin j, and
pj and IoUj are the average confidence and IoU within bin j.
For LaACE0, pi and IoUi correspond to per-detection confi-
dence and IoU [Kuzucu et al., 2025]. We evaluated the count-
ing performance using retrieval ratios between predicted and
GT centers within d = 5 meters and report the median shift
of successful matches to quantify spatial deviation. For real-
time analysis, we assess the inference speed on raw images
that were directly taken from UAVs.

5.2 Detection and Segmentation Performance
Table 1 compares the detection performance when training
and testing on different geographical regions within the FCAT
reserve, introducing natural distribution shifts. YOLOv10
demonstrates superior efficiency with 177.04 FPS and 31.6M
parameters while achieving competitive accuracy, particu-
larly in higher-quality metrics like AP75 (67.94%) and mAP
(61.73%). It marginally outperforms other YOLO variants
by 0.17% AP75 and 0.11% mAP. DINO’s lower AP50 sug-
gests reduced detection capability under shifted distributions.
DDQ attains the best recall (85.66%) and a solid AP50, but its
lower FPS limits real-time applicability. RT-DETR achieves
the highest precision (88.69%) but low recall (75.98%), in-
dicating numerous missed palms. These results position
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(a) Input Image (b) Layer 1 (c) Layer 4 (d) Layer 7 (e) Layer 10 (f) Layer 16 (g) Layer 19 (h) Layer 22

Figure 6: Feature Saliency in YOLOv10 via GradCAM Visualization. Early layers (b-c) extract boundary and edge details, mid-level layers
(d-e) integrate spatial context, and deeper layers (f-h) specialize in scale-specific object detection.

Metric Model Uncalibrated IR LR PS TS

LaECE0

DINO 4.10% 2.90% 3.50% 4.00% 3.70%
DDQ 2.40% 2.30% 1.60% 1.80% 1.90%

RT-DETR 8.40% 3.50% 4.10% 3.60% 5.90%
YOLOv8 3.60% 3.10% 4.90% 4.30% 4.00%
YOLOv9 3.30% 2.40% 2.90% 2.70% 3.20%
YOLOv10 4.30% 4.70% 4.40% 4.20% 3.60%
YOLO11 3.20% 2.20% 3.80% 3.40% 3.50%

LaACE0

DINO 0.16% 0.27% 0.15% 0.12% 0.77%
DDQ 0.92% 0.61% 0.41% 0.42% 0.55%

RT-DETR 8.43% 2.95% 2.84% 2.80% 1.84%
YOLOv8 0.67% 0.95% 0.92% 0.95% 1.41%
YOLOv9 0.15% 0.19% 0.42% 0.44% 1.01%
YOLOv10 3.97% 4.12% 4.06% 4.17% 0.02%
YOLO11 0.78% 0.40% 0.02% 0.06% 1.11%

Table 2: Comparison of Calibration Performance. The best calibra-
tion for each line is highlighted in bold. IR performs best LaECE0,
while performance for LaACE0 varies by model.

YOLOv10 as optimal for speed-critical deployments, with
DDQ reserved for high-recall scenarios.

Detection analysis under challenging conditions reveals
model-specific capabilities (see Figure 4). All models
detect large palms reliably, even when overlapping, but
exhibit lower confidence on small palms. DETR-based
methods demonstrate superior small-object detection per-
formance (first-row top-left/bottom, second-row center),
whereas YOLO-based methods excel in occluded scenar-
ios with partial leaf visibility. In such cases, YOLO vari-
ants successfully detect individual palms while DETR-based
approaches frequently merge detections (first-row bottom,
second-row top-right). The sliding-window processing of
orthomosaics in PRISM ensures that partially visible palms
near edges are typically captured in adjacent patches, thereby
compensating for missed edge detections.

We evaluated zero-shot segmentation performance using
images from four reserves with distinct ecosystems, where
bounding boxes generated by the detection model (trained on
geographically distinct regions) introduce distribution shifts
when used as prompts during inference, partly due to varia-
tions in palm species across sites. Figure 5 demonstrates ro-
bust zero-shot segmentation performance despite occasional
errors from imperfect bounding box predictions. SAM oc-

Figure 7: Impact of Thresholding and Calibration on YOLOv10’s
Confidence Calibration. Calibration plots show confidence (x-axis)
versus mean IoU (y-axis), with LaECE0 and LaACE0 marked.

casionally produces fragmented palm leaves due to partial
segmentation and background misclassification, while Mo-
bile SAM exhibits background over-inclusion. SAM 2 offers
more balanced results, handling areas near palm boundaries
more effectively. Considering both segmentation quality and
computational efficiency (analyzed in §5.5), SAM 2 is the op-
timal choice for the segmentation backbone in PRISM.

5.3 Calibration Analysis and Saliency Maps
To enhance confidence reliability in palm detection, we eval-
uated calibration performance before and after applying cali-
bration techniques. Confidence scores should align with IoU,
and LRP-based thresholding (A) is used to filter out low-
confidence detections [Kuzucu et al., 2025]. As shown in
Table 2, IR achieves the best LaECE0 for most models, while
YOLOv10 benefits most from TS and DDQ from LR. For
LaACE0, the optimal method varies – TS improves RT-DETR
and YOLOv10, whereas LR is most effective for DDQ and
YOLO11. Notably, no single method is universally best, and
in some cases, lowering LaECE0 increases LaACE0. Figure 7
further illustrates the effect of LRP-based thresholding and
calibration on YOLOv10’s confidence distribution relative to
IoU. Initially, low-confidence predictions (< 0.05) dominate,
skewing calibration metrics. LRP filtering refines the distri-
bution by removing unreliable detections. Post-calibration,
both LaECE0 and LaACE0 further decrease, indicating im-
proved alignment between confidence scores and IoUs.

Grad-CAM saliency maps illustrate YOLOv10’s hierarchi-
cal feature extraction across layers. Early layers (Figure 6(b-
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(a) Pred2GT

(b) GT2Pred

Figure 8: Bidirectional Localization Shift Analysis: Cumulative dis-
tribution of Pred2GT and GT2Pred alignment.

c)) capture fine-grained details, such as palm leaf boundaries
and edge contrasts, progressively refining features from edges
to full palm structures. Mid-level layers (Figure 6(d-e)) ex-
pand spatial context, enhancing palm localization. Deeper
layers specialize in object scales: layer 16 emphasizes small
features like individual leaves, layer 19 focuses on medium-
sized palm crowns, and layer 22, designed for larger palms,
shows limited relevance due to their absence in the scene.

5.4 Counting Performance
Table 3 shows site-dependent palm counting performance.
Pred2GT ratios (proportion of predictions matched to GT)
remains stable (0.8956–0.9361), while GT2Pred ratios (pro-
portion of GT matched to predictions) vary markedly
(0.7667–0.9253). Tesoro Escondido demonstrates strong
bidirectional alignment with near-symmetric ratios, indi-
cating balanced performance in localization and detec-
tion. FCAT, despite being a distinct sub-region, shows
training-data familiarity through its high GT2Pred ratio and
the smallest GT2Pred median shift. However, its ele-
vated Pred2GT shift (1.10m) suggests overfitting to site-
specific features, yielding “precise but misplaced” predic-
tions. Canande’s moderate Pred2GT ratio masks severe re-
call failures (GT2Pred: 0.767), where unmatched GT palms
are likely true misses rather than localization errors. Jama-
Coaque, with a low GT2Pred ratio (0.815) and the largest
median shifts (Pred2GT: 1.50m, GT2Pred: 1.14m), reflects
systematic challenges in both detection and localization. All
sites maintain sub-1.5m median shifts, confirming robust lo-
calization despite occlusions or partial visibility.

Figure 8 illustrates these trends: Canande’s smaller 90th

percentile Pred2GT shifts (Figure 8a) align with its precise-
but-conservative predictions, while FCAT and Tesoro Escon-
dido’s dense canopies enable “proximal counting”, where
predictions align with clustered GT instances (e.g., over-
lapping crowns). This phenomenon partially inflates match
rates in dense regions despite minor localization inaccura-
cies. FCAT’s strong GT2Pred performance highlights train-
ing benefits, whereas Jama-Coaque’s weaknesses underscore
the need for targeted improvements in low-detection settings.

Site Area (ha) Counts Pred2GT GT2Pred
Ratio Median (m) Ratio Median (m)

FCAT 21.62 471 0.9361 1.10 0.8854 0.77
Jama-Coaque 111.93 952 0.9348 1.50 0.8151 1.14
Canande 101.20 1,273 0.8956 0.82 0.7667 0.72
Tesoro Escondido 86.76 2,330 0.8981 1.09 0.9253 0.91

Table 3: Counting performance across sites. Pred2GT and GT2Pred
ratios and median distances quantify bidirectional alignment.

GPU YOLOv10 Mobile SAM SAM SAM 2
RTX3060 Laptop 5.70±0.58 16.49±8.76 58.66±31.21 44.29±23.33
RTX4090 1.68±0.41 7.18±3.67 16.31±8.58 11.87±6.24
H800 1.21±0.37 5.92±3.00 14.05±7.27 10.33±5.31

Table 4: Inference time per image (seconds) across hardware config-
urations. Mean processing times (± standard deviation) are shown.

5.5 Real-Time Simulation
We evaluated the computational feasibility for real-time on-
board processing by simulating the detection-segmentation
pipeline on raw UAV imagery using three GPU configura-
tions as shown in Table 4. Testing across 20 images with
heterogeneous palm densities demonstrated robust detection
performance: YOLOv10 achieves real-time inference speeds
(1.21–5.70 s/image) with low temporal variance, confirm-
ing that mid-range hardware (an RTX3060 Laptop) remains
capable of sustaining real-time detection tasks. Segmenta-
tion times, however, show substantial variability, as run-time
scales linearly with detected palm count. Although segmen-
tation provides valuable auxiliary visualization, its computa-
tional cost makes it optional for latency-critical deployments.
These results confirm detection as the time-determining com-
ponent, with YOLOv10’s stability and speed meeting real-
time UAV operational requirements.

6 Conclusion
We presented PRISM for automated palm detection and seg-
mentation using UAV imagery, validated on the western
Ecuador’s ecologically diverse reserves. PALMS dataset (21
sites, 8,830 bounding boxes, 5,026 georeferenced palm cen-
ters) captures climatic and species diversity critical for biodi-
versity monitoring. The modular pipeline achieves real-time
processing across GPUs, with sub-1.5m median localization
shifts under environmental distribution shifts, while calibra-
tion analysis and saliency maps ensure trustworthiness and
interpretability. Future work will deploy PRISM on edge de-
vices for UAV-integrated field validation. PRISM’s design
addresses challenges specific to palms – occlusion, irregu-
lar spacing, and lighting variability – which are common to
detecting trees in structurally complex environments (e.g.,
eastern white pines). This robustness allows adaptation to
other ecologically critical tree species in wild ecosystems,
and to lower-resolution satellite imagery (0.5–1m), which
offers significantly reduced data acquisition costs (vs. fre-
quent aerial/ground surveys) for scalable ecological monitor-
ing. This positions PRISM as a useful tool for diverse stake-
holders, enabling ecologists, conservation practitioners, and
even local communities to apply advanced image analysis for
better forest management and biodiversity protection.
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