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Abstract

Large Language Models (LLMs) excel at generat-
ing fluent text but struggle to enforce external con-
straints because they generate tokens sequentially
without explicit control mechanisms. GenCP ad-
dresses this limitation by combining LLM predic-
tions with Constraint Programming (CP) reasoning,
formulating text generation as a Constraint Satis-
faction Problem (CSP). In this paper, we improve
GenCP by integrating Masked Language Models
(MLMs) for domain generation, which allows bidi-
rectional constraint propagation that leverages both
past and future tokens. This integration bridges
the gap between token-level prediction and struc-
tured constraint enforcement, leading to more re-
liable and constraint-aware text generation. Our
evaluation on COLLIE benchmarks demonstrates
that incorporating domain preview via MLM calls
significantly improves GenCP’s performance. Al-
though this approach incurs additional MLM calls
and, in some cases, increased backtracking, the
overall effect is a more efficient use of LLM infer-
ences and an enhanced ability to generate feasible
and meaningful solutions, particularly in tasks with
strict content constraints.

1 Introduction

The landscape of Large Language Models (LLMs) is evolv-
ing rapidly, with new features and capabilities emerging near-
weekly. Despite their impressive fluency and versatility, cur-
rent LLMs often struggle to adhere to specific rules or regula-
tions during text generation [Yao et al., 2024]. This limitation
arises because LLMs are primarily designed as text predictors
without built-in mechanisms to enforce constraints. This lack
of guarantee has become an increasingly important, almost
fundamental problem around the confident and safe usage of
LLMs [Cardei et al., 2025; Geh et al., 2025]. As a result,
recent Natural Language Processing (NLP) trends have ex-
plored augmenting LLMs with external control mechanisms.
Examples include Retrieval-Augmented Generation (RAG)
(e.g., integrating search engine results), grounding techniques
(e.g., injecting relevant documents into the context window),
external knowledge bases, and reasoning frameworks such as

chain-of-thought [Wei et al., 2022] and tree-of-thought [Yao
et al., 2023]. However, these methods often provide only
partial solutions to the broader problem of constrained text
generation—the task of generating text that meets mandatory
requirements.

Structured methods from combinatorial optimization offer
a promising alternative. For instance, heuristically-guided
text generation utilizes techniques like Beam Search (BS)
[Post and Vilar, 2018; Lu et al., 2022] by exploring a sub-
set of the search space. In contrast, Constraint Programming
(CP) [Bonlarron et al., 2023; Bonlarron and Régin, 2024a]
has been used to formalizes the constrained generation task
as a Constraint Satisfaction Problem (CSP), where:

* Variables correspond to text words,
* Domains represent the allowed vocabulary,

e and Constraints define the admissibility of word se-
quences.

Once the feasible solution set is found through an exhaus-
tive search, the LLM performs a curation phase to rank
these candidates based on criteria such as fluency and coher-
ence. While effective in scenarios dominated by strong con-
straints, these CP-based approaches require multiple, com-
plex processing steps and are parameter-sensitive. They suf-
fer from the combinatorial explosion when constraints are
weaker. This limitation arises from the loosely coupled two-
step process, which separates CP and LLM, thereby hinder-
ing the direct integration of the LLM into the solving proce-
dure. Ultimately, an LLM surrogate is employed to partially
mitigate the combinatorial explosion, albeit while remaining
sensitive to the cost of LLM inference in the curation phase
(>>100 ms) [Bonlarron and Régin, 2024b].

A recent and up-and-coming line of research leverages
LLMs to guide CP-based text generation: (GenCP) [Régin et
al., 2024], achieving 100% constraint satisfaction on recent
benchmarks [Yao er al., 2024] (sentence generation tasks). In
this strongly coupled approach, the LLM first generates can-
didate tokens (using top-p or top-k sampling [Holtzman et
al., 2020]), which are then refined by a CP solver through
a method that sequentially instantiates variables while main-
taining local consistency in a backtracking search.

Unfortunately, the GenCP method is based on the model-
ing approach proposed by Bonlarron et al., which assumes
a one-to-one correspondence between words and variables.
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Figure 1: This diagram positions different methods along the x-axis
based on feasibility difficulty for constrained text generation, from
’Easy Feasibility’ to 'Hard Feasibility’. Methods such as Beam
Search [Post and Vilar, 2018], A* [Lu et al., 2022], and Tree of
Thoughts (ToT) [Yao et al., 2024], GenCP [Régin et al., 2024], Pa-
chet’s ERC Flow Machines (Markov +X) [Pachet and Roy, 2011],
and Constraints First [Bonlarron et al., 2023] illustrate this progres-
sion.

However, this assumption does not hold in general for LLMs,
as they process text at the token level, where tokens may cor-
respond to entire words, subwords, or even individual charac-
ters, depending on the tokenizer [Geh er al., 2024].

This modeling choice influenced how GenCP managed
variables, ultimately limiting its ability to generate high-
quality and feasible outputs. The original GenCP paper ac-
knowledged the need for a token-based approach rather than
a word-based one. In this work, we extend GenCP by in-
troducing meta-variables, enabling it to manage tokens more
effectively and improve both constraint satisfaction and text
generation quality.

However, relying solely on autoregressive LLMs intro-
duces a significant limitation: these models generate text left
to right and do not give information about future tokens. In
principle, if a filtering algorithm (propagator) can detect in-
consistencies faster than the search procedure would other-
wise uncover them, then early propagation of the constraints
is highly beneficial. In other words, effective propagation
reduces the search space by pruning inconsistent candidates
before the solver suffers the cost of further search explo-
ration. Since standard CP solvers rely on propagation, where
constraints between distant variables help refine candidate
domains, this unidirectional generation restricts the solver’s
ability to forecast future values (e.g., predicting the domain
D(X3) solely on assignments X7 to X5). Consequently, the
CP propagation mechanism becomes starved of necessary
domain values, leading to redundant computations and search
thrashing during backtracking.

To overcome this limitation, we propose leveraging
Masked Language Models (MLMs), such as BERT [Devlin et
al., 2019], to enhance constraint propagation. Unlike autore-
gressive models, MLMs process entire sequences bidirection-
ally by predicting masked words based on both preceding and

following context. For example, given the prompt “The city
of London is the [MASK] of the United Kingdom,” BERT
correctly predicts capital. This bidirectional capability nat-
urally aligns with CP solvers [Bessiere, 2006], as it enables
constraints to be propagated across the entire sequence rather
than solely in a left-to-right manner. In practice, if tokens
X, through X5 are assigned, an MLM can generate relevant
candidate tokens for X7, thereby refining the assignment de-
cision for X and reducing the likelihood of dead-ends and
unproductive search efforts. Ultimately, while the backtrack-
ing search is guided by an autoregressive LLM in a left-to-
right fashion, any constraint that involves long-range depen-
dencies prompts the solver to leverage an MLM to enrich its
candidate domains, thereby enabling improved filtering and
more informed assignment decisions.
This article makes the following contributions:

* it introduces a novel integration of LLMs and CP that
leverages bidirectional MLMs to enhance constraint
propagation in text generation.

* it improves domain filtering by incorporating both past
and future token assignments, thereby mitigating the
limitations of autoregressive generation alone.

This article is organized as follows: Section 2 briefly in-
troduces the necessary background on Constraint Program-
ming and NLP techniques. Section 3 details our proposed
approach. Section 4 presents experimental results, and Sec-
tion 5 discusses limitations, open challenges, and future re-
search directions. Section 6 concludes the paper.

2 Background

This section briefly reviews the key concepts and related work
underpinning our approach, focusing on constrained text gen-
eration, LLM decoding, and GenCP.

2.1 Related Work in Constrained Generation

Early work in CP demonstrated its potential in creative do-
mains such as text and music generation. For instance, the
ERC Flow Machines led by Frangois Pachet explored CP
for style modeling [Pachet and Roy, 2011], lyric compo-
sition [Barbieri et al., 2012], and many creative applica-
tions [Papadopoulos et al., 2014; Papadopoulos et al., 2015;
Papadopoulos et al., 2016]. More recent efforts have ap-
plied CP to standardized sentence generation [Bonlarron et
al., 2023; Bonlarron and Régin, 2024b; Bonlarron and Régin,
2024a] and even advanced musical composition [Sprockeels
and Van Roy, 2024]. These contributions underscore CP’s
versatility and relevance to express complex requirements
through constraints or exhaustively explore search space in
generative setup.

2.2 Decoding Strategies in LLMs

Autoregressive LLMs generate text by predicting tokens se-
quentially. Common decoding strategies include:

* Greedy Decoding: Selects the most probable token at
each time step but may miss globally optimal sequences.
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* Stochastic Sampling: Top-£ and top-p (nucleus) sam-
pling [Holtzman et al., 2020] introduce diversity by sam-
pling from a subset of high-probability tokens.

* Beam Search: Maintains the & most likely sequences
at each step [Hokamp and Liu, 2017; Post and Vilar,
2018]. Although beam search can improve overall re-
sults, it relies on local token probabilities and is tailor-
made to manage local constraints such as keyword con-
straints. It was extended to deal with constraints as logic
predicates in conjunctive normal form [Lu et al., 2021].

¢ Beam Search + A* Beam search augmented with an
A* look-ahead [Lu er al., 2022] is employed to enhance
overall sequence probabilities in both unconstrained and
constrained scenarios. This approach retains the top k
candidate partial solutions that are closest to satisfying
the constraints. In details, constraint violations are pe-
nalized according to their distance to the satisfaction and
integrated into the objective. As a matter of fact, it steers
the generation towards satisfaction.

While these methods are effective for generating fluent text,
they do not inherently guarantee that generated sequences
satisfy external constraints, motivating the integration of CP
techniques. Figure 1 provides an overview of the feasibility
challenges associated with different approaches.

2.3 Masked Language Models (MLMs)

Masked Language Models (MLMs), such as BERT [Devlin
et al., 2019], predict missing tokens in a text by considering
both the left and right context. This bidirectional nature al-
lows MLMs to capture deeper contextual relationships com-
pared to autoregressive models. Typically, a portion of the
input tokens is replaced by a special [MASK] token, and the
model is trained to recover these tokens based on the sur-
rounding context while maximizing:

Z log P(w; | W), (1)

w; EM

where M is the set of masked positions in the modified se-
quence W. This capability is central to our approach, as
it enables the propagation of constraints over the entire se-
quence rather than incrementally, thereby overcoming a key
limitation of autoregressive generation .

2.4 Constraint Satisfaction Problems (CSPs) and
GenCP

A Constraint Satisfaction Problem (CSP) is defined as a
triplet (X, D, C), where:
e X = {X17X27..
* D = {D(X;),D(Xz2),...,D(X,)} is the set of do-
mains (each D(X) is the set of values the variable X;
can take), and

« C = {C1,Cy,...,Cy} is the set of constraints that
specify allowable combinations of values.

., Xn} is the set of variables,

A solution to a CSP is an assignment of values to all variables
such that every constraint is satisfied.

Traditional CP approaches assume a fully defined CSP
prior to the search. However, in constrained text generation,
the structure of the problem is built incrementally as the text
is generated. To address this, GenCP [Régin and De Maria,
2023; Régin et al., 2024; Régin, 2024] introduces a dynamic,
evolving CSP that is constructed on-the-fly. GenCP is gov-
erned by three core procedures:

* GenV: Dynamically introduces new variables.

e GenD: Defines the domain of each new variable using
LLM predictions.

* GenC: Imposes constraints over variables to enforce de-
sired properties during generation.

In summary, GenCP starts with no variables, domains,
or constraints and constructs them incrementally during the
search for solutions. Whenever a domain is defined via
GenD, classical CP techniques, such as constraint propaga-
tion, search, backtracking, and domain pruning, are employed
to ensure that the generated text adheres to the specified con-
straints. Figure 2 illustrates the entire process.

3 Future Variable Domain Generation with
MLM

In this section, we describe our proposed method for integrat-
ing bidirectional Masked Language Models (MLMs) into the
dynamic CP framework GenCP for constrained text genera-
tion. Our approach enhances constraint propagation by lever-
aging MLM-based domain generation and is organized into
three main components: variable representation (GenV), do-
main generation (GenD), and constraint integration (GenC).

3.1 GenV: Variable Representation and
Formatting

A key challenge in interfacing CP with language models
is reconciling the granularity of decision variables with the
token-based output of LLMs. While our formulation natu-
rally models decision variables at the word level, LLMs op-
erate on subword tokens. To bridge this gap, we introduce
meta-variables X;, where each meta-variable can comprise
one or more decision variables X;,, X;,, .. ..

For example, generating the word “Us ing” might involve:
 X;,: “Us”
* X;,: “ing

(L)

For instance, a current CSP assignment may be encoded as:
"Us;ing; a; transform;er;"

Here, spaces separate meta-variables, while semicolons dis-
tinguish individual decision variables. This flexible represen-
tation accommodates both token-level and word-level struc-
ture, and it can be extended to model larger textual units if
needed.

Variable Formatting

As generation proceeds, most variables are already assigned.
To generate the next variable, the MLM is provided with a
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Figure 2: Illustration of GenCP in a toy example where the task is to generate a passage without the letter "e”. The autoregressive LLM
incrementally predicts candidate domains for variables, while GenCP enforces constraints dynamically. If no valid domain remains for a

variable, backtracking is triggered.

prompt consisting of the current assignments followed by one
or more [MASK] tokens. For example, if:

X; ="The", X,="little", X3= "boy",
The prompt becomes:
"The little boy [MASK] [MASK] [MASK]..."

The MLM then predicts candidate tokens for the masked po-
sitions, forming the candidate domains D(X,) and D(X5).

3.2 GenD: Domain Generation via MLM

The GenD procedure is responsible for instantiating candi-
date domains for unassigned variables. In our framework, if a
variable X is unassigned and masked, the system queries an
MLM rather than an autoregressive LLM to infer its domain.

MLM Domain Preview

Given a partial assignment of k—1 variables and a look-ahead
depth d, the MM is used to generate candidate domains for
the next d variables:

{Xk, Xk+1, ceey Xker}«
After generating these candidate domains, relevant con-
straints are applied to the new variables. If any domain
becomes empty, backtracking is triggered; otherwise, the
next variable X}, is generated. Once the domain D(X}) is
obtained (potentially via an autoregressive LLM), it is fil-
tered by propagators associated with the current set of con-
straints C. Consequently, the assignment X} = w, where
w € D(X}), is determined based on the remaining consis-

tent values within all variable domains:
k+d

| | D(xs).
i=1

This process can be iteratively applied to the next variable,
X1, considering now k assignments. Hence, it iteratively
builds the complete text while ensuring that each assignment
is consistent with past and anticipated future domains con-
cerning the constraints.

In detail, following the generation of the domain for X, via
an autoregressive LLM, the filtering of D(X},) is conducted
using the propagators associated with the current set of con-
straints C.

3.3 GenC: Constraint Integration and Propagation

After candidate domains are established, constraint propaga-
tion ensures that future assignments adhere to task-specific
requirements. For example, a length constraint can be ex-
pressed as:

C:> #Char(X;) =T,
1=1

where T is the target total length and #Char(X;) denotes
the number of characters in X;. Such format constraints are
ubiquitous in constrained text generation tasks from poetry
generation, summarization or text style transfer[Garbacea and
Mei, 2022].

Constraint-Specific Propagation

Once k — 1 variables have been assigned, the solver prepares
to assign the k*" variable by constructing a prompt:
{(Xi=wi,.., X1 = wi—1, X = [M], Xiq1 = [M]}.
The MLM then predicts candidate values for Xy, form-
ing the domain D(Xj). Constraint propagation refines
D(X}j41) using the current assignments and the constraint
C. For instance, considering a length constraint, the solver
computes bounds L and U such that:

L < #Char(Xg+1) < U,

and adjusts the domains of current and future variables ac-
cordingly to ensure that the cumulative length satisfies con-
straint C.

Pathological Case. In the worst-case, consider a sentence
that must contain exactly ten words, with only two variables
left to assign and ten characters remaining to satisfy the con-
straint C'. Standard knapsack filtering [Trick, 2003] cannot
be applied directly because the domains of the last two vari-
ables are unknown. As a result, the search would explore
all possible combinations in a brute-force, generate-and-test
manner, iterating over D(X9) x D(X1p) until it finds that,
given D(X ), for instance it was (7+3).
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MLMs help by eliminating inconsistent combinations early
while prioritizing feasible ones. Instead of exhaustively ex-
ploring every token combination in the penultimate and fi-
nal domains, the solver can precompute the Cartesian prod-
uct of admissible token sums for these positions based on
the preview gave by the MLM that satisfy the current sum
constraint. Consequently, the solver considers only those
tokens that are coherent with the constraint, enabling more
fine assignments. This domain previewing reduces unneces-
sary exploration, and since the rankings of the combination
preserve the likelihood ordering of the autoregressive LLM,
the method does not interfere with the left-to-right genera-
tion process while integrating bidirectional information to im-
prove constraint satisfaction and more efficiently reach feasi-
ble solutions.

3.4 Implementation Workflow

The complete workflow for integrating MLM-based domain
generation into GenCP is as follows:

1. Domain Initialization: Each variable X; is initialized
as empty or masked.

2. MLM Querying: The MLM predicts candidate tokens
for masked positions, forming the candidate domain
D(X;).

3. Constraint Propagation (filtering): The CP solver re-
fines D(X;) based on previous assignments and task-
specific constraints.

4. Decision Making (assignment): A value is selected
from D(X;) to extend the partial assignment while en-
suring consistency.

This integration ensures that generated text satisfies both lin-
guistic coherence and strict problem-specific constraints, ad-
dressing the limitations of purely autoregressive generation.

4 Result

4.1 Experimental Conditions

The experiments were performed on a laptop with Windows
10 Professional, 32 GB RAM, and Intel 16 CPU cores. The
new GenCP approach is implemented in Java 17. GenCP
restarts the search each time a solution is found. A domain
generation call (GenD) asks for 50 tokens (top-k) .

Benchmarks

Our benchmark suite consists of several task can be found in
Tab. 1.

These benchmarks are inspired by the COLLIE Benchmark
[Yao et al., 2024], which exposes the limitations of LLMs in
handling such tasks alone. The task sent-1 is retained to ex-
emplify a fundamental counting task, illustrating the advan-
tage of MLM-based domain preview. The remaining tasks
integrate keyword usage and counting within paragraph gen-
eration, a challenge not addressed in the original GenCP ap-
proach [Régin et al., 2024].

Task #Sent #W p Sent  #Char per Sent + Constraints

sent-1 1 =82

para-2 2 10-15 =60

para-3 3 > 15

para-4 2 14 72-74

para-5 3 Start: “Dragons”, ”Kindgoms”, "Barbarians”
para-6 4 No occurrence of ”the”, ”and”, ”of”

Table 1: One sentence generation task, (sent-1) and 5 paragraph task
(para-2-6). : #Sent = number of sentences, #Words/#Sent = word
count per sentence, #Char/#Sent = character count per sentence with
if any specific constraints.

sent-1 d #LLMCalls #MLMCalls #bks #sols
vanilla 0 444 0 375 3
metavar 0 456 0 211 4
previewMLM 2 359 32 170 10
para-2

metavar 0 446 0 136 3
previewMLM 2 341 40 193 6
para-3

metavar 0 824 0 0 13
para-4

metavar 0 466 0 447 0
previewMLM 2 422 12 258 2
para-5

metavar 0 833 0 0 21
para-6

metavar 0 430 0 34 3

Table 2: The table reports, for each task which GenCP version was
used (e.g., vanilla, metavar, previewMLM, the depth d for
domain preview, the number of autoregressive LLM calls (#LLM-
Calls), the number of MLM calls (#MLMCalls), the number of back-
tracks (#bks), and the number of solutions (#sols) for sent-1 and
paragraph tasks (para-2 to para-6).

LLM and MLM Choice

In the original GenCP paper, the model used was LLaMa Q4
7B, a lightweight variant of LLaMa quantized to 4-bit inte-
gers. The quantization level was such that it was unclear
whether any loss of “meaning” was due to the search pro-
cess or simply to poor token predictions. In contrast, in this
paper we employ the autoregressive LLM babbage-002
provided by OpenAl. This mid-sized model is not as large
as the latest GPT-4 and can be considered as a basic model,
lacking the additional refinements like InstructGPT. Thus, it
is LLM that was not fine-tuned to follows instructions.

For the MLM component, computational considerations
were less of an issue given that MLMs typically have fewer
than 1 billion parameters. We used BERT as our MLM. Al-
though more recent and larger MLM models are available,
our objective is to gain insight into future values rather than
to perfectly model language in this framework; therefore, em-
ploying a lightweight model is reasonable.

For left-to-right generation, we used babbage—-002. The
temperature was set to 0.8, it is considered as an high enough
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task:
generated sample...

sent-1:
His eyes sparkled as he stared into the void, awaiting the arrival of an immortal.

para-2:
With an arm raised in triumph, he raised himself once again.
The sun had shifted its position, casting a shadow on earth.

para-3:

The warrior had been on the battlefield for at least a dozen years,

fighting and dying with the forces of the Empire

against the growing power of the Orcs.

He was the last in a line of warriors that had fought on the front.

The orcish king was dead, his son and grandson had been killed in a ruthless battle.

para-4:
The warrior was an ancient warrior, known to many as The Sword of Justice.
His name is known to all, but he is known, mostly, throughout the lands.

para-5:

Dragons raised into the sky, one of which bore a striking resemblance
to the dragons of myth, were beginning to circle in the sky above.
Kingdoms trembled, while the mighty nations of the world sat abed,
awaiting the day’s end. Barbarians with swords and axes drew together,
their bloodlust and greed being satisfied one final time.

para-6:

He stood watching, waiting, as an eerie silence filled his mind.

His soul was trapped in a timeless battle, between

desire, truth, love, hate, fear, anger, lust, greed, envy,

cowardice, pride, ambition, pride, lust, revenge, forgiveness, jealousy, rage,
lust, hatred, ignorance, stupidity, ignorance, stupidity, etc.

He was battling for his very soul. This was his life.

Table 3: One generated example with GenCP with previewMLM
for the tasks 1,2 and 4. While, GenCP with metavar only for the
tasks 3,5 and 6.

value for creative task (i.e., less generic output). For domain
preview, we used bert-base-cased.

Pre-prompt: Directly prompting the LLM or the MLM
with an empty variable assignments often results in dull and
unengaging outputs. To address this, we introduced thematic
grounding to inspire more vivid and compelling sentences
than typical legal text or generic blogging. For instance, using
the pre-prompt: “Amidst the crimson glow of a setting sun, a
lone warrior, clad in battle-worn silver, stood atop the ancient
ruins, his blade gleaming with the promise of legend.” This
pre-prompt was employed to guide the LLM towards gener-
ating related content, enhancing engagement without the pri-
mary intention of controlling semantics or themes. While the
main focus of this article is not to manipulate thematically
through pre-prompts while enforcing constraints, this tech-
nique demonstrates the potential to evoke heroic fantasy ele-
ments in the generated text.

Evaluation: Interacting with an LLM or an MLM often in-
curs high latency, typically on the order of hundreds of mil-
liseconds. However, this is only a rough estimate since a wide
range of hardware, from CPUs to GPUs, can run LLMs, and
numerous optimization techniques (e.g., fast attention [Dao
et al., 2022], model quantization [Gholami er al., 2021]) can
significantly accelerate inference times. To quantify our re-
sults, we evaluate our approach in terms of LLM calls. And
it offers a form of hardware independence. As shown in Ta-
ble 2, we use the number of LLM calls to provide insight
into the interaction between GenCP and the LLMs, and to
enable comparisons across experiments conducted under dif-
ferent settings.

4.2 Result Analysis

Our experimental results, summarized in Table 2, provide
insight into both the efficiency and quality of the different
GenCP variants across the benchmark tasks. In the follow-
ing, we analyze the performance and output quality of the
approaches in detail.

Quality Analysis: Across all benchmarks in Table 1, both
the vanilla and metavar approaches find a similar num-
ber of solutions. However, when a word is split into several
tokens using meta-variables, the performance in terms of con-
straint satisfaction can sometimes decrease. This is due to the
increased number of combinations that must be considered to
assign a suitable value to a single meta-variable representing
a word. Nevertheless, the improvement in text quality and
diversity with meta-variables is substantial. Without meta-
variables, GenCP effectively limits its search to a small sub-
set of the LLM’s vocabulary, typically very short and frequent
tokens (e.g., as,” ’they,” ’their,” ”a,” ’them”). In contrast, in-
corporating meta-variables expands the search space to cover
a broader vocabulary, which, although it increases the search
space, ultimately leads to richer and more diverse generated
text. As the next subsection will details, in case where the
constraint is not local but applied over the whole sequence of
text, the use of the PreviewMLM to find more solutions in
the same amount of times.

Performance Analysis: For the single-sentence generation
task (sent-1), the vanilla approach required 444 LLM
calls, encountered 375 backtracks, and generated 3 valid so-
lutions. The metavar variant slightly increased the num-
ber of LLM calls to 456 while reducing backtracks to 211,
yielding 4 solutions. In contrast, the previewMLM method,
which leverages a domain preview (with depth d = 2) and
incorporates an additional 32 MLM calls, significantly out-
performed the other approaches by reducing LLM calls to
359 and backtracks to 170, while producing a notable 10 so-
lutions. This clearly demonstrates that the domain preview
strategy not only minimizes the reliance on expensive LLM
calls but also improves the overall efficiency of the search.

A similar trend is observed in the paragraph-level tasks.
In para-2, the metavar approach incurred 446 LLM
calls and 136 backtracks to produce 3 solutions, whereas
previewMLM reduced the LLM calls to 341 and, with 40
MLM calls and 193 backtracks, doubled the number of so-
lutions to 6. For para-3, only the metavar variant was
employed, requiring 824 LLM calls (with no backtracking)
to yield 13 solutions. In para-4, the metavar method per-
formed poorly with 466 LLM calls and a high backtracking
cost of 447, failing to produce any valid solution; meanwhile,
previewMLM achieved 422 LLM calls, 12 MLM calls, and
258 backtracks, resulting in 2 solutions. For para-5 and para-
6, only the metavar method was used, with para-5 achiev-
ing 21 solutions from 833 LLM calls and para-6 yielding 3
solutions from 430 LLM calls and 34 backtracks.

These results highlight that integrating a domain preview
(as in previewMLM) is particularly effective in reducing the
number of LLM calls and reducing the search exploration,
especially for tasks that impose strong constraints.
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These observations suggest that while the non-preview ap-
proaches may be adequate for tasks with relatively weak con-
straints, the domain preview mechanism in previewMLM is
particularly effective in more challenging scenarios. The ad-
ditional guidance provided by the MLM preview seems to
enable a more targeted search, thereby improving the feasi-
bility capability of the approach to produces outputs under
strict constraints.

Limitations: Since MLMs are trained to predict a limited
fraction (typically about 15%) of masked tokens, they per-
form best when given rich contextual information. Conse-
quently, it is important to note that, the depth d to define the
preview of the domain is used only on the last two variables
of any sentences. We tried further depth d = 3 and d = 4
and so on but unfortunately the number of solutions decrease
for the same amount of running time while keeping the same
quality. It seems the domain preview works best for the prop-
agation of the sum over the last and before last variables to
perform filtering and assignment.

5 Discussion

5.1 Thinking Fast and Slow Al

A fundamental challenge in constrained text generation is bal-
ancing intuitive language fluency with strict constraint satis-
faction. This aligns with the dual-process theory described by
Kahneman [Kahneman, 2011], which distinguishes between
fast, intuitive reasoning (System 1) and slow, deliberate rea-
soning (System 2). Prior work [Booch et al., 2021] has drawn
parallels between this framework and Al systems, associ-
ating data-driven, heuristic-based approaches (e.g., LLMs)
with System 1, while aligning structured reasoning methods
(e.g., CP solvers) with System 2.

In our framework, the domain generation process imple-
mented via GenD using LLMs or MLMs act as System 1,
quickly proposing candidate tokens based on heuristic evalu-
ation. In contrast, the CP component, responsible for filter-
ing and assigning future values, operates as System 2, care-
fully enforcing constraints and guiding the overall generation
process. Here, the CP solver maintains the primary control
loop and invokes the heuristic domain generation only when
needed, ensuring that the generated text remains both fluent
and compliant with the desired constraints.

This integration effectively bridges the gap between in-
tuitive language generation and rigorous constraint enforce-
ment, harnessing the strengths of both fast, heuristic reason-
ing and slow, deliberate decision-making.

5.2 Meaningful Content Constraint

Our approach leverages the LLM’s expertise in producing
meaningful text to manage the domains of the CSP. In this
framework, the LLM serves two roles. First, it implicitly de-
fines a “meaningful content constraint” by generating an ini-
tial set of candidate values for each decision variable, in a
similar way as Lazy Arc Consistency [Schiex et al., 1996].
Second, it provides a good branching heuristic based on like-
lihood that guides the solver’s decisions. In other words, as-
sign the values (tokens) in the same ordering as traditional de-
coding strategies. As aresult, when a the domain of a variable

is determined, the solver assigns values that not only satisfy
the explicit constraints but also maintain high semantic qual-
ity, with backtracking employed to recover from inconsistent
or low-likelihood assignments.

5.3 Backtracking with LLM

Strengths of Incorporating Backtracking

Backtracking, as a complete search strategy, is traditionally
considered less efficient than incomplete methods; however,
a backtracking search with good heuristic often brings with
few backtracks a viable solution (e.g., for scheduling prob-
lems [Baptiste et al., 2001]). This is the case for the exper-
iments in task para-6 and sent-1. This limited backtracking
can capture high-quality, constrained text that a greedy pro-
cedure might overlook [Régin et al., 2024]. The inherent
completeness of backtracking provides an attractive guaran-
tee: even when free text generation may lead to harmful or in-
coherent outputs, backtracking may be a great tool to enforce
those constraints robustly. Furthermore, employing a restart-
based strategy after finding the first solution: as demonstrated
in creative applications [Sprockeels and Van Roy, 2024], can
yield both diversity and improved quality without sacrificing
efficiency.

Potential Dangers and Mitigation Strategies

The complete nature of backtracking search can drive the
LLM to explore low-likelihood regions of the search space.
While this might increase the feasibility (higher satisfaction
rates), it risks degrading overall text quality. In other words,
a solution that meets all constraints may still be semantically
or stylistically “suboptimal” if it resides in an unlikely region
of the LLM’s output distribution. This empirical observation
underscores the importance of balancing constraint satisfac-
tion with likelihood. Therefore, we advocate for two mitiga-
tion strategies: (1) initiating search restarts once a predefined
number of acceptable solutions (e.g., k solutions) are found,
and (2) continuously tracking the likelihood of the current as-
signment and backtracking when this likelihood falls below a
set threshold. Such measures can help maintain the semantic
quality of generated text while still benefiting from the ro-
bustness of backtracking.

6 Conclusion

This paper addresses the limitations of autoregressive LLMs
in constrained text generation tasks, thanks to an enhanced
GenCP that integrates MLMs for domain previewing. Our
approach balances token-level predictions (metavar) and
structural constraint enforcement, resulting in more reli-
able constraint management during generation. Through
our empirical evaluations on COLLIE benchmarks, we
demonstrated that incorporating an MLM-based domain pre-
view (previewMLM) significantly improves GenCP’s per-
formance in tasks with strict content constraints in terms of
feasibility. Even though, GenCP uses additional MLM calls,
it optimizes the use of LLM inferences, leading to more feasi-
ble and meaningful constrained text outputs. By refining this
interplay between CP and LLM decoding, we aim to broaden
the potential for these systems to generate text when language
fluency and constraint satisfaction are paramount.
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