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Abstract
Text-to-image diffusion models can generate high-
quality images but lack fine-grained control of vi-
sual concepts, limiting their creativity. Thus, we in-
troduce component-controllable personalization,
a new task that enables users to customize and re-
configure individual components within concepts.
This task faces two challenges: semantic pollution,
where undesired elements disrupt the target con-
cept, and semantic imbalance, which causes dispro-
portionate learning of the target concept and com-
ponent. To address these, we design MagicTailor,
a framework that uses Dynamic Masked Degrada-
tion to adaptively perturb unwanted visual seman-
tics and Dual-Stream Balancing for more balanced
learning of desired visual semantics. The experi-
mental results show that MagicTailor achieves su-
perior performance in this task and enables more
personalized and creative image generation.

1 Introduction
Text-to-image (T2I) diffusion models [Rombach et al., 2022;
Ramesh et al., 2022; Chen et al., 2023] have shown im-
pressive capabilities in generating high-quality images from
textual descriptions. While these models can generate im-
ages that align well with provided prompts, they struggle
when certain visual concepts are hard to express in natural
language. To address this, methods like [Gal et al., 2022;
Ruiz et al., 2023] enable T2I models to learn specific con-
cepts from reference images, allowing for more accurate in-
tegration of those concepts into the generated images. This
process, as shown in Fig. 1(a), is referred as personalization.

However, existing personalization methods are limited to
replicating predefined concepts and lack flexible and fine-
grained control of these concepts. Such a limitation hinders
their practical use in real-world applications, restricting their

Project page: https://correr-zhou.github.io/MagicTailor.
The full version is available at arXiv:2410.13370.

Figure 1: (a) Personalization: T2I models learn from reference im-
ages and then generate predefined visual concepts. (b) Component-
controllable personalization: T2I models learn from additional vi-
sual references and then enable the integration of specific compo-
nents into given concepts, further unleashing creativity. (c) Gener-
ated images by MagicTailor: MagicTailor can effectively achieve
component-controllable personalization. Note that red and blue cir-
cles indicate the target concept and component, respectively.

potential for creative expression. Inspired by the observa-
tion that concepts often comprise multiple components, a key
problem in personalization lies in how to effectively control
and manipulate these individual components.

In this paper, we introduce component-controllable per-
sonalization, a new task that enables the reconfiguration of
specific components within personalized concepts using ad-
ditional visual references (Fig. 1(b)). In this approach, a T2I
model is fine-tuned with reference images and corresponding
category labels, allowing it to learn and generate the desired
concept along with the given component. This capability em-
powers users to refine and customize concepts with precise
control, fostering creativity and innovation across various do-
mains, from artworks to inventions.

One challenge of this task is semantic pollution (Fig. 2(a)),
where unwanted visual elements inadvertently appear in gen-
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Figure 2: Major challenges in component-controllable personal-
ization. (a) Semantic pollution: (i) Undesired elements may inter-
fere with the personalized concept. (ii) A simple mask-out strategy
causes unintended results, while (iii) DM-Deg effectively suppresses
unwanted semantics. (b) Semantic imbalance: (i) Simultaneously
learning the concept and component can distort either one. (ii) DS-
Bal ensures balanced learning, improving personalization.

erated images, “polluting” the personalized concept. This
happens because the T2I model often mixes visual semantics
from different regions during training. Masking out unwanted
elements in reference images doesn’t solve the problem, as it
disrupts the visual context and causes unintended composi-
tions. Another challenge is semantic imbalance (Fig. 2(b)),
where the model overemphasizes certain aspects, leading to
unfaithful personalization. This occurs due to the semantic
disparity between the concept and component, necessitating
a more balanced learning approach to manage concept-level
(e.g., person) and component-level (e.g., hair) semantics.

To address these challenges, we propose MagicTailor, a
novel framework that enables component-controllable per-
sonalization for T2I models (Fig. 1(c)). We first use a text-
guided image segmenter to generate segmentation masks for
both the concept and component and then design Dynamic
Masked Degradation (DM-Deg) to transform reference im-
ages into randomly degraded versions, perturbing undesired
visual semantics. This method helps suppress the model’s
sensitivity to irrelevant details while preserving the overall vi-
sual context, effectively mitigating semantic pollution. Next,
we initiate a warm-up phase for the T2I model, training it on
the degraded images using a masked diffusion loss to focus on
the desired semantics and a cross-attention loss to strengthen
the correlation between these semantics and pseudo-words.
To address semantic imbalance, we develop Dual-Stream
Balancing (DS-Bal), a dual-stream learning paradigm that
balances the learning of visual semantics. In this phase, the
online denoising U-Net performs sample-wise min-max opti-
mization, while the momentum denoising U-Net applies se-
lective preservation regularization. This ensures more faithful
personalization of the target concept and component, result-
ing in outputs that better align with the intended objective.

In the experiments, we validate the superiority of Magic-
Tailor through various qualitative and quantitative compar-
isons, demonstrating its state-of-the-art (SOTA) performance

in component-controllable personalization. Moreover, de-
tailed ablation studies and analysis further confirm the effec-
tiveness of MagicTailor. In addition, we also show its poten-
tial for enabling a wide range of creative applications.

2 Methodology
Let I = {({Ink}Kk=1, cn)}Nn=1 denote a concept-component
pair with N samples of concepts and components, where each
sample contains K reference images {Ink}Kk=1 with a cat-
egory label cn. In this work, we focus on a practical set-
ting involving one concept and one component. Specifically,
we set N = 2 and define the first sample as a concept (e.g.,
dog) while the second one as a component (e.g., ear). In ad-
dition, these samples are associated with the pseudo-words
P = {pn}Nn=1 serving as their text identifiers. The goal of
component-controllable personalization is to fine-tune a text-
to-image (T2I) model to accurately learn both the concept and
the component from I. Using text prompts with P , the fine-
tuned model should generate images that integrate the per-
sonalized concept with the specified component.

This section begins by providing an overview of the Mag-
icTailor pipeline in Sec. 2.1 and then delves into its two core
techniques in Sec. 2.2 and Sec. 2.3.

2.1 Overall Pipeline
The overall pipeline of MagicTailor is illustrated in Fig. 3.
The process begins with identifying the desired concept or
component within each reference image Ink, employing an
off-the-shelf text-guided image segmenter to generate a seg-
mentation mask Mnk based on Ink and its associated cat-
egory label cn. Conditioned on Mnk, we design Dynamic
Masked Degradation (DM-Deg) to perturb undesired visual
semantics within Ink, addressing semantic pollution. At each
training step, DM-Deg transforms Ink into a randomly de-
graded image Înk, with the degradation intensity being dy-
namically regulated. Subsequently, these degraded images,
along with structured text prompts, are used to fine-tune a T2I
diffusion model to facilitate concept and component learning.
The model is formally expressed as {ϵθ, τθ, E ,D}, where ϵθ
represents the denoising U-Net, τθ is the text encoder, and E
and D denote the image encoder and decoder, respectively.
To promote the learning of the desired visual semantics, we
employ the masked diffusion loss, which is defined as:

Ldiff = En,k,ϵ,t

[∥∥ϵn⊙M ′
nk−ϵθ(z

(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (1)

where ϵn ∼ N (0, 1) is the unscaled noise, z(t)nk is the noisy la-
tent image of Înk with a random time step t, en is the text em-
bedding of the corresponding text prompt, and M ′

nk is down-
sampled from Mnk to match the shape of ϵ and znk. Addi-
tionally, we incorporate the cross-attention loss to strengthen
the correlation between desired visual semantics and their
corresponding pseudo-words, formulated as:

Lattn = En,k,t

[∥∥Aθ(pn, z
(t)
nk)−M ′′

nk

∥∥2
2

]
, (2)

when Aθ(pn, z
(t)
nk) is the cross-attention maps between the

pseudo-word pn and the noisy latent image z
(t)
nk and M ′′

nk is
downsampled from Mnk to match the shape of Aθ(pn, z

(t)
nk).
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Figure 3: Pipeline overview of MagicTailor. This method fine-tunes a T2I diffusion model using reference images to learn both the target
concept and component, enabling the generation of images that seamlessly integrate the component into the concept. Two key techniques,
Dynamic Masked Degradation (DM-Deg, see Sec. 2.2) and Dual-Stream Balancing (DS-Bal, see Sec. 2.3), address semantic pollution and
semantic imbalance, respectively. For clarity, only one image per concept/component is shown, and the warm-up stage is omitted.

Using Ldiff and Lattn, we first warm up the T2I model by
jointly learning all samples, aiming to preliminarily inject
the knowledge of visual semantics. The loss of the warm-up
stage is defined as:

Lwarm-up = Ldiff + λattnLattn , (3)

where λattn = 0.01 is the loss weight for Lattn. For efficient
fine-tuning, we only train the denoising U-Net ϵθ in a low-
rank adaptation (LoRA) [Hu et al., 2021] manner and the
text embedding of the pseudo-words P , keeping the others
frozen. Thereafter, we employ Dual-Stream Balancing (DS-
Bal) to address semantic imbalance. In this paradigm, the on-
line denoising U-Net ϵθ conducts sample-wise min-max opti-
mization for the hardest-to-learn sample, and meanwhile the
momentum denoising U-Net ϵ̃θ applies selective preserving
regularization for the other samples.

2.2 Dynamic Masked Degradation
Semantic pollution is a significant challenge for component-
controllable personalization. As shown in Fig. 2(a.i), the tar-
get concept (i.e., person) can be distorted by the owner of
the target component (i.e., eye), resulting in a hybrid person.
Masking regions outside the target concept and component
can damage the overall context, leading to overfitting and odd
compositions (Fig. 2(a.ii)). To address this, undesired visual
semantics in reference images must be handled appropriately.
We propose Dynamic Masked Degradation (DM-Deg), which
dynamically perturbs undesired semantics to suppress their
influence on the T2I model while preserving the overall vi-
sual context (Fig. 2(a.iii)).

Degradation Imposition. In each training step, DM-Deg
imposes degradation in the out-of-mask region for each refer-
ence image. We use Gaussian noise for degradation due to its
simplicity. For a reference image Ink, we randomly sample a
Gaussian noise matrix Gnk ∼ N (0, 1) with the same shape
as Ink, where the pixel values of Ink range from −1 to 1. The
degradation is then applied as follows:

Înk = αdGnk ⊙ (1−Mnk) + Ink, (4)

where ⊙ denotes element-wise multiplication, and αd ∈
[0, 1] is a dynamic weight controlling the degradation inten-
sity. While previous works [Xiao et al., 2023; Li et al., 2023]
have used noise to fully cover the background or enhance data
diversity, DM-Deg aims to produce a degraded image Înk that
retains the original visual context. By introducing Înk, we
can suppress the T2I model from perceiving undesired visual
semantics in out-of-mask regions, as these semantics are per-
turbed by random noise at each training step.

Dynamic Intensity. Unfortunately, the T2I model may
gradually memorize the introduced noise while learning
meaningful visual semantics, leading to noise appearing in
generated images (Fig. 4(a)). This behavior is consistent with
previous observations on deep networks [Arpit et al., 2017].
To address this, we propose a descending scheme that dy-
namically regulates the intensity of the imposed noise during
training. This scheme follows an exponential curve, main-
taining a relatively high intensity in the early stages and de-
creasing it sharply in later stages. Let d denote the current
training step and D denote the total training step. The curve
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Figure 4: Motivation of dynamic intensity. (a) Fixed intensity
(αd = 0.5 here) could cause noisy generated images. (b) Our dy-
namic intensity can mitigate noise memorization.

of dynamic intensity is defined as:

αd = αinit(1− (
d

D
)γ) , (5)

where αinit is the initial value of αd and γ controls the de-
scent rate. We empirically set αinit = 0.5 and γ = 32, tuned
within the powers of 2. This dynamic intensity scheme effec-
tively prevents semantic pollution and significantly mitigates
the memorization of introduced noise, leading to improved
generation performance (Fig. 4(b)).

2.3 Dual-Stream Balancing
Another key challenge is semantic imbalance, which arises
from the disparity in visual semantics between the target con-
cept and its component. Specifically, concepts generally pos-
sess richer visual semantics than components (e.g., person vs.
hair), but in some cases, components may have more com-
plex semantics (e.g., simple tower vs. intricate roof). This
imbalance complicates joint learning, leading to overempha-
sis on either the concept or the component, and resulting in
incoherent generation (Fig. 5(a)). To address this, we de-
sign Dual-Stream Balancing (DS-Bal), a dual-stream learn-
ing paradigm integrated with online and momentum denois-
ing U-Nets (Fig. 3) for balanced semantic learning, aiming to
improve personalization fidelity (Fig. 5(b)).
Sample-Wise Min-Max Optimization. From a loss per-
spective, the visual semantics of the concept and compo-
nent are learned by optimizing the masked diffusion loss Ldiff
across all the samples. However, this indiscriminate opti-
mization fails to allocate sufficient learning effort to a more
challenging sample, leading to an imbalanced learning pro-
cess. To address this, DS-Bal uses the online denoising U-
Net to focus on learning the hardest-to-learn sample at each
training step. Inheriting the weights of the original denoising
U-Net, which is warmed up through joint learning, the on-
line denoising U-Net ϵθ optimizes only the sample with the
highest masked diffusion loss as:

Ldiff-max = max
n

Ek,ϵ,t

[∥∥ϵn ⊙M ′
nk−

ϵθ(z
(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (6)

where minimizing Ldiff-max can be considered as a form of
min-max optimization [Razaviyayn et al., 2020]. The learn-
ing objective of ϵθ may switch across different training steps

Figure 5: Learning process visualization. (a) The vanilla learning
paradigm tends to overemphasize the easier one. (b) DS-Bal effec-
tively balances the learning of the concept and component.

and is not consistently dominated by the concept or compo-
nent. Such an optimization scheme can effectively modu-
late the learning dynamics of multiple samples and avoid the
overemphasis on any particular one.

Selective Preserving Regularization. At a training step,
the sample neglected in Ldiff-max may suffer from knowl-
edge forgetting. This is because the optimization of Ldiff-max,
which aims to enhance the knowledge of a specific sample,
could inadvertently overshadow the knowledge of the others.
In light of this, DS-Bal meanwhile exploits the momentum
denoising U-Net ϵ̃θ to preserve the learned visual semantics
of the other sample in each training step. Specifically, we
first select the sample that is excluded in Ldiff-max, which is
expressed as S = {n|n = 1, ..., N} − {nmax}, where nmax is
the index of the target sample in Ldiff-max and S is the selected
index set. Then, we use ϵ̃θ to apply regularization for S, with
the masked preserving loss as:

Lpres = En∈S,k,t

[∥∥ϵ̃θ(z(t)nk , t, en)⊙M ′
nk−

ϵθ(z
(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (7)

where ϵ̃θ is updated from ϵθ using EMA [Tarvainen and
Valpola, 2017] with the smoothing coefficient β = 0.99,
thereby sustaining the prior accumulated knowledge of ϵθ in
each training step. By encouraging the consistency between
the output of ϵθ and ϵ̃θ in Lpres, we can facilitate the knowl-
edge maintenance of the other samples while learning a spe-
cific sample in Ldiff-max. Overall, DS-Bal can be considered a
mechanism to adaptively assign target labels ϵn or preserving
labels ϵ̃θ(z

(t)
nk , t, en) to different samples, enabling dynamic

loss supervision (Fig. 3). Using a loss weight λpres = 0.2, the
total loss of the DS-Bal stage is formulated as:

LDS-Bal = Ldiff-max + λpresLpres + λattnLattn . (8)

3 Experimental Results
3.1 Experimental Setup
Dataset, Implementation, and Evaluation. For a system-
atic investigation, we collect a dataset from diverse domains,
including characters, animation, buildings, objects, and an-
imals. We use Stable Diffusion (SD) 2.1 [Rombach et al.,
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Figure 6: Qualitative comparisons. We present images generated
by MagicTailor and other methods across various domains. Magic-
Tailor achieves better text alignment, identity fidelity, and generation
quality. Due to space limitations, please zoom in for a better view.
More results are provided in Appendix D.

2022] as the pretrained T2I model. For the warm-up and DS-
Bal stages, we set the training steps to 200 and 300, with
learning rates of 1 × 10−4 and 1 × 10−5, respectively. Each
concept-component pair requires only about five minutes of
training on an A100 GPU. For evaluation, we design 20 text
prompts covering a wide range of scenarios and generate
14,720 images for each method. To ensure fairness, all ran-
dom seeds are fixed during both training and inference. More
details of the experimental setup are included in Appendix A.

Compared Methods. We compare our MagicTailor with
several personalization methods, including Textual Inversion
(TI) [Gal et al., 2022], DreamBooth (DB) [Ruiz et al., 2023],
Custom Diffusion (CD) [Kumari et al., 2023], Break-A-
Scene (BAS) [Avrahami et al., 2023], and CLiC [Safaee et
al., 2024]. These methods were selected for their representa-
tiveness of personalization frameworks or relevance to learn-
ing fine-grained elements. For a fair comparison, we adapt
them to our task with minimal modifications, specifically by
incorporating the masked diffusion loss (Eq. 1). Apart from
method-specific configurations, all methods are implemented
using the same setup to ensure consistency.

3.2 Qualitative Comparisons
The qualitative results are shown in in Fig. 6. As observed,
TI, CD, and CLiC primarily suffer from semantic pollution,
where undesired visual semantics significantly distort the per-
sonalized concept. Besides, DB and BAS also struggle in this
challenging task, with an overemphasis on either the concept

Methods CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

Textual Inversion [Gal et al., 2022] 0.236 0.742 0.620 0.558
DreamBooth [Ruiz et al., 2023] 0.266 0.841 0.798 0.323
Custom Diffusion [Kumari et al., 2023] 0.251 0.797 0.750 0.407
Break-A-Scene [Avrahami et al., 2023] 0.259 0.840 0.780 0.338
CLiC [Safaee et al., 2024] 0.263 0.764 0.663 0.499
MagicTailor (Ours) 0.270 0.854 0.813 0.279

Table 1: Quantitative comparisons on automatic metrics. Magic-
Tailor can achieve SOTA performance on all four automatic metrics.
The best results are marked in bold.

Methods Text Align. ↑ Id. Fidelity ↑ Gen. Quality ↑

Textual Inversion [Gal et al., 2022] 5.8% 2.5% 5.2%
DreamBooth [Ruiz et al., 2023] 15.3% 14.7% 12.5%
Custom Diffusion [Kumari et al., 2023] 7.1% 7.7% 9.8%
Break-A-Scene [Avrahami et al., 2023] 10.8% 12.1% 22.8%
CLiC [Safaee et al., 2024] 4.5% 5.1% 6.2%
MagicTailor (Ours) 56.5% 57.9% 43.4%

Table 2: Quantitative comparisons on the user study. MagicTailor
also outperforms other methods in all aspects of human evaluation.

or the component due to semantic imbalance, sometimes even
causing the target component to be completely absent. An in-
teresting finding is that imbalanced learning can exacerbate
semantic pollution, leading to the color and texture of the
target concept or component being mistakenly transferred to
unintended parts of the generated images. In contrast, Mag-
icTailor effectively generates text-aligned images that accu-
rately represent both the target concept and component. To
further demonstrate the performance of MagicTailor, we pro-
vide additional comparisons in Appendix B.

3.3 Quantitative Comparisons

Automatic Metrics. We utilize four automatic metrics in
the aspects of text alignment (CLIP-T [Gal et al., 2022]) and
identity fidelity (CLIP-I [Radford et al., 2021], DINO [Oquab
et al., 2023], DreamSim [Fu et al., 2023]). To precisely mea-
sure identity fidelity, we segment out the concept and compo-
nent in each reference and evaluation image, and then elim-
inate the target component from the segmented concept. As
we can see in Tab. 1, component-controllable personalization
remains a tough task even for SOTA methods of personaliza-
tion. By comparison, MagicTailor achieves the best results in
both identity fidelity and text alignment. It should be credited
to the effective framework tailored to this special task.

User Study. We further evaluate the methods with a user
study. Specifically, a detailed questionnaire is designed to
display 20 groups of evaluation images with the correspond-
ing text prompt and reference images. Users are asked to se-
lect the best result in each group for three aspects, including
text alignment, identity fidelity, and generation quality. Fi-
nally, we collect a total of 3,180 valid answers and report the
selected rates in Tab. 2. It can be observed that MagicTailor
can also achieve superior performance in human preferences,
further verifying its effectiveness.
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DM-Deg DS-Bal CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

0.275 0.837 0.798 0.317
✓ 0.276 0.848 0.809 0.294

✓ 0.270 0.845 0.802 0.304
✓ ✓ 0.270 0.854 0.813 0.279

Table 3: Effectiveness of key techniques. Our DM-Deg and DS-
Bal effectively contribute to a superior performance trade-off.

Figure 7: Compatibility with different backbones. We equip Mag-
icTailor with SD 1.5 [Rombach et al., 2022], SD 2.1 [Rombach et
al., 2022], and SDXL [Podell et al., 2023]. The results show that
MagicTailor can be generalized to multiple backbones, and a better
backbone could provide better generation quality.

3.4 Ablation Studies and Analysis
We conduct comprehensive ablation studies and analysis for
MagicTailor to verify its capability. More ablation studies
and analysis are included in Appendix C.

Effectiveness of Key Techniques. In Tab. 3, we investigate
two key techniques by starting from a baseline framework de-
scribed in Sec. 2.1. Even without DM-Deg and DS-Bal, such
a baseline framework can still have competitive performance,
showing its reliability. On top of that, we introduce DM-Deg
and DS-Bal, where the superior performance trade-off indi-
cates their significance. Qualitative results can refer to Fig. 2.

Compatibility with Different Backbones. MagicTailor
can also collaborate with other T2I diffusion models as it is
a model-independent approach. In Fig. 7, we employ Magic-
Tailor in other backbones like SD 1.5 [Rombach et al., 2022]
and SDXL [Podell et al., 2023], showcasing MagicTailor can
also achieve remarkable results. Notably, we directly use
the original hyperparameter values without further selections,
showing the generalizability of MagicTailor.

Robustness on Loss Weights. In Fig. 8, we analyze the
sensitivity of loss weights in Eq. 8 (i.e., λpres and λattn), since
loss weights are often critical for model training. As we can
see, when λpres and λattn vary within a reasonable range, our
MagicTailor can consistently attain SOTA performance, re-
vealing its robustness on these hyperparameters.

Performance on Different Numbers of Reference Images.
In Fig. 9, we reduce the number of reference images to ana-
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Figure 8: Robustness on loss weights. We report CLIP-T [Gal et
al., 2022] for text alignment, and DreamSim [Fu et al., 2023] for
identity fidelity as it is most similar to human judgments. Second-
best results in Table 1 are also presented to highlight our robustness.

Figure 9: Performance on different numbers of reference im-
ages. We present qualitative results to show that MagicTailor can
still achieve satisfactory performance when provided only 1 or 2 ref-
erence image(s) per concept and component.c

lyze the performance variation. With fewer reference images,
MagicTailor can still show satisfactory results. While more
reference images could lead to better generalization ability,
one reference image per concept/component is enough to ob-
tain a decent result with our MagicTailor.

Generalizability to Complex Prompts. In comparisons,
we have used well-categorized text prompts for systemic
evaluation. Here we further evaluate MagicTailor’s perfor-
mance on other complex text prompts involving more compli-
cated contexts. As shown in Fig. 11, MagicTailor effectively
generates text-aligned images when performing fidelity per-
sonalization, showing its ability to handle diverse user needs.

Generalizability to Difficult Pairs. We further evaluate
MagicTailor’s performance on challenging pairs, focusing on
two cases: 1) large geometric discrepancy, such as “<per-
son>” in an upper body portrait and “<hair>” in a profile
photo, and 2) cross-domain interactions, such as “<person>”
and “<ear>” of dogs. As shown in Fig. 12, even facing these
hard cases, MagicTailor can still effectively personalize target
concepts and components with high fidelity.

3.5 Further Applications
Decoupled Generation. After learning from a concept-
component pair, MagicTailor can also enable decoupled gen-
eration. As shown in Fig. 10(a), MagicTailor can generate the
target concept and component separately in various and even
cross-domain contexts. This should be credited to its remark-
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Figure 10: Further applications of MagicTailor. (a) Decoupled generation: MagicTailor can also separately generate the target concept
and component, enriching prospective combinations. (b) Controlling multiple components: MagicTailor shows the potential to handle
more than one component, highlighting its effectiveness. (c) Enhancing other generative tools: MagicTailor can seamlessly integrate with
various generative tools, adding the capability to control components within their generation pipelines.

Figure 11: Generalizability for complex prompts. We present
qualitative results generated with complex text prompts. In addition
to those well-categorized text prompts, our MagicTailor can also fol-
low more complex ones to generate text-aligned images.

able ability to capture different-level visual semantics. Such
an ability extends the flexibility of the possible combination
between the concept and component.

Controlling Multiple Components. In this paper, we fo-
cus on personalizing one concept and one component, be-
cause such a setting is enough to cover extensive scenarios,
and can be further extended to reconfigure multiple com-
ponents with an iterative procedure. However, as shown in
Fig. 10(b), our MagicTailor also exhibits the potential to con-
trol two components simultaneously. Handling more com-
ponents remains a prospective direction of exploring better
control over diverse elements for a single concept.

Figure 12: Generalizability for difficult pairs. We show the re-
sults of two hard cases involving large geometric discrepancy and
cross-domain interactions, showing that MagicTailor can effectively
handle such challenging scenarios.

Enhancing Other Generative Tools. We demonstrate how
MagicTailor enhances other generative tools like ControlNet
[Zhang et al., 2023], CSGO [Xing et al., 2024], and In-
stantMesh [Xu et al., 2024] in Fig. 10(c). MagicTailor can in-
tegrates seamlessly, furnishing them with an additional abil-
ity to control the concept’s component in their pipelines. For
instance, working with MagicTailor, InstantMesh can conve-
niently achieve fine-grained 3D mesh design, exhibiting the
practicability of MagicTailor in more creative applications.

4 Conclusion

We introduce component-controllable personalization, en-
abling precise customization of individual components within
concepts. The proposed MagicTailor uses Dynamic Masked
Degradation (DM-Deg) to suppress unwanted semantics and
Dual-Stream Balancing (DS-Bal) to ensure balanced learn-
ing. Experiments show that MagicTailor sets a new standard
in this task, with promising creative applications. In the fu-
ture, we would like to extend our approach to broader image
and video generation, enabling finer control over multi-level
visual semantics for creative generation capabilities.
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