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Abstract
Visualizing restoration treatments is a crucial task
in dentistry. Traditionally, dentists drag the stan-
dard template tooth line onto the inner image from
the front view to simulate the outcome of the
restoration. This process lacks the precision needed
for patient presentation. We find that calculating
the camera pose and the relative positions of the up-
per and lower jaws can enhance visualization accu-
racy and efficiency while assisting dentists in treat-
ment design. In this work, we leverage the opti-
cal flow model and a customized point renderer to
help dentists show the treatment outcome to the pa-
tient. Specifically, we take the 3D scan model and
the intraoral image pair as input. Our framework
automatically outputs the camera pose and the rel-
ative position of the upper and lower jaws. With
these parameters, dentists can directly design the
restoration treatment on the 3D scan model with-
out caring about the 2D visualization. Then the de-
signed tooth line and other simulation modalities
can be rendered on the intraoral image with our cus-
tomized renderer. Our framework relieves the labor
of dentists and shows the case precisely.

1 Introduction

Figure 1: The ideal process of teeth restoration simulation and de-
sign with the automatic software product.

A harmonious smile, which is closely linked to dental aes-
thetics, not only boosts a patient’s self-confidence but also
leaves a lasting positive impression in social interactions
[Gavic et al., 2024]. Orthodontic treatment effectively ad-
dresses aesthetic issues caused by crowded or misaligned an-
terior teeth. However, the treatment period typically spans
several months to years, and the long-term success of the
treatment largely depends on patient compliance. Restora-
tive treatments address a broader range of issues, including
tooth loss and abnormalities in tooth shape or color caused
by caries, wear, or crown fractures[Zaborowicz et al., 2024].
Dentists can customize treatments based on individual fa-
cial features, preferences, and functional needs. Because of
its shorter duration and straightforward process, restorative
treatment is ideal for patients with high aesthetic demands
who wish to promptly enhance the appearance of their ante-
rior teeth[Li et al., 2022].

The rapid advancement of digital dental technology is driv-
ing significant progress in aesthetic restorative treatments.
Digital Smile Design (DSD) technology is a key method that
employs software to analyze, design, and visualize cases be-
fore treatment. This technology has enhanced the predictabil-
ity and quantification of treatment, improving communication
efficiency between clinicians and patients[Jafri et al., 2020].
Its workflow includes several steps: acquisition of facial and
oral images or three-dimensional (3D) data, aesthetic analy-
sis, and design[Omar and Duarte, 2018]. However, despite
advancements in 3D dental design software, data registration,
reference line drawing, and restoration design remain largely
manual. During data registration, the operator must align
the data multiple times. While the software can only per-
form an initial rough alignment based on an operator-selected
anatomic feature point, usually using the intraoral image as a
reference, the dentist must still manually adjust the 3D den-
tition and facial photograph to achieve visual alignment. The
operational intelligence of the software affects both the effi-
ciency of clinical work and the broader adoption of its clinical
use. Furthermore, manual errors can impact the accuracy of
both registration and design data[Alharkan, 2024].

We propose our ideal process in Fig. 1. The alignment
of the facial image and the intraoral image can be achieved
through keypoints. So once the software calculates the align-
ment parameters of the 3D scan model and the intraoral im-
age, the dentists can design the restoration treatment on the
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Figure 2: Overview of our framework. (a) The segmentation and gray-scale of teeth in the intraoral photograph. (b) The detection of teeth
edge in the rendered teeth image. (c) The detection of teeth edge in the intraoral photograph. The detection is based on the result in (a). The
dash line and dash line box in the framework denotes that the process contains multiple iterations. In Step 1, the optical flow model takes the
gray-scale image and the rendered image as input and outputs the optical flow image. The 3D scan models with relative position are rendered
with the camera parameters to update the rendered image every iteration. In Step 2, the Point Renderer takes the coarse result in the Step
1 and outputs the NDC coordinate of points on the edge of 3D scan model. In the end, the restoration plan model is rendered on intraoral
photograph based on the optimized camera pose.

3D scan model. With the rendering speed-up devices like
GPU, the dentists are able to visualize the real-time change
on the facial image along the design process. While the tra-
ditional software programs require the dentists to pull the 3D
scan model on the intraoral image manually.

Automatic registration is the key component for achieving
this ideal process. Most of the teeth are obscured due to the
limited perspectives of intraoral images. And we didn’t know
the camera focal length from different data source. To over-
come these problems, in this paper, we propose a pipeline to
alignment the 3D scan teeth model and 2D intraoral image.
Our pipeline relies on two essential models: the optical flow
model and the point renderer. We train our optical flow model
on virtual data rendered by the 3D scan model with augmen-
tation. After the training, the optical flow model is applied to
get the coarse result of the registration. To refine the param-
eters, we designed a point renderer that optimizes the coarse
results using Chamfer distance in the Normalized Device Co-
ordinate (NDC) system.

The main contributions of our method can be summarized
as follows: 1) We propose a novel framework that eliminates
the laborious task of 3D and 2D data registration for dentists
and circumvents errors inherent in manual processes. Our
framework further enables dentists to visualize outcomes di-
rectly on facial images during the design phase. 2) The frame-
work is extensible to other dental applications, such as oc-
clusion reconstruction and teeth alignment visualization. 3)
Experiments on real-world data demonstrate that our frame-
work successfully aligns intraoral images with 3D scan mod-
els, even when the latter lack visual texture features.

2 Related Work
2.1 Optical Flow
Optical flow has traditionally relied on traditional
methods[Sun et al., 2010], such as the Horn-Schunck
algorithm[Horn and Schunck, 1981], to solve the energy
minimization problem. Until 2015, FlowNet[Dosovitskiy
et al., 2015] introduced neural network to this field and
enabled the optical flow motion estimation by the data-driven
approaches. FlowNet directly take two images as input and
output an optical flow image. Then, FlowNet 2.0[Ilg et al.,
2017] proposed new network architecture and advanced train-
ing strategies to improve accuracy. After that, some following
researchers import transformer-based approaches[Huang
et al., 2022] and refinement inference[Cheng et al., 2024;
Xu et al., 2023] into the optical flow model to solve the
problem that the optical flow model is insensitive to the
small movement[Jung et al., 2023]. But there still exist some
gaps between the synthetic training data and real data in the
application. In this work, we apply the optical flow model on
the intraoral photographs. Given a large amount of synthetic
training data, our model shows robust performance on edge
cases. But we still face the problem that the rendered images
are not completely align with the intraoral images. Unlike
previous work, we design a customized point renderer to
overcome the backwards.

2.2 Differentiable Rendering
Differentiable rendering bridge the domains of computer
vision and computer graphic[Kato et al., 2020]. Recent
work about differentiable rendering[Durvasula et al., 2023;
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Gao and Qi, 2024] focus on improving efficiency and ap-
plicability to real-world tasks like our framework. In this
section, we mainly focus on the optimization tasks figured
out by differentiable rendering. The optimization algorithm
based on differentiable rendering is widely used in the field
of machine learning. For example, neural rendering[Milden-
hall et al., 2021] and implicit representations[Vicini et al.,
2022] of 3D scene leverage the differentiable rendering to
optimize the neural network and Signed Distance Function
(SDF). Besides, 3D Gaussian Splatting (3DGS)[Chen and
Wang, 2024] also apply differentiable rendering to opti-
mize the 3D Gaussian-based representation. In the field of
face reconstruction[Deng et al., 2019], differentiable ren-
dering is utilized to optimize the express, identity and tex-
ture parameters to fit the human face in the images. Re-
cently, differentiable rendering is used to achieve tasks
like exoplanet detection[Feng et al., 2025], digital human
reconstruction[Wang and Li, 2023], path-guiding[Fan et al.,
2024] and text-to-3D sketch[Zhang et al., 2024]. Most of
them use gradient-based optimization within the rendering
pipeline. In this paper, we utilize differentiable rendering to
optimize the pose of the camera and the relative position of
the lower jaw to the upper jaw.

3 Methodology
We outline the methodology of our framework as follows.
First, we formalize the problem definition, then detail the
framework’s core components. Our approach comprises two
stages: a coarse stage, where parameters are derived via
an optical flow model, and a refinement stage, which opti-
mizes the initial output using a customized point renderer.
Finally, we explore potential downstream applications. The
full pipeline is illustrated in Fig. 2.

3.1 Problem Formulation
Our simulation framework for tooth restoration treatment fo-
cuses on aligning a 2D intraoral image I with a 3D scan
model T to enable virtual replacement of the initial scan with
a clinician-designed treatment plan. To mitigate the noise
bringing by the gum, we preprocess the 3D scan using a
mesh segmentation network to isolate individual tooth crowns
{ti}Ni=1, where N is the tooth count. While a pretrained 2D
network segments tooth regions S of teeth in intraoral image
I . The core contribution lies in robustly estimating two spa-
tial parameters: the camera pose Pcamera and the relative jaw
position Prela, which jointly enable accurate 3D-2D alignment
for projecting the treatment plan into the intraoral view. In
this paper, we abstract away medical rules and segmentation
network architectures, prioritizing the optimization of Pcamera
and Prela to establish a modular pipeline that integrates AI-
driven anatomical filtering with physics-based alignment for
clinical restoration simulation.

3.2 Optical Flow Matching
We first elucidate the training of our optical flow model. We
can observe that the difference between the rendering result
of the tooth crown set {ti}Ni=1 and the grayscale image of the

Figure 3: Similarity between the normalized gray scale teeth image
and our rendered image. We leverage the 2D segmentation network
to preprocess the intraoral photograph.

teeth part S · I is trivial. As shown in Fig. 3, this similar-
ity gives us the probability to train the optical flow network
using the virtual data. After training the network using vir-
tual data, we can directly use the trained network to predict
the optical flow of the real data. The virtual training data
is rendered by the preprocessed tooth crowns {ti}Ni=1. One
pose matrix Minit and one transformation matrix Mtran are
randomly initiated to render two images of {ti}Ni=1 from dif-
ferent viewpoints. In the rendering process, we can get the
projection from the pixels to the faces of {ti}Ni=1 and the pro-
jection from faces to the pixels. Based on these projections
from the initial and transformed poses, we can calculate the
ground truth of the flow image.

I0, pix0, face0 = R
(
Minit, {ti}Ni=1

)
(1a)

I1, pix1, face1 = R
(
Mtran ·Minit, {ti}Ni=1

)
(1b)

flow = Sample (face0 − face1, pix0) , (1c)

where Ii, pixi, facei, R denotes the rendered image, the
projection from pixel to face, the projection from face to
pixel and our renderer. Here, face0 − face1 quantifies the
change between corresponding faces at identical pixel loca-
tions, while the Sample function selectively retains differ-
ences based on non-negative pix0 values. Thus, we get the
one label flow image and two input rendered images. In
the training stage, the convolutional network in the model
extracts the feature from two input images, while the trans-
former in the model helps to matching feature extracted from
these two images. After propagation by self-attention and
post-process of matching result, we get the final predicted
flow image which makes L1 Loss = |y − ŷ| with the target
flow image.

During the inference phase, the model processes two in-
puts: 1) a processed grayscale image S · I , which isolates
the teeth region, and 2) an initial rendered image I0. Initial
estimates for both the camera pose and relative position are
suboptimal. In one iteration, the camera pose is updated us-
ing a transformation matrix derived from the model’s output
flow map. Once the camera pose is refined, it is fixed along-
side the upper jaw’s position. Subsequently, the optical flow
model generates a new flow map based on the updated image
rendered by the refined camera pose. This subsequent flow
map then guides adjustments to the lower jaw pose, thereby
completing one full optimization cycle. The transformation
of the lower jaw is achieved by separating a virtual camera.
The transformation of this virtual camera is transferred into
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the movement of the lower jaw object in the scene. Through
successive iterations, the framework converges to a final pre-
diction of the camera pose P̂camera and the relative jaw posi-
tion P̂rela, achieving alignment by leveraging both geometric
and image-based cues.

As shown in Fig. 2, our optical flow model includes one
convolutional network (CNN), one transformer, one module
for flow propagation, one module for upsampling and one
module for refinement. There are self-attention and cross-
attention mechanisms in transformer to refine the feature ex-
tracted from the CNN and build the long-range dependencies
between the two input images. The module of flow propa-
gation refines the entire feature map to the flow map by self-
attention mechanism. The upsampling module upsamples the
flow map to the original image resolution by a convolutional
layer. After upsampling, we apply refinement on the flow
map to improve the estimates. This refinement is achieved
by iteratively passing the flow map through the LocalItera-
tion module, which utilizes a U-Net architecture to improve
the final output. The U-Net and CNN structures follow the
model in the previous work [Xu et al., 2023].

3.3 Point Renderer
In the optical flow matching stage, we obtain the coarse es-
timates for camera poses P̂camera and the relative position of
the upper/lower jaw P̂rela. However, a misalignment persists
between the rendering result and the real intraoral image. To
refine accuracy, we optimize these coarse estimates using dif-
ferentiable rendering. Specifically, we design a point renderer
Rpt that generates an edge map of input tooth crowns and the
projection from pixels to faces. In the experiment, we find
that the visual difference between rendered teeth and target
intraoral photograph makes the pixel loss unsuitable for the
optimization. Besides, the feature exhibited by the rendered
edge map is too sparse to find the correct optimize path and
is likely to fall into the suboptimal result. Thus, our Rpt can
sample the coordinates of points rendered on the edge of teeth
from its outputs.

In the optimization process, Parameters Pcamera and Prela

are initialized using the coarse results P̂camera and P̂rela. The
rasterizer in Rpt transforms the mesh using these parameters
and stores the transformed mesh’s faces/vertices as interme-
diate values. Vertices are partitioned into per-tooth batches
to preserve the occlusion relationships during parallel ras-
terization. The rasterized result is a multi-dimensional array
with size N × H × W , while N is the number of teeth and
W,H is the width and height of the intraoral image. Every
H × W slice represents one rasterized tooth. Non-zero ele-
ments in one slice denote the rasterized face indices in that
corresponding pixel. The values of the pixels without face
will be set as −1. We set non-zero elements with the value 1
and get contours of rasterized teeth by applying convolution
with our customized kernel. The customized kernel is a 3× 3
matrix where the center value is 1, and the surrounding eight
values are all -1/8. We obtain the face indexes of the tooth
crowns which local on the edge of rendering teeth. Then we
get the NDC positions of the center of these faces by sam-
pling the face indexes in mediate value. A pre-trained seg-

mentation network extracts tooth contours from the intraoral
image. The pixels of predicted tooth contours are projected to
the NDC space to become the optimization target. Since the
whole rendering pipeline is differentiable, we can iteratively
update Pcamera and Prela through the optimization algorithm
like stochastic gradient descent, guided by the Chamfer dis-
tance between target points and sampled edge points. The
optimization pipeline can be formalized as:

Epred, pix2face = Rpt

(
Pcamera, Prela, {ti}Ni=1

)
(2a)

Pointpred = Sample
(

Epred, pix2face, {ti}Ni=1

)
(2b)

L = Chamfer (Pointpred, Pointgt) , (2c)

where Pointgt is the NDC-transformed point cloud of intrao-
ral image edges. We choose Chamfer distance as the loss
function because the number of sampled edge points change
every iteration, while Chamfer distance can measure the dis-
tance between different points set and keep regardless about
exact number of points in the set.

3.4 Discussion
In Fig. 4, we list the visualization of teeth restoration treat-
ment. In this paper, we will not discuss how the dentists de-
sign treatments for patients. The de facto core of our frame-
work resides in the registration of the 3D scan model on the
intraoral image. And this part make our method not limited
to the application of teeth restoration visualization. In den-
tistry, some dentists are lack of 3D scanner to directly scan
the patients’ teeth. Plaster is the material they commonly use
for taking dental impressions. However, plaster cannot cap-
ture the relative position of the upper and lower jaws, which
is really essential information for dentists to design the treat-
ment. In this way, our framework can help to get the correct
relative position with the support from the intraoral photo-
graph. What’s more, in Fig. 4 we can observe that the 3D
model fit the image in the pixel level. Since our point ren-
derer can generate the projection from faces to pixels in the
image, we can colorize the 3D scan model with the intraoral
photograph. The colorized 3D scan model can be utilized on
application like the visualization of alignment treatment. We
give a simple example in Fig. 5

IM
A

G
E
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T

Figure 4: Visualization of restoration treatment using our automatic
technology.
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Method
Rotation Translation

α β γ x− axis y − axis z − axis Accurate
SVD 2.809 0.911 1.478 0.687 1.926 1.111 80

DGCNN 4.452 3.264 4.212 0.493 0.822 0.705 26
VI-Net 2.742 0.918 2.121 0.717 1.304 1.085 30

Megapose 3.877 1.842 3.765 0.987 1.858 1.908 20
Ours 0.887 0.334 0.984 0.348 0.711 0.655 295

Table 1: Quantitative results on our upper and lower jaw relative position estimation experiment

Iteration Point Renderer
Rotation Translation

α β γ x− axis y − axis z − axis

0 ✓ 1.848 0.638 2.294 0.823 1.345 0.901
1 × 1.175 0.512 1.308 0.622 0.861 0.682
2 × 1.006 0.506 1.291 0.629 0.851 0.661
3 × 0.972 0.481 1.148 0.587 0.827 0.639

Table 2: Ablation studies on the influence of the optical flow and differentiable rendering module.

Figure 5: The visualization of alignment treatment using the regis-
tration result generated by our framework. The white part indicates
the movement of the teeth in alignment.

4 Experiment
4.1 Experimental Setup
Datasets. We get two modal data from our collaborating
medical institutions after obtaining the patient’s informed
consent: digital 3D scan models and intraoral photographs.
These data provide the source information for our train and
test dataset. As for the dataset, 1600 cases were collected to
train our network. The test dataset contains restoration treat-
ment plans from 400 cases. The restoration treatment plan
is represented by another mesh file. Each case have one in-
traoral image from the front view and the image is resized to
a resolution of 1000 × 1600 in preprocessing. As we men-
tioned before, the 3D scan models are segmented by a pre-
trained network to the teeth instance. After the segmentation,
we create a virtual gum to rebuild its occlusion to the tooth
roots. This is because the shape of the gum change in the in-
tersection region after the restoration treatment and there is a
large amount of redundant faces in the initial gum. The face
of virtual gum is set to invisible after rasterizing.

Baselines. To validate the effectiveness of our proposed
framework, we compared with three types of baselines: 1)
Traditional algorithm We set a pair of template jaws to
align the input mesh with the singular value decomposition
(SVD)[Wall et al., 2003]. 2) Pure 3D Neural Network We
trained a DGCNN model [Phan et al., 2018] with our dataset

to predict the matrix. 3) Multimedia Neural Network We
trained a VI-Net [Lin et al., 2023] combined the vision fea-
ture from the image. 3) Zero-shot Neural Network We apply
pose estimate models pretrained on large scale dataset like
MegaPose[Labbé et al., 2022] on our teeth dataset.
Evaluation Metrics. Since the ground truth in dataset does
not contain the camera pose information. We test the accu-
racy of models base on the deviation of upper and lower rel-
ative position. We divide the position matrix to the deviation
of Euler angles α, β and γ and translation on x, y, z axis.
The relative position is considered accurate when the sum of
translation errors in three axes are smaller than 2mm and the
sum of rotation errors are smaller than 3◦.
Experimental Settings. The optical flow model in our
framework, DGCNN, and VI-Net are not trained on the tested
categories. The Megapose model loads the pretrained check-
points with the RGB dimension. In our experiment, our
framework directly output the relative transformation matrix.
Every compared model generates two matrixes which denotes
the transformation of the upper jaw and lower jaw. The rel-
ative transformation matrix is calculated by multiplying the
transformation matrix of lower jaw with the inverse matrix of
upper jaw.

4.2 Implementation Details
The optimization of our framework comprises two stages, in-
cluding the optical flow model and fine-tuned process. In
the first stage, the transformer in our optical flow network
contains six transformer blocks for both self-attention and
cross-attention mechanisms. The flow propagation module
is implementation by a self-attention block across the fea-
ture map. Both upsampling module and LocalIteration mod-
ule are learnable. The LocalIteration module and our optical
flow model are both configured to execute 3 iterations. In
the training stage, the optical flow network and other base-
lines are optimized by Adam optimizer with the learning rate
started from 1e−2 and was trained 30,000 steps with a batch
size of 32. In the inference stage, the optical flow network
repeat the forward function and update the rendered image
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three times. In the second stage, the parameter of camera is
optimized with fixed 200 iterations by Adam with initial 0.5
learning rate. The rendering size is 512 × 512. The 2D seg-
mentation network is developed with DeepLabv3 [Yurtkulu et
al., 2019] and the 3D segmentation network is constructed via
the previous work [Zheng et al., 2022]. Currently, the render-
ing pipeline is constructed based on Pytorch3D [Ravi et al.,
2020] and Pytorch [Paszke et al., 2019]. All experiments run
on a server with eight Nvidia 3090 GPUs, an AMD EPYC
7402 24-core processor, and 252 GB RAM.

4.3 Comparison Results
The comparative results on our dental dataset are presented
in Table 1. Notably, the zero-shot model Megapose strug-
gles to infer the correct spatial relationship between the up-
per and lower jaws. This limitation likely stems from two
factors: (1) the occlusion of most teeth in intraoral images,
which obscures critical geometric cues, and (2) the absence
of precise focal length or depth map inputs, leaving the model
prone to erroneous pose estimations. Meanwhile, traditional
algorithms and DGCNN exclusively rely on 3D input data.
However, their performance is constrained by the inherent
ambiguity in intraoral scenes—while most photographs de-
pict occluded biting positions, multiple plausible jaw align-
ments exist, leading to suboptimal outcomes for these meth-
ods. While in our framework, focal length is also optimized
with a weak range prior and the depth information is implic-
itly constrained by chamfer distance in the optimization pro-
cess.

VI-Net demonstrates improved accuracy by incorporating
2D image data, though it occasionally fails to resolve fine-
grained positional relationships. In contrast, our framework
achieves superior performance across nearly all evaluation
metrics. This advantage derives from our direct supervision
strategy: the predicted camera pose and jaw positioning are
explicitly constrained by aligning with the tooth contours vis-
ible in intraoral photographs, ensuring anatomically consis-
tent results.

4.4 Ablation Study
Effect of Optical Flow model. To test the effect of our op-
tical flow model, we evaluate the accuracy of the relative po-
sition estimation across successive iterations. As illustrated in
Table 2, when refinement via the point renderer is removed,
the overall accuracy improves as the number of iteration steps
increases. This is rational because we cannot get the correct
camera poses under the wrong relative position. With bet-
ter camera poses, we can get better relative position. In the
first row of the table, refinement by our point renderer is per-
formed without leveraging the coarse initialization from the
result of the optical flow model. These results demonstrate
that our gradient-based optimization requires a robust initial
pose estimate from the optical flow model to achieve conver-
gence.

Effect of Point Renderer. To test the effect of our point
renderer, we show the teeth edges in Fig. 6. The green one is
the edge detected in the intraoral photograph. The purple one
is the edge rendered by the 3D teeth in the position predict by

Figure 6: Ablation studies on the influence of the iterative optimiza-
tion using differentiable rendering. The green line is the detection
result from the image, while the purple line is the result of the optical
flow model and the red line is the result of differentiable rendering.

the optical flow model. The red one is the edge rendered by
the 3D teeth in the position optimized by the point renderer.
It should be noticed that the optimization is on the basis of
the coarse result. Compare to the coarse result from the opti-
cal flow model. The refinement result after the optimization
is closer to the ground truth. A comparative analysis of the
final rows in Tables 2 and 1 reveals that the point renderer re-
finement significantly improves positional accuracy, achiev-
ing closer alignment with ground truth values across all three
Euler angles and translational axes.

5 Conclusion
We propose a novel framework with one data-driven optical
flow model and one customized point renderer. It can visual-
ize the restoration treatment designed by the dentists. Our
framework efficiently leverages the similarity between the
virtual data and the real intraoral photographs to achieve ro-
bust estimation capabilities. The refinement stage established
by point renderer in our framework make the result more ac-
curate. The pose estimation component in our framework can
contribute to lots of potential application in dentistry.
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