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Abstract

With the emergence of diffusion models and the
rapid development of image processing, generat-
ing artistic images in style transfer tasks has be-
come effortless. However, these impressive image
processing approaches face consistency issues in
video processing due to the independent process-
ing of each frame. In this paper, we propose a pow-
erful, model-free approach called FastBlend to ad-
dress the consistency problem in video stylization.
FastBlend functions as a post-processor and can be
seamlessly integrated with diffusion models to cre-
ate a robust video stylization pipeline. Based on a
patch-matching algorithm, we remap and blend the
aligned content across multiple frames, thus com-
pensating for inconsistent content with neighbor-
ing frames. Moreover, we propose a tree-like data
structure and a specialized loss function, aiming to
optimize computational efficiency and visual qual-
ity for different application scenarios. Extensive
experiments have demonstrated the effectiveness of
FastBlend. Compared with both independent video
deflickering algorithms and diffusion-based video
processing methods, FastBlend is capable of syn-
thesizing more coherent and realistic videos.

1 Introduction

In recent years, there has been rapid development in the field
of image processing. Notably, diffusion models [Saharia et
al., 2022; Ramesh et al., 2022] trained on large-scale datasets
have ushered in a transformative era in image synthesis. It has
been demonstrated that diffusion models outperform Genera-
tive Adversarial Networks (GANs) [Goodfellow et al., 2014]
comprehensively [Dhariwal and Nichol, 2021], even reach-
ing a level of creative ability comparable to that of human
artists [Yang er al., 2022]. Stable Diffusion [Rombach et al.,
20221, which has become the most popular model architec-
ture in open-source communities, has been applied to various
domains, including image style transfer [Mou er al., 2023],
super-resolution [Li et al., 2022], and image editing [Hertz
et al., 2022], achieving noteworthy milestones in diffusion-
based approaches.

However, when extending these image processing tech-
niques to video processing, we encounter the issue of main-
taining video consistency [Yu et al., 2021; Lei et al., 2023;
Yang et al., 2023], particularly in video stylization. Since
each frame in a video is processed independently, the direct
application of image processing methods typically results in
incoherent content, leading to noticeable flickering in gen-
erated videos. Recent approaches proposed to enhance the
consistency of generated videos can be summarized as fol-
lows: 1) Pre-trained large models for coherent video syn-
thesis [Blattmann et al., 2023a; Guo et al., 20231, 2) Zero-
shot video processing utilizing image models [Qi et al., 2023;
Ceylan er al., 2023; Khachatryan et al., 2023], 3) Video
deflickering external to diffusion models [Lei et al., 2023;
Ouyang et al., 2023]. Despite these efforts, highlighted in
a recent survey [Xing et al., 2023], challenges remain. Pre-
training large models on large-scale video datasets demands
extremely high computational resources, and current mod-
els like Stable Video Diffusion [Blattmann et al., 2023a] can
only generate minimal movement. Other studies aim to trans-
fer image diffusion models to video synthesis without ad-
ditional training. Some zero-shot methods [Qi et al., 2023;
Ceylan er al., 2023; Khachatryan et al., 2023] have improved
video consistency by modifying the generation process of
diffusion models. Video post-processing methods [Lei et
al., 2023], which do not alter the diffusion models’ genera-
tion process, can also be employed in the video processing
pipeline. However, they often yield sub-optimal outcomes,
struggling to leverage motion features from the input video
and to address issues such as frame flickering and tearing ef-
fectively.

In this paper, we propose a model-free approach called
FastBlend, aiming to enhance video stylization consistency.
To ensure compatibility with existing methods, we operate
exclusively within the image space rather than the latent
space [Rombach er al., 2022], thus avoiding modifications
to diffusion models. Consequently, FastBlend functions as a
post-processor and can be seamlessly integrated with diffu-
sion models to create a robust video stylization pipeline. In
video stylization tasks, we first employ a diffusion-based im-
age processing pipeline to process each frame, transferring
the overall style in accordance with given prompts. Sub-
sequently, we leverage a patch-matching algorithm [Barnes
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et al., 2009] to estimate Nearest Neighbor Fields (NNFs)
[Mount, 20101, which contain the necessary information for
remapping images. On the videos processed by diffusion
models, we utilize these NNFs to align and blend content
within a sliding window, thereby improving video consis-
tency while maintaining visual quality. To enhance computa-
tional efficiency, and drawing inspiration from tree-like data
structures [Fenwick, 1994; De Berg, 20001, we devise a new
data structure optimized for video blending, ensuring mini-
mal time complexity. Furthermore, to improve visual qual-
ity, we introduce a novel alignment loss designed for pre-
cise content alignment across different frames. In our experi-
ments, we construct a video dataset for evaluation, which will
be publicly released. Human evaluation results unanimously
indicate that FastBlend significantly outperforms baseline
methods. Additionally, we implement FastBlend with a fo-
cus on highly parallel processing on GPUs [Luebke, 2008],
achieving exceptional computational efficiency. The source
code has been released on GitHub'. In summary, the main
contributions of this paper include:

* We introduce FastBlend, an effective approach for pro-
ducing consistent videos, making it possible to directly
apply existing imege processing methods to video styl-
ization tasks.

We devise an efficient algorithmic framework for video
consistency enhancement, including tree-like data struc-
tures and a highly parallel computational architecture,
leading to remarkable computational efficiency.

We construct a video dataset for the evaluation of
video stylization techniques, demonstrating through hu-
man evaluation that our proposed method consistently
outperforms baseline methods, including both stan-
dalone video deflickering approaches and diffusion-
based methods.

2 Related Work

2.1 Image Synthesis with Diffusion Models

Diffusion models represent a class of generative models that
generate images through iterative denoising processes. Sta-
ble Diffusion [Rombach et al., 2022], trained on a large-scale
text-image dataset [Schuhmann er al., 2022], has emerged as
a powerful backbone for image synthesis. Methods based
on Stable Diffusion have achieved impressive success. For
instance, ControlNet [Zhang et al., 2023] and T2I-Adapter
[Mou er al., 2023] enable the redrawing of appearances while
preserving the underlying image structure and the transforma-
tion of hand-drawn sketches into realistic photographs. Tech-
niques such as Textual Inversion [Gal et al., 2022], LoRA [Hu
et al., 20211, and DreamBooth [Ruiz et al., 2023] provide the
flexibility to fine-tune Stable Diffusion for generating specific
objects. In the realm of image editing, approaches such as
Prompt-to-Prompt [Hertz et al., 2022], and InstructPix2Pix
[Brooks et al., 2023] are capable of editing images according
to user inputs in the form of text or sketches. Besides these
diffusion-based methods, techniques such as Real- ESRGAN

"https://github.com/Artiprocher/sd- webui-fastblend

[Wang et al., 20211, CodeFormer [Zhou et al., 2022], and
other image super-resolution and restoration methods can be
combined with diffusion models to further enhance image
quality. These image synthesis methods have inspired sub-
sequent advancements in video processing.

2.2 Video Stylization with Diffusion Models

Unlike image processing, video processing presents addi-
tional challenges, often requiring more computational re-
sources to ensure video consistency. Recent research fo-
cuses on extending image diffusion models to video styl-
ization. For example, Gen-1 [Esser et al., 2023] incor-
porates temporal structures into a diffusion model, training
it to restyle videos. Training a video diffusion model is
a resource-intensive endeavor, prompting researchers to ex-
plore zero-shot video stylization methods based on diffu-
sion models from open-source communities. Examples in-
clude Text2LIVE [Bar-Tal et al., 20221, FateZero [Qi et al.,
2023], Pix2Video [Ceylan et al., 2023], and Text2Video-Zero
[Khachatryan et al., 2023]. These zero-shot video styliza-
tion methods process videos frame by frame, which requires
substantial computational resources and poses challenges in
maintaining video consistency. To address these issues, meth-
ods like Make-A-Video [Singer ef al., 2022] and Rerender-
A-Video [Yang er al, 2023] employ keyframe rendering
and video interpolation [JamriSka et al., 2019] to enhance
video consistency. Similarly, CoDeF [Ouyang et al., 2023]
aims to render an entire video using only a single keyframe.
Moreover, independent video deflickering algorithms such
as All-In-One Deflicker [Lei et al., 2023] can be integrated
with diffusion models to marginally enhance video consis-
tency, and some patch-based methods [Barnes er al., 2009;
Jamriska et al., 2019] can render fluent videos using several
keyframes, which motivates us to design a general approach
for video consistency enhancement.

3 Methodology

3.1 Overview

FastBlend is a model-free algorithm. To ensure compatibility,
we use FastBlend solely as a post-processing method, with-
out altering the generative process of the diffusion model.
The overall workflow of FastBlend is illustrated in Figure 1.
When applying diffusion models to video stylization, content
inconsistencies often arise. For clarity, we denote the original
video as the guide video {G; }ﬁ\’:—ol and the video processed by
diffusion models as the style video {S;}¥;!. As presented in
Figure 1, the core concept of FastBlend is to blend the aligned
content within a sliding window, thereby covering the incon-
sistent content with content from neighboring frames. In this
section, we begin by introducing each step of FastBlend, fol-
lowed by a discussion on the enhancements in efficiency and
quality.

3.2 Patch Matching

The first step is to extract the motion feature from the guide
video {Gi}f\;f)l. Given a source frame (; and a target frame
G; in the guide video, we compute an approximate Nearest
Neighbor Field (NNF) F' = NNF(G,, G, ), which represents
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Figure 1: Overall framework of FastBlend, where the video is first processed by diffusion models, followed by the application of FastBlend
to enhance consistency. The prompt for the diffusion model is “A man playing guitar, back, white light, old photo”. In this example, the
inconsistent lighting in the middle frame is corrected by the neighboring frames. Specifically, FastBlend consists of three steps: 1) Estimating
the NNFs from the guide video, which serves as a representation of the motion; 2) Remapping the frames in a sliding window to align them
with a common frame; 3) Blending the remapped frames to ensure visual consistency.

the matches between the two frames. Unlike optical flow
[Teed and Deng, 2020], NNF identifies the best patch-level
matches and was originally proposed for tasks like image re-
construction [Guo et al., 2021; Liu et al., 2021]. For conve-
nience, we use G;[x,y] € REPTUXEr+1)x3 o denote the
patch centered around the position (z,y), with p being the
patch radius. The patch size 2p + 1 is set to 5 by default.
More precisely, F(z,y) = (2/,%’) indicates that the patch
Gz, y] matches G;[2’,y’]. The pseudocode for the base
patch matching algorithm is presented in Algorithm 1. We
construct an image pyramid and initially estimate the NNF at
a low resolution, then upscale it for further refinement. We
use a customizable loss function £ to calculate the matching
errors. The base loss function is formulated as

We also design several customized loss functions, which are
detailed in subsequent subsections. The estimated NNF F is
updated iteratively; in each iteration, we scan the updating
sequence of F' and replace the values that reduce the error.
The updating sequence originates from two steps proposed
by Barnes et al. [Barnes e al., 2009]:

* Propagation: Update matches using adjacent matches.
F'(z,y) = F(z + dy,y + dy) — (ds,dy), where
(dwa dy) € {(_17 O)a (17 0)7 (Oa _1)7 (Oa 1)} Corresponds
to the four cardinal directions.

* Random search: Search for better matches in the en-
tire image. F'(z,y) = F(z,y) + (ds,d,), where
(dy,dy) ~ U[—r,7] and r decreases to zero during the
iterative process.

To improve efficiency, we concurrently update each value in
F'. Additionally, we store images in batches to fully utilize
the computing units on GPUs, making our implementation
highly parallel.

3.3 Image Remapping
Once we have NNF(G;, G;), we can reconstruct the target

frame éj using the source frame G,. Initially, the source

Algorithm 1 Base Patch Matching

Input: G; € R"*“*3: source image; G; € R ™*3: target
image; £: customizable loss function; n: number of iterations
(n = 5 by default)
Randomly initialize F' € NPXwx?2
for each pyramid level (h’,w') do
Resize images G;, G; to G}, G € RA xw'x3
Upsample F to R? *w' <2
Initialize error matrix E «+ L(G}, G,
for i =1tondo
for I in updating sequence of F' do
E' « L(G}, G}, F')
F(E'<E)« F'(E' < E)
E(E' < E) + E'(E' < E)
end for
end for
end for
return F'

F) e RM™

frame is converted into A X w patches, each with a shape of
(2p + 1) x (2p + 1) x 3. Then, the patches are rearranged
according to the NNF F'. To obtain the reconstructed target
frame, we compute the average at the overlapping parts. Note
that the VRAM required to store the patches is (2p+1)? times
that of a single image, which poses a challenge for imple-
mentation due to storage constraints. To reduce the VRAM
requirement and improve /O efficiency, we directly compute
each pixel in the reconstructed image, thus avoiding the stor-
age of intermediate results. The pseudocode for this algo-
rithm is presented in Algorithm 2, effectively reducing the
space complexity from O(hwp?) to O(hw). This function is
compiled using the NVCC compiler [Grover and Lin, 2012]
and runs on NVIDIA GPUs. Similar to Algorithm 1, this al-
gorithm also supports batched data processing

To make the style video {S;}~ ' consistent, we remap
frames within a sliding window to align with a common
frame. Note that the source frames are from the style video
rather than the guide video, which can sometimes result in the
remapped image appearing fragmented. Inspired by Ebsynth
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Algorithm 2 Memory-efficient Image Remapping

Input: G; € R"%*3: source image; F' € N**%*2: estimated
NNF; (z,y): coordinate of the pixel to be computed
Gj(z,y) < 0eR®
for d, = —p to p do
for dy = —ptopdo
(I/v yl) <~ F(l’ + dﬁh Yy + dl/) - (dT7 dy)
Gj(z,y) + Gj(z,y) + Gi(z',y)
end for

end for .
A Gj(@y)
Gj (33, y) A (2;;81?;2

return G (z, )

[JamriSka et al., 2019], we utilize an improved loss function:
L(Gi, G}, F)ey =al|lGi[F (2,y)] — Gjz,y]l3

N 2)
+1Si[F (x,y)] - Sjlz, yllI3,

where « is a hyperparameter that determines the extent to
which motion information in the input video will be used
for remapping. The default value for « is set to 10. S’j is
the remapped frame and will be updated during the iterations.
This loss function can significantly improve the visual quality
of remapped frames, as evaluated by prior studies [Jamriska
etal., 2019].

3.4 Video Blending

Leveraging the patch matching and image remapping algo-
rithms, we can align the content in different frames. Next, we
blend the remapped frames within a sliding window. Specifi-
cally, we define the blended frame S; as

. 1 i+M
Si = QMHF;M (S = Si). 3)

where (S; — 5;) denotes the frame remapped from S; to
S; using NNF(G;, G;). After remapping and blending, the
frames {5} ;' form a consistent video.

In certain application contexts, such as the film indus-
try, the quality of video content is paramount, while in oth-
ers, computational efficiency is prioritized. To meet di-
verse requirements, we have developed three distinct infer-
ence modes for video blending. The initial mode, without
additional adjustments, is denoted as Balanced Mode. The
other two modes, Fast Mode and Accurate Mode, are opti-
mized to improve efficiency and video quality, respectively.

3.5 Efficiency Improvement

When implementing the blending algorithm naively, we re-
quire O(NM) NNF estimations, where M represents the
size of the sliding window. If M is too large, this naive ap-
proach becomes prohibitively slow. To enhance efficiency,
we propose a novel data structure called Remapping Table
for fast remapping and blending. This structure is a tree-
like data structure reminiscent of certain tree-like arrays [Fen-
wick, 1994; De Berg, 2000]. Since the remapped and blended

frames can be remapped iteratively, i.e.,
(S¢—>Sj)—>8k%;§i—>3k, 4)
(Si—FSj) — Sk = (5; —>Sk)+(5j — Sk). 5)

In other words, we can store some intermediate variables to
reduce the time complexity. This data structure can compute
the estimation of S; with low time complexity. For readers
not familiar with tree-like data structures, it is advisable to
approach this data structure as a black box, thereby alleviating
the need for intimate understanding.

Overall, Fast Mode requires O(N log N) NNF estima-
tions, which are independent of the sliding window size, thus
enabling the use of large windows without a significant in-
crease in computational cost.

3.6 Quality Improvement

When flicker noise in a video is excessively pronounced, sim-
ply blending the frames together may result in a smoggy
appearance. This issue arises from the inconsistent remap-
ping of content to identical positions across different frames.
To mitigate this challenge, we adjust the loss function to
more consistently align the contents between frames. Ide-
ally, when different source frames {Si}fif)l are remapped to

the same target frame S;, the set {S; — S; ﬁigl should
be nearly identical; otherwise, details may be lost during
averaging. We first compute the average remapped image:
S; = LN NS — S;), where S; is updated iteratively
based on intermediate variables. We then calculate the dis-
tance between S; and each remapped image. The modified
alignment loss function is formulated as follows:

L(Gi, Gy, F)ay =al|GilF(z,y)] — Gz, y]II3
+ IS [F (2, y)] = Sjlz, i3,

where the alignment term ||S;[F(z,y)] — S;[z, y]||3 signifies
the variance of the pixels remapped to position (z,y). By
minimizing this term, the variance of {S; — S;}X ' is re-
duced, thus the details are aligned. The Accurate Mode ne-
cessitates O(N M) NNF estimations and image remappings.
Additionally, the construction of a prefix remapping table is
not required. As the frames are processed sequentially, the
space complexity is reduced from O(N) to O(M). This re-
duction facilitates the processing of longer videos in Accu-
rate Mode.

(6)

4 Experiments

To demonstrate the efficacy of FastBlend, we conduct evalua-
tions comparing FastBlend with other baseline methods in the
domain of video stylization. The goal is to transfer the style
of a given video according to the provided textual prompt
while retaining the structural information of the original con-
tent. We first present several video samples to illustrate the
differences between the methods and then quantify the per-
formance through quantitive metrics and human evaluation.

4.1 Experimental Settings

Baseline Methods. Considering that FastBlend functions as
a post-processor, we compare it with both independent video
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(e) Pix2Video

(f) Text2Video-Zero

Figure 2: Examples in video stylization. The prompt is “white flowers”. “Naive” denotes directly processing each frame using the diffusion
model. All-In-One Deflicker and FastBlend are post-processing methods on “Naive”. Pix2Video and Text2Video-Zero are two video styliza-
tion methods that modify the generation process of diffusion models.
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deflickering methods and video stylization methods that mod-
ify the diffusion model. The baseline methods in our exper-
iments include: All-In-One Deflicker [Lei et al., 2023]: a
state-of-the-art deflickering method that can eliminate flicker-
ing artifacts by leveraging a neural atlas in conjunction with
a neural filtering strategy. Pix2Video [Ceylan ef al., 2023]:
a video-to-video translation method that uses self-attention
feature injection to maintain frame consistency. Text2Video-
Zero [Khachatryan et al., 2023]: a training-free approach that
leverages motion dynamics and cross-frame attention for con-
sistent video processing.

Dataset. For comparative experiments, we created a dataset
named Pixabay100. This dataset contains 100 videos col-
lected from Pixabay?. We manually crafted prompts for styl-
ization and editing tailored to these videos. Since Pix2Video
requires a prompt describing the original video, we also pro-
vide descriptions for each video. This dataset will be made
publicly available. The resolutions of the videos vary, and we
resize each frame to 512 x 960 for consistency.

Models and Parameters. When reproducing Pix2Video and
Text2Video-Zero, we use the default models and settings pro-
vided by these baseline methods. In the comparison be-
tween FastBlend and All-In-One Deflicker, we first process
the frames using diffusion models and then apply the two
post-processing methods respectively. We utilize a widely
acclaimed diffusion model, DreamShaper?, from open-source
communities, to process each video frame by frame. To re-
tain the original video’s structural information, we employ
two ControlNet [Zhang er al., 2023] models, SoftEdge and
Depth. The number of sampling steps is set to 20, the Con-
trolNet scale to 1.0, the classifier-free guidance scale [Ho and
Salimans, 2021] to 7.5, and the sampling scheduler to DDIM
[Song et al., 2020]. These hyperparameters were tuned em-
pirically. Moreover, we enable cross-frame attention, a strat-
egy widely proven to be effective for consistency [Yang et al.,
2023; Duan et al., 2023; Qi et al., 2023; Ceylan et al., 2023;
Khachatryan et al., 2023]. FastBlend’s efficiency improve-
ment feature is activated for fast processing, with a sliding
window size of 30 and a batch size of 64.

4.2 Case Study

An illustrative video is shown in Figure 2, where the prompt
is “white flowers” We enlarge some areas to compare the re-
sults intuitively. Using the aforementioned diffusion model,
we process the video naively, and the processed video is
shown in Figure 2(b). The color of the flowers in the pro-
cessed video successfully changes to white. However, there
is a noticeable inconsistency in the flowers. Comparing All-
In-One Deflicker with FastBlend, we observe that All-In-One
Deflicker primarily mitigates slight flickering, as shown in
Figure 2(c), whereas FastBlend effectively aligns the ele-
ments, as indicated by the coherent petals in Figure 2(d). The
results from Pix2Video and Text2Video-Zero (Figure 2(e)
and Figure 2(f)) also exhibit inconsistent content, where
Pix2Video struggles to maintain the structural information
from the input video and Text2Video-Zero cannot synthesize

2https://pixabay.com/videos/
*https://civitai.com/models/4384/dreamshaper

Method Pixel-MSE |
Pix2Video 1203.04
Text2Video-Zero 342.85
All-In-One Deflicker 53.38
FastBlend 35.79

Table 1: The results of quantitive metrics.

FastBlend is better Tie  Al-In-One Deflicker is better

75.64% 14.10% 10.26%
FastBlend is better  Tie Pix2Video is better
91.49 % 4.26% 4.26%
FastBlend is better  Tie Text2Video-Zero is better
89.44 % 6.83% 3.73%

Table 2: The results of human evaluation.

stable stems. This case study demonstrates that FastBlend, in
combination with the diffusion model, can generate coherent
and realistic videos in video stylization, significantly enhanc-
ing consistency.

4.3 Quantitative Evaluation

To quantitatively evaluate FastBlend and other baseline meth-
ods, we calculate the Pixel-MSE [Ceylan er al., 2023] for
the videos generated by each method. The Pixel-MSE is the
mean square error between the warped frame and its cor-
responding target frame. The results are presented in Ta-
ble 1. FastBlend achieves the lowest Pixel-MSE, outperform-
ing the other baseline methods by a large margin. Addition-
ally, given that some prior studies [Blattmann et al., 2023b;
Ouyang et al., 2023] have questioned the reliability of such
evaluation metrics, we further invited 15 participants to par-
take in a double-blind evaluation. In each round of the evalu-
ation, we randomly chose a video, presenting the participants
with videos generated by two different methods. One video
was generated by FastBlend, and the other by a randomly se-
lected baseline method. The positions of these two videos
were also randomized. Participants were asked to choose the
video that appeared better in terms of consistency and clar-
ity, or to select “tie” if they could not determine which video
was superior. The results of the human evaluation are shown
in Table 2, where participants unanimously agreed that Fast-
Blend’s overall performance was significantly better than that
of the baseline methods.

4.4 Ablation Study

We compared the performance of the different inference
modes. Figure 3 illustrates the results for three inference
modes. The positions of lightning in the video are random
and inconsistent. In the Balanced Mode (Figure 3(c)), there
is a slight ghosting effect, where the lightning from differ-
ent frames is blended together. This ghosting issue is more
pronounced in the Fast Mode (Figure 3(b)). Conversely, in
the Accurate Mode (Figure 3(d)), the alignment loss func-
tion (6) guides the optimization process toward the elimina-
tion of unnecessary details, resulting in a clearer represen-
tation by merging lightning elements from multiple frames.
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e

(a) Input video (b) Fast mode

(c) Balanced mode (d) Accurate mode

Figure 3: Comparison of the three inference modes for blending.
The prompt is “a woman, lightning, ball lightning, super power”.

—e— Batch size = 64
1 —— Batch size =4
—e— Batchsize=1

—e— Fast mode
—e— Balanced mode
—e— Accurate mode

20 1

10

5 35 65 95 5 35 65 95

Figure 4: Inference time of different inference modes and batch
sizes. The horizontal axis represents the number of video frames,
and the vertical axis represents the inference time (in minutes).

This example demonstrates the efficacy of the quality im-
provement strategies discussed in Accurate Mode.

4.5 Efficiency Analysis

We assessed the computational efficiency of FastBlend using
an NVIDIA RTX 4090 GPU, recording the time taken to ren-
der 100 frames. Given that Pix2Video and Text2Video-Zero
are video processing methods tightly integrated with diffu-
sion models, a direct comparison with other methods would
not be equitable. When comparing All-In-One Deflicker
and FastBlend, All-In-One Deflicker required 5.42 minutes,
whereas FastBlend needed only 2.27 minutes. This demon-
strates that FastBlend is significantly faster than All-In-One
Deflicker. To further understand why FastBlend achieves
such notable computational efficiency, we followed the set-
tings from the previous experiments and evaluated the effi-
ciency of different inference modes and batch sizes. The
computation times are illustrated in Figure 4. As shown in
Figure 4(a), the Fast Mode is considerably quicker than the
other two inference modes. This speed increase is attributable
to the data structure in Fast Mode, which substantially re-
duces time complexity. Additionally, as demonstrated in Fig-
ure 4(b), a larger batch size contributes to faster processing.
By using a large batch size, FastBlend can fully utilize the
computing resources of the GPU, thereby achieving high ef-
ficiency.

4.6 Parameter Sensitivity

We also conducted experiments to investigate the impact of
different sliding window sizes. Figure 5 shows the first and
last frames of a 125-frame video. When the sliding window
size is set to 30 (Figure 5(b)), the color of the boat in the scene

(b) Sliding window size is 30
p—

L = —— - geisa] E o o |

(c) Sliding window covers the whole video

Figure 5: Comparison of different sliding window sizes. The prompt
in this example is “a white sailboat, a lake, winter”.

is different because the two frames are far apart. As the slid-
ing window covers the entire video (Figure 5(c)), the color
of the small boat becomes consistent. Larger sliding window
sizes can improve the long-term consistency of videos but re-
quire more computation time.

5 Conclusion and Future Work

In this paper, we propose a model-free video processing ap-
proach named FastBlend. This approach can significantly en-
hance video consistency through patch matching and can be
seamlessly integrated with diffusion models to design robust
video processing pipelines. By aligning and blending con-
tent across different frames, FastBlend effectively eliminates
flickering in videos. To boost efficiency, we introduce a novel
data structure that dramatically reduces the time complexity.
Furthermore, we have designed an alignment loss function
that facilitates content alignment, thereby improving visual
quality. The extensive experimental results have underscored
the superiority of FastBlend.

Looking ahead, we aim to combine FastBlend with ad-
ditional video processing techniques to design more potent
video processing pipelines for various application scenar-
ios. Furthermore, we observe that FastBlend, as a standalone
video processing algorithm, sometimes produces blurred
videos when processing videos with large-scale rapid motion.
This is another issue that we aim to optimize and improve
upon in future work.
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