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Abstract
Recently, advancements in video synthesis have at-
tracted significant attention. Video synthesis mod-
els have demonstrated the practical applicability of
diffusion models in creating dynamic visual con-
tent. Despite these advancements, the extension
of video lengths remains constrained by compu-
tational resources. Most existing video synthe-
sis models are limited to generating short video
clips. In this paper, we propose a novel post-tuning
methodology for video synthesis models, called
ExVideo. This approach is designed to enhance the
capability of current video synthesis models, allow-
ing them to produce content over extended tempo-
ral durations while incurring lower training expen-
ditures. In particular, we design extension strate-
gies across common temporal model architectures
respectively, including 3D convolution, temporal
attention, and positional embedding. To evaluate
the efficacy of our proposed post-tuning approach,
we trained ExSVD, an extended model based on
Stable Video Diffusion model. Our approach en-
hances the model’s capacity to generate up to 5×
its original number of frames, requiring only 1.5k
GPU hours of training on a dataset comprising
40k videos. Importantly, the substantial increase
in video length doesn’t compromise the model’s
innate generalization capabilities, and the model
showcases its advantages in generating videos of
diverse styles and resolutions. We have released
the source code and the enhanced model publicly1.

1 Introduction
In recent years, diffusion models [Sohl-Dickstein et al., 2015;
Ho et al., 2020] have achieved outstanding results in image
synthesis, significantly surpassing previous GANs [Dhariwal
and Nichol, 2021]. These achievements have subsequently
fostered a burgeoning interest in the adaptation of diffusion
models for video synthesis. The diffusion models such as
Stable Video Diffusion [Blattmann et al., 2023], AnimateD-
iff [Guo et al., 2023], and VideoCrafter2 [Chen et al., 2024a]

1https://ecnu-cilab.github.io/ExVideoProjectPage/.

epitomize this research trajectory, showcasing the ability to
produce frames that are not only coherent but also of high vi-
sual quality. These achievements underscore the practicality
and potential of employing diffusion models in the field of
video synthesis. With the groundbreaking results of SORA
[Liu et al., 2024] reported at the beginning of 2024, the re-
search direction of video synthesis has once again attracted
widespread attention.

Although current video synthesis models are capable of
producing video clips of satisfactory quality, the generated
videos are generally short, and extending their duration re-
mains a challenge. Current methodologies can be categorized
into three types to generate longer videos. 1) Pre-training
using long video datasets [Chen et al., 2024b; Wang et al.,
2023b]. Through extensive training with long video samples,
it is foreseeable that models can improve their ability to gen-
erate longer videos. However, training with such datasets
would result in prohibitively escalated costs. Consequently,
given the computational constraints, current video generation
models are primarily trained on short video clips. 2) Gener-
ating videos in a streaming [Kodaira et al., 2023] or sliding
window [Duan et al., 2024] manner. Without further train-
ing, longer videos can be generated by stitching together sev-
eral short video segments. However, this approach leads to
lower video coherence. In addition, existing video genera-
tion models lack the capability for long-term video under-
standing, making the accumulation of errors inevitable. As a
result, during the generation of long videos, the visual qual-
ity is prone to deterioration, manifesting as a breakdown in
the imagery. 3) Frame interpolation [Huang et al., 2022;
Wu et al., 2024]. Video frame interpolation models offer
a method to augment the frame count of generated videos.
However, this approach is inadequate for extending the nar-
rative timeframe of the video. While it increases the number
of frames, maintaining the original frame rate would result in
an unnatural slow-motion effect, thereby failing to extend the
narrative span of the video content. These challenges under-
score the necessity for innovative solutions capable of over-
coming the existing hurdles associated with video duration
extension, without compromising video quality or coherence.

Recent breakthroughs in the development of LLMs (large
language models) [Xiong et al., 2023; Xiao et al., 2023;
Chen et al., 2023b] have inspired us. Notably, LLMs, despite
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being trained on fixed-length data, exhibit remarkable pro-
ficiency in understanding contexts of variable lengths. This
flexibility is further enhanced through the integration of sup-
plementary components and the application of lightweight
training procedures, enabling the processing of exceptionally
lengthy texts. Such innovations have motivated us to explore
analogous methodologies within video synthesis models. In
this paper, we introduce a novel post-tuning strategy, called
ExVideo, specifically designed to empower existing video
synthesis models to produce extended-duration videos within
the constraints of limited computational resources. We have
designed an extension structure for mainstream video synthe-
sis model architectures. This framework incorporates adapter
components, meticulously engineered to preserve the intrin-
sic generalization capabilities of the base model. Through
post-tuning, we enhance the temporal modules of the model,
thereby facilitating the processing of content across longer
temporal spans.

In theory, ExVideo is designed to be compatible with the
majority of existing video synthesis models. To empiri-
cally validate the efficacy of our post-tuning methodology,
we applied it to the Stable Video Diffusion model [Blattmann
et al., 2023], a popular open-source image-to-video model.
Through ExVideo, we can extend the original frame synthe-
sis capacity from a limit of 25 frames to 128 frames. Im-
portantly, this expansion was achieved without compromis-
ing the model’s distinguished generative capabilities. Ad-
ditionally, the enhanced model exhibits the versatility to be
seamlessly integrated with text-to-image models [Rombach
et al., 2022; Li et al., 2024b; Chen et al., 2023a]. This syn-
ergistic amalgamation establishes robust and versatile text-to-
video pipelines. This adaptability underscores the potential of
our post-training technique, the source code and the extended
model will be released publicly. In summary, the contribu-
tions of this paper include:

• We present ExVideo, a post-tuning technique for video
synthesis models that can extend the temporal scale
of existing models to facilitate the generation of long
videos.

• Based on Stable Video Diffusion (SVD), we have trained
an extended video synthesis model named ExSVD. This
model is capable of generating coherent videos of up to
128 frames while preserving the generative capabilities
of the original model.

• Through comprehensive empirical experiments, we
demonstrate the feasibility of enhancing video synthe-
sis models via post-tuning, thereby presenting an inno-
vative approach to the training of large-scale models for
extended video synthesis.

2 Related Work
2.1 Diffusion Models
Diffusion models [Sohl-Dickstein et al., 2015; Ho et al.,
2020] are a category of generative models that characterize
the content generation as a Markov random process. Unlike
GANs [Goodfellow et al., 2014], diffusion models do not re-
quire adversarial training, thus making their training process

more stable. Moreover, through an iterative generation pro-
cess, diffusion models are capable of producing images with
exceptionally high quality. In recent years, image synthe-
sis models based on diffusion, including Pixart [Chen et al.,
2023a], Imagen [Saharia et al., 2022], Hunyuan-DiT [Li et
al., 2024b], and the Stable Diffusion series [Rombach et al.,
2022], have achieved impressive success. Diffusion models
have given rise to a vast open-source technology ecosystem.
Technologies such as LoRA [Hu et al., 2021], ControlNet
[Zhang et al., 2023] and IP-Adapter [Ye et al., 2023] have
endowed the generation process of diffusion models with a
high degree of controllability, thereby meeting the needs of
various application scenarios.

2.2 Video Synthesis
Given the remarkable success of diffusion models in image
synthesis, video synthesis approaches based on diffusion have
also been proposed in recent years. For example, by adding
additional motion modules to the UNet model [Ronneberger
et al., 2015] in Stable Diffusion [Rombach et al., 2022],
AnimateDiff [Guo et al., 2023] transfers the capabilities of
image synthesis to video synthesis. Stable Video Diffusion
[Blattmann et al., 2023] is an image-to-video model archi-
tecture and can synthesize video clips after end-to-end video
synthesis training. Unlike image synthesis models, video
synthesis models require substantial computational resources
since the model needs to process multiple frames simultane-
ously. As a result, most existing video generation models
[Guo et al., 2023; Wang et al., 2023a] can only produce very
short video clips. For instance, AnimateDiff can generate up
to 32 frames, while Stable Video Diffusion can generate a
maximum of 25 frames. This limitation prompts us to ex-
plore the methodology to extend video synthesis models over
longer temporal scales.

2.3 Extending Generative Models
Although the existing diffusion models are trained with a
fixed scale, such as Stable Diffusion being trained at a fixed
resolution of 512×512, some approaches can extend them to
larger scales. For instance, in image synthesis, approaches
like Mixture of Diffusers [Jiménez, 2023], MultiDiffusion
[Bar-Tal et al., 2023], and ScaleCrafter [He et al., 2023] can
increase the resolution of generated images by altering the in-
ference process of the UNet model in Stable Diffusion. Simi-
lar techniques have also emerged in the field of large language
models. With the help of positional encoding technologies
such as RoPE [Su et al., 2024] and ALiBi [Press et al., 2021],
large language models can extrapolate to longer text process-
ing tasks under the premise of training with limited-length
texts. Post-tuning can further help language models achieve
super-long text comprehension and generation [Xiong et al.,
2023; Chen et al., 2023b]. These research findings have in-
spired and motivate us to explore the extension of video syn-
thesis models. We aim to endow existing video synthesis
models with the capability to generate longer videos.

3 Methodology
In this section, we first review the architectures of mainstream
video diffusion models, then discuss the methodologies we
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have adopted to extend the temporal modules for long video
synthesis, and finally introduce the post-tuning strategy.

3.1 Preliminaries
The huge demands of computational resources for training
video synthesis models lead to a prevalent practice of adapt-
ing existing image synthesis models for video generation.
This adaptation is typically achieved by incorporating tempo-
ral modules into the model for generating dynamic content.
We provide a comprehensive overview of temporal module
architectures as follows:

• 3D convolution [Li et al., 2021]: Convolution layers
form the foundational blocks in computer vision. 2D
convolution layers have been employed in the UNet
[Ronneberger et al., 2015] architecture, which is widely
used in diffusion models. By extending 2D convolu-
tions into the third dimension, these layers are seam-
lessly adapted in video synthesis models. Research indi-
cates that convolution layers in diffusion models exhibit
a high degree of adaptability across various resolutions
[Bar-Tal et al., 2023], which is a testament to their ca-
pacity for generalization.

• Temporal attention [Vaswani et al., 2017]: In image
synthesis, the importance of attention mechanisms is
underscored by their contribution to the generation of
images with remarkable fidelity, as evidenced by the
ablation studies in latent diffusion [Rombach et al.,
2022]. Transferring spatial attention mechanisms to
the video domain raises concerns regarding computa-
tional efficiency due to the quadratic time complexity
of the attention operators. To circumvent this computa-
tional bottleneck, advanced video synthesis models typ-
ically adopt temporal attention layers [Guo et al., 2023;
Blattmann et al., 2023] that optimize efficiency by cur-
tailing the volume of embeddings processed by each at-
tention operator.

• Positional embedding [Su et al., 2024]: The native at-
tention layers cannot model the positional information
in videos. Therefore, video synthesis models typically
incorporate positional embeddings to enrich the embed-
ding space with positional information. Positional em-
beddings can be instantiated through diverse methodolo-
gies. For example, AnimateDiff [Guo et al., 2023] opts
for learnable parameters to establish positional embed-
dings, whereas Stable Video Diffusion [Blattmann et al.,
2023] utilizes trigonometric functions to generate static
positional embeddings.

3.2 Extending Temporal Modules
Most video synthesis models are pre-trained on videos com-
prising only a constrained number of frames due to limited
computational resources. For instance, Stable Video Diffu-
sion [Blattmann et al., 2023] is capable of generating a max-
imum of 25 frames, while AnimateDiff [Guo et al., 2023] is
limited to synthesizing videos of up to 32 frames. To aug-
ment these models to produce extended videos, we propose
enhancements to the temporal modules within these models.

Static
Positional
Embedding

Video
Representation

Frame ids

+

Other
Modules

…

…

Temporal Block

Trainable
Positional
Embedding

Video
Representation

Frame ids

+

Identity
3D Convolution

Other
Modules

…

Extended
Temporal Block

…

Figure 1: The architecture of extended temporal blocks in Stable
Video Diffusion. We replace the static positional embedding with a
trainable positional embedding and add an adaptive identity 3D con-
volution layer to learn long-term video features. The modifications
are adaptive, preserving the original generalization abilities of the
pre-trained model. All parameters outside the temporal block are
fixed while training for lower memory usage.

Firstly, the inherent functionality of 3D convolution lay-
ers to adaptively accommodate various scales has been pre-
viously validated through empirical studies [Jiménez, 2023;
Bar-Tal et al., 2023; He et al., 2023], even without ne-
cessitating fine-tuning. Consequently, we opt to retain the
3D convolution layers in their original form to preserve
these capabilities. Secondly, regarding the temporal atten-
tion modules, research on large language models has demon-
strated the potential for scaling existing models to accom-
modate longer contextual sequences [Xiong et al., 2023;
Chen et al., 2023b]. Inspired by these findings, we fine-tune
the parameters within the temporal attention layers during the
training process to enhance their efficacy over extended frame
sequences. Thirdly, for the positional embedding layers, ei-
ther static or trainable embeddings cannot be directly applied
to longer videos. To circumvent this pitfall while ensuring
compatibility with a wide array of existing video models, we
use extended trainable parameters to replace the original po-
sitional embeddings. These extended trainable positional em-
beddings are initialized in a cyclic pattern, drawing upon the
configurations of the pre-existing embeddings. Further, draw-
ing inspiration from various adapter models [Hu et al., 2021;
Zhang et al., 2023], we incorporate an additional identity 3D
convolution layer after the positional embedding layer, aimed
at learning long-term information. The central unit of this
3D convolution kernel is initialized as an identity matrix, and
the remaining parameters are initialized to zero. The identity
3D convolution layer ensures that, before training, there is
no alteration to the video representation, thereby maintaining
consistency with the original computational process.

We apply our devised extending approach to Stable Video
Diffusion [Blattmann et al., 2023], which is a popular model
within open-source communities for video synthesis. The
comparative architectures, both pre and post-extension, are
illustrated in Figure 1. Because of the fundamental similari-
ties that underpin the construction of temporal blocks within
video synthesis models, our extending approach can also be
applied to various video synthesis models.
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3.3 Post-Tuning
After extending the temporal blocks in the video synthesis
models, we enhance the model’s abilities to generate ex-
tended videos via post-tuning. To circumvent potential copy-
right concerns with video content, we employed a publicly
available dataset OpenSoraPlan2, which comprises 40,258
videos. These videos were sourced from copyright-free plat-
forms. The videos in this dataset maintain a resolution of
512×512. ExVideo expands its capacity to 128 frames. Over
such extended sequences, full training is deemed impractical
because of the substantial computational requirements. In-
stead, we employed several engineering optimizations aimed
at optimizing GPU memory usage. These optimizations are
crucial for managing the increased computational load and fa-
cilitating efficient training within limited hardware resources:

• Parameter freezing: All parameters except the tempo-
ral blocks are frozen.

• Mixed precision training: We deploy a mixed precision
training program by converting some parameters to 16-
bit floating-point format.

• Gradient checkpointing [Feng and Huang, 2021]: Gra-
dient checkpointing is enabled in the model. By storing
intermediate states during forward passes and recomput-
ing gradients on-demand during the backward pass, this
technique effectively decreases memory usage.

• Flash Attention [Dao, 2023]: We integrate Flash Atten-
tion to enhance the computational efficiency of attention
mechanisms.

• Shard optimizer states and gradients: We leverage
DeepSpeed [Rasley et al., 2020], a library optimized for
distributed training, to enable shard optimizer states and
gradients across multiple GPUs.

The loss function and the noise scheduler are consistent with
the original model. The learning rate is 1×10−5 and the batch
size on each GPU is 1. The training was conducted using only
8 NVIDIA A100 GPUs over one week. In order to ensure the
stability of the training process, exponential moving averages
were employed for the update of weights.

4 Experiments
By integrating extended temporal modules into the original
Stable Video Diffusion (SVD) model and performing post-
tuning, we have developed the Extended Stable Video Diffu-
sion (ExSVD) model. This enhanced model is capable of gen-
erating coherent videos with lengths of up to 128 frames. To
validate its capabilities, we have conducted comprehensive
experiments comprising three components. First, we perform
a comparative analysis between our ExSVD and the original
SVD model to elucidate the enhancements achieved through
post-tuning. Second, we evaluate the performance of ExSVD
in comparison to other publicly accessible models. Finally,
we present illustrative examples to provide a tangible under-
standing of the model’s performance.

2https://hf.co/datasets/LanguageBind/Open-Sora-Plan-v1.0.0

Figure 2: Automatic metrics computed based on the videos gener-
ated by ExSVD and the original SVD model. When the model is
extended to a larger time scale, our approach effectively preserves
the original capabilities of the model.

4.1 Evaluation on Extended Model Performance
To assess the performance of ExVideo, we present the results
of our ExSVD model and compare them with those of the
original SVD model across two primary dimensions: auto-
matic metrics and human evaluation.

Parameter Settings: The comparative experiments are
conducted based on VBench [Huang et al., 2024], which is a
comprehensive suite of tools designed to automatically assess
the quality of generated videos. Following VBench’s prompt
sampling methodology, we assigned 5 random seeds to each
prompt for the text-to-video generation process. Initially, we
employed the Hunyuan-DiT [Li et al., 2024b] text-to-image
model to generate 5 images for each prompt. Subsequently,
for each image, both our ExSVD and the SVD models were
used to generate corresponding videos, resulting in a total of
4720 (944 × 5) videos for each model. We used the DDIM
[Song et al., 2020] sampler with 50 steps for sampling.

Evaluation Metrics: VBench assesses video performance
from two broad perspectives: video quality and video-
condition consistency. Video quality focuses on the percep-
tual quality of the synthesized video, including temporal qual-
ity and frame-wise quality. Video-condition consistency fo-
cuses on whether the synthesized video aligns with the user-
provided guiding condition (text prompt) and includes met-
rics from semantic and style dimensions. It is important to
note that the dynamic degrees in the original implementation
of VBench are sensitive to frames per second (FPS) and the
total number of frames. Our findings indicate that this metric
can significantly impact the overall score, potentially result-
ing in biased comparisons between different models. We will
address this issue in future research, as there currently are no
valid metrics available for evaluation.

Quantitive Results: Based on the generated videos from
our ExSVD and the original SVD model, we have calculated
all the automatic metrics in VBench. The visualized results of
video quality are shown in Figure 2, and the detailed numer-
ical results are presented in Table 1. From the perspective of
video quality, most metrics of the ExSVD model are on par
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(g) LaVie

(e) T2V-Turbo

(c) VideoCrafter2

(i) ExSVD

(b) AnimateDiff

(a) OpenSora

(d) Pika

(f) CogVideoX

(h) Kling

Figure 3: Visual comparisons of text-to-video results from several existing video synthesis models and our Extended model. The prompts are
“a boat sailing smoothly on a calm lake” and “an astronaut flying in space, Van Gogh style”. In our pipeline, the first frame is generated by
Hunyuan-DiT, and ExSVD generates the video according to the first frame. We highly recommend readers watch the videos on our project
page: https://ecnu-cilab.github.io/ExVideoProjectPage/.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://ecnu-cilab.github.io/ExVideoProjectPage/


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Model Total
Score

Subject
Consistency

Background
Consistency

Temporal
Flickering

Motion
Smoothness

Aesthetic
Quality

Imaging
Quality

Object
Class

OpenSora [Zheng et al., 2024] 79.23% 94.45% 97.90% 99.47% 98.20% 56.18% 60.94% 83.37%
AnimateDiff [Guo et al., 2023] 80.27% 95.30% 97.68% 98.75% 97.76% 67.16% 70.10% 90.90%

VideoCrafter2 [Chen et al., 2024a] 80.44% 96.85% 98.22% 98.41% 97.73% 63.13% 67.22% 92.55%
Pika [Pika, 2024] 80.69% 96.94% 97.36% 99.74% 99.50% 62.04% 61.87% 88.72%

T2V-Turbo [Li et al., 2024a] 81.01% 96.28% 97.02% 97.48% 97.34% 63.04% 72.49% 93.96%
CogVideoX [Yang et al., 2024] 81.61% 96.23% 96.52% 98.66% 96.92% 61.98% 62.90% 85.23%

LaVie [Wang et al., 2023a] 81.75% 97.90% 98.45% 98.76% 98.42% 67.62% 70.39% 97.52%
Kling [Team, 2024] 81.85% 98.33% 97.60% 99.30% 99.40% 61.21% 65.62% 87.24%

SVD [Blattmann et al., 2023] 81.73% 96.52% 97.89% 94.66% 97.58% 69.56% 65.25% 88.10%
ExSVD (ours) 81.91% 96.11% 97.79% 98.71% 99.31% 70.47% 68.16% 88.99%

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

OpenSora [Zheng et al., 2024] 58.41% 85.80% 87.49% 67.51% 42.47% 23.89% 24.55% 27.07%
AnimateDiff [Guo et al., 2023] 36.88% 92.60% 87.47% 34.60% 50.19% 22.42% 26.03% 27.04%

VideoCrafter2 [Chen et al., 2024a] 40.66% 95.00% 92.92% 35.86% 55.29% 25.13% 25.84% 28.23%
Pika [Pika, 2024] 43.08% 86.20% 90.57% 61.03% 49.83% 22.26% 24.22% 25.94%

T2V-Turbo [Li et al., 2024a] 54.65% 95.20% 89.90% 38.67% 55.58% 24.42% 25.51% 28.16%
CogVideoX [Yang et al., 2024] 62.11% 99.40% 82.81% 66.35% 53.20% 24.91% 25.38% 27.59%

LaVie [Wang et al., 2023a] 64.88% 96.40% 91.65% 38.68% 49.59% 25.09% 25.24% 27.39%
Kling [Team, 2024] 68.05% 93.40% 89.90% 73.03% 50.86% 19.62% 24.17% 26.42%

SVD [Blattmann et al., 2023] 61.55% 95.20% 82.81% 37.17% 43.68% 25.12% 25.71% 28.39%
ExSVD (ours) 63.38% 95.60% 84.04% 39.94% 43.14% 24.91% 25.96% 28.55%

Table 1: Comparison with other open-accessible models on VBench.

with those of the SVD model, indicating that ExSVD does
not degrade the video quality of the original SVD model. In
the temporal flickering dimension, the ExSVD model demon-
strates superior performance. This enhancement is primar-
ily attributed to the extended temporal block in the ExSVD
model, which bolsters the model’s motion prediction capabil-
ities. After post-tuning, the ExSVD model exhibits enhanced
temporal consistency, resulting in fewer flickering phenom-
ena and thus a higher temporal flickering score. From the
perspective of video-condition consistency, the performances
of the ExSVD and SVD models are generally consistent. In
the spatial relationship and multiple objects metrics, ExSVD
achieves higher scores. This indicates that ExSVD is capable
of fully leveraging the text-to-image model to synthesize real-
istic videos based on the generated images. Overall, ExVideo
enhances the total number of frames and duration of videos
without compromising video quality.

Human Evaluation: In addition to the automatic metrics
evaluation, we conducted a human preference experiment in-
volving 30 participants to facilitate a comparative analysis
between the SVD and our ExSVD model. In each evalua-
tion session, we randomly selected two videos that both cor-
responded to the same prompt and presented them to the par-
ticipants. Participants were instructed to choose from one of
three options: “Left is better”, “Tie”, or “Right is better”,
without disclosing the names of the models. Each participant
evaluated up to 30 randomly selected video pairs. The results
indicate that our ExSVD model outperformed the SVD model
in terms of human preference, achieving a win rate of 48.35%
compared to SVD’s win rate of 34.77%.

4.2 Comparison with Publicly Accessible Models
We further evaluated the performance of ExSVD in compar-
ison to other publicly available models. To facilitate a com-
prehensive analysis that incorporates both text-to-video and
image-to-video models, we designed a text-to-video pipeline

that integrates ExSVD with Hunyuan-DiT. This allows for
a uniform assessment of the models across the text-to-video
task. The parameter settings of this evaluation were consis-
tent with those outlined in the previous subsection. For a thor-
ough evaluation of our models, we selected top-performing
video synthesis models for comparison. The results are sum-
marized in Table 1, where the metrics of the baseline mod-
els are collected from the original VBench leaderboard. Due
to the variability of the dynamic degree metric with respect
to frame and FPS, we have opted not to include it in the ta-
ble. In comparison to other models, our ExSVD outperforms
the competition, achieving the highest overall score and ex-
celling in the aesthetic quality, temporal style, and overall
consistency metrics. Additionally, ExSVD exhibits compet-
itive performance in the dimensions of temporal flickering,
motion smoothness, and multiple objects.

4.3 Case Study
Visual Comparison: We present a series of video examples
generated by ExSVD and other video synthesis models to fa-
cilitate an intuitive comparison of their performance. The il-
lustrative results from these models are displayed in Figure
3. We highly recommend readers watch the videos on our
project page. A noteworthy observation from this comparison
is that the majority of existing video synthesis models tend
to produce videos characterized by limited motion dynamics.
In contrast, our extended model, which benefits from post-
tuning applied over extended temporal durations, exhibits a
markedly improved ability to generate videos with signifi-
cant movement. In the second example, Kling, a competitive
close-source model, demonstrates the capability to generate
realistic videos, but it is unable to generate the astronaut in
the style of Van Gogh. This disparity in performance high-
lights the advanced generative capabilities of our model.

Generalization Abilities: Although the model is trained
at a fixed resolution and exclusively utilizes realistic video
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(a) 576×1024

(b) 1024×576 (c) 1024×1024

Figure 4: Video examples in various resolutions. The first frame is
generated by Stable Diffusion 3 with prompt “bonfire, on the stone”.

(b) Pixel art style

(a) Flat anime style

Figure 5: Examples in various styles generated by ExSVD, where
the first frame is generated by Stale Diffusion 3. The prompt is “A
beautiful coastal beach in spring, waves lapping on sand”, followed
by the description of style.

datasets, the extended variant demonstrates remarkable ca-
pabilities, allowing for the generation of videos across a
spectrum of resolutions and styles. To rigorously assess the
performance of ExSVD, we conduct additional evaluations
across various resolutions. Figure 4 illustrates several gen-
erated video examples that underscore the model’s capacity
to generate videos in various resolutions and aspect ratios.
This adaptability ensures that the generated videos maintain
visual integrity regardless of the resolution parameters. Fur-
thermore, Figure 5 presents an array of stylistic variations,
further emphasizing the model’s versatility in accommodat-
ing diverse artistic expressions. These examples underscore
the robustness and generalizability of ExSVD, offering flexi-
bility in video generation across varying contexts.

Visualization of Training Process: We investigated the
evolution of the model’s capabilities during the training pro-
cess. Figure 6 presents the generated videos that exemplify
the model’s performance at three distinct phases of training. It
is difficult to present the dynamics using still images, thus we
present the optical flow, computed by RAFT [Teed and Deng,
2020], to the right of each example for a clearer demon-

(a) Before post-tuning, the camera is irregularly jittering.

(c) After 64000 steps, complex motion emerges.

(b) After 32000 steps, the camera is moving smoothly.

Figure 6: Examples in different phases. The prompt is “sunset,
mountains, clouds”. We show the optical flow to visualize motion,
with similar colors indicating similar movement directions.

stration of motion. Initially, before training, the extended
model architecture was solely capable of guaranteeing the
structural integrity of the video frames, which suffered from
pronounced jittering artifacts. Progressing through the train-
ing, after 32,000 steps, the model began to produce videos
displaying smooth camera movements. With continued train-
ing up to 64,000 steps, the model further advanced to create
complex motions, such as clouds and mountains moving with
nuanced, layered speed. The model effectively understands
the depth and spatial relationships within the scene. This ex-
ample intuitively illustrates the process of the model learning
long-term information.

5 Conclusions and Future Work
In this paper, we delve into the enhancement of video dif-
fusion models through post-tuning. Specifically, we propose
a post-tuning approach called ExVideo, which can extend the
duration of generated videos and release the potential of video
synthesis models. Based on Stable Video Diffusion, our ap-
proach achieves a quintupling in the number of frames, while
preserving the original generalization abilities. However, the
enhanced model remains inherently constrained by the limita-
tions of the base model. Looking ahead, we are committed to
furthering our exploration of video synthesis models through
post-tuning methodologies.
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